Data Science And Al for Economists
Lecture 1: Toolkits: Introduction to Git and Github

Zhaopeng Qu
Business School, Nanjing University
September 03 2025

Roadmap

2 /65

Today we will cover the following topics:

« Programming Language Selection:
o Install and Setup for R
o Install and Setup for RStudio

o Version Control, Git and GitHub
o Why do we need it?

o How to use it?

3/ 65

Programming Languages

Top Programming Languages by IEEE in 2019-2024

Language Tpe Score Top Programming Languages 2024

Click a button to see a differently weighted rankin
Python & Q @ | 1000 Y weig g

Spectrum Jobs
Python
I

Java 0.6055
C D O @ 944 JavaScript 0.4732

0.4305

Java ® 0 3 96.3

o
¥
s

o

0.2588
C++ D D @ 87.5 TypeScript

0.2195

[}
o

0.2148
R (] 81.5 HTNL 0.1845

Rust

®

o
*
00 i
o
<N

.145
JavaScript @ 79.4 wathenstica [IRELD
PHP 0.1321
Lua 0.1115

C# ® 0 O & 74.5 she1l [ENED

Dart

Matlab Q 70.6 Ruby

Swift = [= 69.1

2]
=t
s
-+

scala
solidity [Jj
Go @ D 68.0 perl |
objective-C [
aroovy]

Matlab [

»
o
=

Arduino ||

2019 e 2465

Popular Softwares by Jobs in 2019

uibonc, &
SqaL- ®
Java- &
Amazon ML - &
R- &
C C++ or C# -]
Hadoop - L
Tableau - &
Apache Spark - &
SAS - &
Google - &
Microsoft Azure -
Apache Hive -
Scala-
MATLAB -
SPS5-
Tensorflow -
Splunk -
Apache Pig -
Teradata -
m— Ciata -
Cognos -
Scikit Learn -
Pytorch -
Minitab -
Alteryx -
Keras -
JMP -
Caffe -
Spoffire -
Apache Flink -
Databricks -
SAP -
Apache MX¥Net -
Pentaho -
Theana -
Mlib -
H20 -

250 Jobs)

The More Popular Data Science Software (=

eemessssamesisiil i) | | J J J'

10000 20000
Mumber of Data Science Jobs on Indeed.com

2019
6/ 65

Popular Softwares by Jobs in 2024

Alteryx - L
saL - ® ApacheHive - ®
Python - ® Databricks - ®
w I - .
= Java- ®) ®
2 CC++orC# - ®
x @
= Tableau- ———— @ - Py
I ApacheSpark- ——— @ 2
e MicrsoftPowerBl S -
 MicrsoftPowerBl- @ ——@
= X o v Teradata - P
= -h ~D— Minitab - .
g sAs- ———@] mp- —@
i, b N
& MATLAB- ———@ 5 Gtata- —— @)
3 Hadoop - —e =1 ApachePig- —— @
Splunk - ® § Spotire- — @
Scala- | ® | ‘Eo ScikitLean- —@
0 50000 100000 150000 ﬁ Amazor aker- —— @
Number of Data Science Jobs on Indeed.com § ApacheFlink- ——@@
o (Julia- 46)
i Keras- —————@
. . . o . P (eras
Figure 1a. Number of data science jobs for the more popular software (>= 10,000 jobs). 8 s .
> Mathematica- ——@
© H20- —@
gx Caffe- —@
2024 o ApacheMxXNet- —@
E SAPanalitics- ——4@
L= GraphPadPrism- —4@
= Pentaho- —@
Dataiku - —@
s —&
AzureMachinelLe —@
K
KNIME- @
MLib- @
0 2500 5000 7500

Number of Data Science Jobs on Indeed.com

2024
7 | 65

Languages: Python, R, Julia and Stata

Python:

e Pros:

o General-purpose: web development, data
analysis, machine learning, etc.

o Rich libraries: numpy, pandas, scikit-learn,
tensorflow, etc.

o Community: Stack Overflow, GitHub, etc.

e Cons:

o Speed: slower than C/C++/Fortran

o Memory: not good at memory management
o Syntax: not as clean as R

o IDE: not as good as RStudio

Julia
e Pros:
o Speed: as fast as C/C++/Fortran

o Syntax: as clean as Python

o Memory: good at memory management

o Community: Stack Overflow, GitHub, etc.

e Cons:

o IDE: not as good as RStudio
o Libraries: not as rich as Python and R

8/ 65

Languages: Python, R, Julia and Stata

R: Stata

o Pros: ¢ Pros:

o Statistical language: designed for data o Statistical language: designed for statistics
analysis and econometrics
o Rich libraries: dplyr, ggplot2, tidyr, etc. o Community: Stata Forum, etc. mailist
o Community: Stack Overflow, GitHub, etc. o IDE: Stata
o IDE: RStudio
e Cons:
« Cons:
o Speed: slower than C/C++/Fortran

o Speed: slower than C/C++/Fortran o Memory: not good at memory management
o Memory: not good at memory management o Syntax: the most clean even better than
o Syntax: not as clean as Python python
o General-purpose: not as good as Python o General-purpose: not as good as Python

9/ 65

Which programming language should you learn?

Of course, more is better than less. But we'd better focus on one or two languages at the beginning.

It depends on what you already know and what you want to do.
o For Data Science & Al, Python and R are the most popular languages.
o For Econometrics, R and Stata are the most popular languages.

o For Macroeconomics and High Performance Computing, Julia(C++) is the best choice.

For this course, we will focus on R and Python.

Today we will focus on R and RStudio.

10 / 65

Installing and Setting Up R

Installing R and RStudio

R:

o« Windows: Download and install R from CRAN.
e« Mac: Download and install R from CRAN.

IDE for R

« Integrated Development Environment(IDE) is a software application that provides comprehensive

facilities to computer programmers for software development.

o Ris the "engine" of the car, and IDE is the navigator of the car. And RStudio is the most popular IDE
for R.
o Download and install RStudio from RStudio.

« NOTE: You should install R first and then install RStudio.

11 / 65

https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/macosx/
https://www.rstudio.com/products/rstudio/download/

Using IDE(RStudio) v.s Terminal(R)

R RStudio

Source: ModernDive(2025)

12 / 65

https://moderndive.com/v2/#welcome-to-moderndive-v2

Introduction to Version Control, Git and GitHub

Name

> T Figures
> £ RawData

> 7 WorkData
» T References
=7 Logfiles

> ©7 SaveData

v [Dofiles

DataClean_10_0610.do
DataClean_10_18_0611.do
DataClean_2012_2018_0615_Qu_MAC.do
DataClean_2010_0610_Qu_MAC.do
DataClean_2010_0619_Qu_MAC.do
DataClean&Merge_2010_0619_Qu_MAC.do
DataClean&Merge_2010_0621_Qu_MAC.do
DataClean&Merge_2012_0622_Qu_MAC.do
DataFilling_0629.do

DataFilling_0630.do
DataClean&Merge_10_12_0627.do
DataClean&Merge_14_18_0701.do
CFPS2010.do

CFPS2016.do
DataClean_child_edu_0702.do
CFPS2014.do

DataFilling_parents_0711.do
DataFilling_parents_0714.do

CFPS2012.do

CFPS2018.do

v NewMatch

| [P P [P [P P [P P P P P P P £ P P P [P P [P P

Why do we need Version Control?

My Messy Stata Dofiles

00 0000000000000 OCDTODODODODO

« Once upon a time, there was a researcher who worked on a project for a while.

Date Modified

July 19, 2021 at 00:4
July 21, 2021 at 18:39
Yesterday at 23:21
Today at 05:04

Today at 18:22

Today at 18:28

Today at 21:55

June 11, 2021 at 14:36
June 15, 2021 at 14:40
June 19, 2021 at 12:22
June 19, 2021 at 23:00
June 19, 2021 at 23:13
June 19, 2021 at 23:54
June 21, 2021 at 21:34
June 23, 2021 at 09:24
June 29, 2021 at 22:31
June 30, 2021 at 22:15
July 1, 2021 at 15:04
July 1, 2021 at 17:18
July 2, 2021 at 18:59
July 2, 2021 at 21:42
July 2, 2021 at 21:45
July 2, 2021 at 21:45
July 12, 2021 at 17:04
July 14, 2021 at 08:51
July 17, 2021 at 20:19
July 18, 2021 at 20:45
Today at 16:03

w
N
®

Kind

Folder
Folder
Folder
Folder
Folder
Folder
Folder

Stata Do-file
Stata Do-file
Stata Do-file
Stata Do-file
Stata Do-file
Stata Do-file
Stata Do-file
Stata Do-file
Stata Do-file
Stata Do-file
Stata Do-file
Stata Do-file
Stata Do-file
Stata Do-file
Stata Do-file
Stata Do-file
Stata Do-file
Stata Do-file
Stata Do-file
Stata Do-file

Folder

14 / 65

Why do we need Version Control?

. Lugine
v @ Writing
REIIH#E_0511_Qu—7Ic 54l .docx
REIIE#RE_0515_Qu—7I 54 . docx
R ER T 9455 docx
REIIT#HE#E_0515_by_QU.docx
REIIT#HE#E_0516_by_QU.docx
REIIHEERF_0518_gu.docx
REI I ##ERE_20210606_qu0d2.docx
REILTH#E_20210606_FHETWEF docx
REI I HE#ERFE_20210606.docx
& REI TH#E_20210606.pdf

o REITI#H#RB_20210607.docx
v [REEAX

o REITITH#EF_20210607 final.docx

88888868688

-

My Messy Drafts

o Different versions of the same file are a mess for the data scientist.

@ K

00000000 OCDCODODO

YUIIC £3, ULl QL 2227

July 17, 2021 at 21:59
May 15, 2021 at 13:00
May 16, 2021 at 12:03
May 16, 2021 at 13:41
May 16, 2021 at 18:59
May 18, 2021 at 12:19
May 19, 2021 at 11:34
June 7, 2021 at 02:09
June 7, 2021 at 08:19
June 7, 2021 at 08:27
June 7, 2021 at 08:28
June 7, 2021 at 08:50
July 17, 2021 at 09:51
June 7, 2021 at 08:50

2.4 MB

3 MB
279 KB
1.9 MB
1.9 MB
1.3 MB
827 KB
829 KB
826 KB
2.2 MB
826 KB

826 KB

ruue
Folder
Microso...(.docx)
Microso...(.docx)
Microso...(.docx)
Microso...(.docx)
Microso...(.docx)
Microso...(.docx)
Microso...(.docx)
Microso...(.docx)
Microso...(.docx)
PDF Document
Microso...(.docx)
Folder

Microso...(.docx)

« Replicability and Reproducibility are the most important things for social science research.

o Many journals require you to provide your code and data for replication.

15/ 65

Why do we need Version Control?

« Version Control is a system that records changes to a file or set of files over time so that you can recall
specific versions later.

o Like a tracking system for your files.

« Gitis a distributed version control system that allows you to track changes in your files. And it can be
deployed on

o a local server(PC)

o or cloud server or web-based platform.

e Guidebook: Pro Git 2nd Edition, free download and Chinese Edition.

16 / 65

https://git-scm.com/book/en/v2
https://git-scm.com/book/zh/v2

Common Misceonceptions

"Github is a data science tool for sharing data"

o It's built more for version controlling plain-text code (that analyzes data) and text (that documents it).
"Git is only relevant for software developers"

« It also has distinct benefits for the applied researchers' workflow
Version control is only useful for collaborative projects”

e No, in fact putting your solo work under version control at first.

o then move on to more complicated collaborations.

17 / 65

Git: The Basic Workflow

1. do work in your own working directory (your own PC),like coding, writing, and so on.

2. stage files(E 73 1F), thus adding snapshots of them to your staging area.

3. commit(£#£55), which takes the files as they are in the staging area and stores that snapshot permanently to your Git

directory.

4. if you have a remote repository, push your commit to it.(_|- 1% Fl =)

Stage changes Commit Push
git add git commit git push

Y N

File changes in
working directory Staged Files Local repository

(Unstaged Files)

Remote repository
(GitHub, GitLab)

(optional)

18 / 65

Using GitHub as your remote git server

 You can use Git on your local server, but you can also use GitHub to manage your files.

 GitHub is a web-based platform that provides hosting for software development and version control

using Git.
o Other providers are GitLab, Bitbucket, Gitee(Chinese version of GitHub) etc.

« My github page

8
o

&il

y

9,

2

Q@

3

Customize your pins

\\\\\\

pppppp

Frank Qu
byelenin

Public taddylab.githubio public
Forked from TaddyLab/taddylab.github.io

Economist and Number Cruncher. Using
data to explore the econormic and social
logic in China.

19 / 65

https://www.github.com/

ur Course Repository on

@ O DSAI-NJU

(@ Overview [Repositories (2) [Projects @ Packages A Teams & People (2) |~ Insights & Settings

[Q Type (/) to search

Data Science and Al for Economists@NJU

This is the website fort the course Data Science and Al for Economists@NJU

A 2 followers 14 https://byelenin.github.io/DSAI_2025/ & quenju.edu.cn

We think you're gonna like it here.

We've suggested some tasks here in your organization's overview to help you get started.

AR Invite your people

Invite your first member Customize members' permissions
Find people by their GitHub username or Set everyone’s base permissions for your
email address. code.

@ Collaborative coding

See more about collaborative coding >

Create a pull request Create a branch protection rule
Propose and collaborate on changes to a Enforce certain workflows for one or more
repository. branches.

{§} Automation and CI/CD

See more about automation and CI/CD ->

Auto-assign new issues Run a continuous integration test
Try automatically assigning work with Validate your code using a Cl workflow.
GitHub Actions.

® View as: Public ~

You are viewing the README and pinned
repositories as a public user.

YYou can create a README file or pin repositories
visible to anyone.

YYou can hide the tasks we've suggested on this
page and bring them back later.

Discussions

Set up discussions to engage with your
community!

Turn on discussions

Repositories

Awesome-LLM
Forked from Hannibal046/Awesome-LLM
{?0 Updated on Mar 15

demo-repository
@HTML T¥0 Updated on Dec 1, 2024

Create new repository Import

20 / 65

Git and GitHub Management

« Git is originally a command-line tool, and you can use it in the following ways:

1. Command Line Interface (CLI): Shell Command-line Tools

2. GUI: A graphical user interface for Git, such as GitHub Desktop, SourceTree, GitKraken,

3. IDE: Integrated Development Environment, such as RStudio, VS Code...

4. Web-based Platform: A web-based platform for Git management, such as GitHub, GitLab, Bitbucket...

« As abeginner, I recommend you use RStudio/GitHub Web /GitHub Desktop/ for Git management.

21/ 65

Lab: GitHub Practice with RStudiol

1 This section is heavily borrowed from Grant
McDermott's course materials (Lecture 2) at the
University of Oregon.Although I have made some minor

modifications to the original materials, the core content

remains the same.

Git Installing and Setup

« Open your terminal for MacOS or Command Prompt for Windows and type the following command:
o git --version.

« Git installing
o Windows: Download and install Git from here.

o Mac: Download and install Git from here.

23 / 65

https://git-scm.com/download/win
https://git-scm.com/download/mac

Git Installing and Setup

« Git Setup: Open your terminal for MacOS or Command Prompt for Windows and type the following

command:
o git config --global user.name "Your Name"
o git config --global user.email "Your email”
o git config --global --list

» Git Help: Type git help or git help -a for more information.

24 / 65

GitHub Practice: Register an account

» Register an account
o Sign up: Create an account on GitHub.
o Educational Account: Apply for an educational account on GitHub.

o The Big Benefits: Free Copilot Access and Unlimited Private Repositories.

25/ 65

https://www.github.com/
https://education.github.com/
https://docs.github.com/en/copilot/managing-copilot/managing-copilot-as-an-individual-subscriber/managing-your-copilot-subscription/getting-free-access-to-copilot-as-a-student-teacher-or-maintainer

GitHub Practice with RStudio

o Link a GitHub repository (i.e. "repo") to an RStudio Project. Here are the steps we're going to follow:

1. Create the repo on GitHub and initialize with a README.

2. Copy the HTTPS/SSH link (the green "Clone or Download" button).!

3. Open up RStudio.
4. Navigate to File -> New Project -> Version Control -> Git.

5. Paste your copied link into the "Repository URL:" box.
6. Choose the project path ("Create project as subdirectory of:") and click Create Project.

L 1's easiest to start with HTTPS, but SSH is advised for more advanced users.

26 / 65

http://happygitwithr.com/ssh-keys.html#ssh-keys

Link a GitHub repo to an RStudio Project

& @ GitHub, Inc. [US] | https://github.com/grantmcdermott

Grant McDermott
grantmcdermott

* @3

Assistant Professor of Economics at
the University of Oregon. Mostly
working on natural resources and
the environment, but easily
distracted.

42 University of Oregon
® Eugene, Oregon
X grantmcd@uoregon.edu

@ www.grantmcdermott.com

Edit

Organizations

— s D s

Pull requests Issues Marketplace Explore

Overview Repositories 33 Stars 1 Followers 18 Following 0

Popular repositories

rstudio-compute-engine

RStudio Server on Google Compute Engine

*18 ¥s

sfg-bayes-intro

A very high-level introduction to Bayesian data analysis
(using R)

OHTML K1 ¥1

cmip5-models

Comparing the CMIP5 suite of climate models to observed
global temperatures

®HvL Yo

453 contributions in the last year

Jan Feb Mar Apr May Jun

Mon | | []
|

Wed

Customize your pinned repositories

R-intro

Introduction to R

@HTVML k2 ¥1

blueparadox

Code and data for "The blue paradox: Preemptive
overfishing in marine reserves" (McDermott, Meng, et al.,
2018; PNAS)

stata w1 Y1

sceptic-priors

Code and data for "Sceptic priors and climate policy" paper

or ¥1

Contribution settings ¥

Aug Sep Oct Nov Dec

27 | 65

Make some local changes

Look at the top-right panel in your RStudio IDE. Do you see the "Git" tab?

e Click on it.

o There should already be some files in there, which we'll ignore for the moment.
Now open up the README file (see the "Files" tab in the bottom-right panel).

« Add some text like "Hello World!" and save the README.
Do you see any changes in the "Git" panel? Good. (Raise your hand if not.)

28 / 65

Make some local changes

O - x| - 5 - ~ Addins ~ Rl test ~

Console Terminal 3 Environment History Connections Git 0
= 7 Import Dataset ~ sy List ~

7} Global Environment ~

R version 3.5.2 (2018-12-20) -- "Eggshell Igloo"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an Engli% locale
R is a collaborative project with many contributors.

Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Files Plots Packages Help Viewer -

Type 'demo()' for some demos, 'help()' for on-line help, or © New Folder @ Delete 4] Rename | 3 More -
'help.start()' for an HTML browser interface to help.) Home > Desktop > test R
Type 'q()' to quit R. A Name Size Modified

t .
>] .gitignore 408 Jan 8, 2019, 12:43 PM

wo| README.md 178 Jan 8, 2019, 12:56 PM

& test.Rproj 205 B Jan 8, 2019, 12:43 PM

29 / 65

Main Git operations

« Now that you've cloned your first repo and made some local changes, it's time to learn the four main Git

operations.

1. Stage (or "add")

o Tell Git that you want to add changes to the repo history (file edits, additions, deletions, etc.)
2. Commit

o Tell Git that, yes, you are sure these changes should be part of the repo history.
3. Pull

o Get any new changes made on the GitHub repo (i.e. the upstream remote), either by your

collaborators or you on another machine.
4. Push
o Push any (committed) local changes to the GitHub repo

« For the moment, it will be useful to group the first two operations and last two operations together.

30 / 65

Stage and Commit

Q - X - I ~ Addins ~ R test -

vo | README.md Environment History Connections Git

7 7 Q| % Preview - - *@ Insert + ~®Run | (o= 5 Diff | (/] commit | & | # | & | & - = master -
1 |# My first test repo Staged |Status |« Path
2 .gitignore
3 |Hello world! a @ README.md
4 test.Rproj
P
Files Plots Packages Help Viewer =
© | New Folder @ Delete |Rename = {3 More ~
4 Home > Desktop > test R
A Name Size Modified
Tt .
©7] .gitignore 40 B Jan 8, 2019, 12:43 PM
R test.Rproj 205 B Jan 8, 2019, 12:43 PM
4:1 Markdown * vo] README.md 35B Jan 8, 2019, 1:18 PM
Console Terminal -

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

« Note the helpful commit message to ourselves. 31/ 65

Push and Pull

Q- &x i 5 - ~ Addins ~ R test -

wo | README.md — Environment History Connections Git -

7 Q| % Preview

1 |# My first test repo

% | master -

< Changes History master ~ & pull | Push
3 |Hello world!
) @ Your branch is ahead of 'origin/master' | Commit message
o Staged Status ~ Path
.gitignore
test.Rproj
Amend previous commit Commit
Show Staged © Unstaged Context Sline - \gnore Whitespace > Unstage Al —
More ~
Size Modified
408 Jan 8, 2019, 12:43 PM
205B Jan 8, 2019, 12:43 PM
4:1 358B Jan 8, 2019, 1:18 PM

Console Terminal

R is free software and com:
You are welcome to redistr
Type 'license()' or 'licem

Natural language support

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
‘citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

32/ 65

Here's a step-by-step summary of what we just did.

 Made same changes to a file and saved them locally.

o Staged these local changes.

 Committed these local changes to our Git history with a helpful message.

o Pulled from the GitHub repo just in case anyone else made changes too (not expected here, but good
practice).

o Pushed our changes to the GitHub repo.

 Always pull from the upstream repo before you push any changes. Seriously, do this even on solo projects;
making it a habit will save you headaches down the road.

33/ 65

Why this workflow?

Creating the repo on GitHub first means that it will always be "upstream" of your (and any other) local
copies.

In effect, this allows GitHub to act as the central node in the distributed VC network.

Especially valuable when you are collaborating on a project with others — more on this later — but also
has advantages when you are working alone.

If you would like to move an existing project to GitHub, my advice is still to create an empty repo there

first, clone it locally, and then copy all your files across.
RStudio Projects are great.
o they interact seamlessly with Git(Hub), as we've just seen.

o They also solve absolute vs. relative path problems, since the .Rproj file acts as an anchor point for all

other files in the repo.

34 / 65

Git from the shell

Why bother with the shell?

The GitHub + RStudio Project combo is ideal for new users.

« RStudio's Git integration and built-in GUI cover all the major operations.
« RStudio Projects FTW.

However, I want to go over Git shell commands so that you can internalise the basics.

o The shell is more powerful and flexible. Does some things that the RStudio Git GUI can't.
« Potentially more appropriate for projects that aren't primarily based in R. (Although, no real harm in

using RStudio Projects to clone a non-R repo.)

36 / 65

http://happygitwithr.com/ssh-keys.html#shell

How to open the shell?

Windows:

o PowerShell (recommended)

« Command Prompt (cmd)

« Windows Terminal (modern terminal app)
macOS:

« Terminal app with zsh (default since 2019)

« Terminal app with bash (optional)

37 / 65

Main Git shell commands

Clone a repo.
$ git clone REPOSITORY-URL

See the commit history (hit spacebar to scroll down or q to exit).

$ git log
What has changed?

$ git status

38 / 65

Main Git shell commands (cont.)

Stage ("add") a file or group of files.
$ git add NAME-OF-FILE-OR-FOLDER

You can use wildcard characters to stage a group of files (e.g. sharing a common prefix). There are a bunch of

useful flag options too:

o Stage all files.
$ git add -A

« Stage updated files only (modified or deleted, but not new).
$ git add -u

« Stage new files only (not updated).

$ git add . 39 / 65

https://ryanstutorials.net/linuxtutorial/wildcards.php

Main Git shell commands (cont.)

Commit your changes.

$ git commit -m "Helpful message"

Pull from the upstream repository (i.e. GitHub).

$ git pull

Push any local changes that you've committed to the upstream repo (i.e. GitHub).

$ git push

40 / 65

Merge conflicts

Collaboration time

Turn to the person next to you. You are now partners temporarily.

Student 1: Invite Student 2 to join you as a collaborator on the "test" GitHub repo that you created earlier.

(See the Settings tab of your repo.)

Student 2: Clone Student 1's repo to your local machine.Change into a new directory first or give it a

different name to avoid conflicts with your own "test" repo.

Student 2: Make some edits to the README (e.g. delete lines of text and add your own). Stage, commit
and push these changes.

Student 1: Now make your own changes to the README on your local machine. Stage, commit and then

try to push them (after pulling from the GitHub repo first).
Did Student 1 encounter a merge conflict error?

Good, that's what we were trying to trigger.Let's learn how to fix them.

42 / 65

Merge conflicts

« First, let's confirm what's going on.
$ git status

« As part of the response, you should see something like:

Unmerged paths:
(use "git add <file>...

to mark resolution)

* both modified: README . md

« Git is protecting Student 1 by refusing the merge. It wants to make sure that you don't accidentally
overwrite all of your changes by pulling Student 2's version of the README.

« In this case, the source of the problem was obvious. Once we start working on bigger projects, however,

git status can provide a helpful summary to see which files are in conflict.

43 / 65

Merge conflicts (cont.)

« Let's see what's happening here by opening up the README file.
« RStudio is a good choice, although your preferred text editor is fine.

« You should see something like:

Some text here.
<<<<<<< HEAD
Text added by Partner 2.

Text added by Partner 1.
>>>>>>> 814e09178910383¢c128045ce67a58c9cldf3f558.

More text here.

44 | 65

Merge conflicts (cont.)

What do these symbols mean?

Some text here.
<<<<<<< HEAD
Text added by Partner 2.

Text added by Partner 1.
>>>>>>> 814e09178910383¢c128045ce67a58c9c1df31558.

More text here.

« <<<<<<< HEAD Indicates the start of the merge conflict.
« ======= [ndicates the break point used for comparison.

« >>>>>>> <long string> Indicates the end of the lines that had a merge conflict.

45 / 65

Merge conflicts (cont.)

« Fixing these conflicts is a simple matter of (manually) editing the README file.
o Delete the lines of the text that you don't want.
o Then, delete the special Git merge conflict symbols.

« Once that's done, you should be able to stage, commit, pull and finally push your changes to the GitHub

repo without any errors.

Caveats

o Student 1 gets to decide what to keep because they fixed the merge conflict.
o The full commit history is preserved, so Student 2 can always recover their changes if desired.

« A more elegant and democratic solution to merge conflicts (and repo changes in general) is provided by
Git branches. We'll get there next.

46 / 65

Aside: Line endings and different OSs

Problem

During your collaboration, you may have encountered a situation where Git is highlighting differences on
seemingly unchanged sentences.

o If that is the case, check whether your partner is using a different OS to you.

The "culprit" is the fact that Git evaluates an invisible character at the end of every line. This is how Git tracks

changes. (More info here and here.)

« For Linux and MacQOS, that ending is "LF"
« For Windows, that ending is "CRLF" (of course it is...)

47 | 65

https://help.github.com/articles/dealing-with-line-endings/
https://en.wikipedia.org/wiki/Newline

Aside: Line endings and different OSs

Solution

Open up the shell and enter
$ git config --global core.autocrlf input

(Windows users: Change 1nput to true).

48 / 65

Branches and forking

What are branches and why use them?

e Branches are one of Git's coolest features.

« Allow you to take a snapshot of your existing repo and try out a whole new idea without affecting your

main (i.e. "master") branch.

« Only once you (and your collaborators) are 100% satisfied, would you merge it back into the master
branch.

o This is how most new features in modern software and apps are developed.

o Itis also how bugs are caught and fixed.
o But researchers can easily — and should! — use it to try out new ideas and analysis (e.g. robustness

checks, revisions, etc.)

o If you aren't happy, then you can just delete the experimental branch and continue as if nothing

happened.

50 / 65

Create a new branch in RStudio

O - x| &=~ 5 - - Addins ~ R test ~
vo | README.md - Environment History Connections Git -
: Q. | @ Preview - - W Insert -+ ~HRun | o3 | G, - 5 Diff | (/] commit | & | # | & | & - 95 master -+
1 # My first test repo Staged Status | « Path
2 .gitignore
3 Hello world! test.Rproj
4
4
Files Plots Packages Help Viewer -
@ | New Folder @ Delete =|Rename | {3 More ~
4 Home > Desktop > test R
A Name Size Modified
Tt .
©7 .gitignore 40B Jan 8, 2019, 12:43 PM
R test.Rproj 205 B Jan 8, 2019, 12:43 PM
4:1 Markdown * wo] README.md 358 Jan 8, 2019, 1:18 PM
Console Terminal -]
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
>

51 / 65

Branch shell commands

« Create a new branch on your local machine and switch to it:
$ git checkout -b NAME-OF-YOUR-NEW-BRANCH

« Push the new branch to GitHub:
$ git push origin NAME-OF-YOUR-NEW-BRANCH

« List all branches on your local machine:

$ git branch

52 / 65

Branch shell commands(cont.)

« Switch back to (e.g.) the master branch:
$ git checkout master

e Delete a branch

$ git branch -d NAME-OF-YOUR-FAILED-BRANCH
$ git push origin :NAME-OF-YOUR-FAILED-BRANCH

53 / 65

Merging branches + Pull requests

You have two options:

1. Locally

« Commit your final changes to the new branch (say we call it "new-idea").
« Switch back to the master branch: $ git checkout master

« Merge in the new-idea branch changes: $ git merge new-idea

« Delete the new-idea branch (optional): $ git branch -d new-idea

2. Remotely (i.e. pull requests on GitHub)

« Pull requests are a way to notify collaborators—or yourself—that you've finished a feature and want it
reviewed or merged.

 You write a summary of all the changes contained in the branch.

 You then assign suggested reviewers of your code — including yourself potentially — who are then able
to approve these changes ("Merge pull request") on GitHub.

« Let's practice this now in class... 54 / 65

Your first pull request

You know that "new-idea" branch we just created a few slides back? Switch over to it if you haven't already:.
« Remember: $ git checkout new-idea (orjust click on the branches tab in RStudio)

Make some local changes and then commit + push them to GitHub.
 The changes themselves don't really matter. Add text to the README, add some new files, whatever.

After pushing these changes, head over to your repo on GitHub.

You should see a new green button with "Compare & pull request". Click it.

Add a meta description of what this PR accomplishes. You can also change the title if you want.

Click "Create pull request".

(Here's where you or your collaborators would review all the changes.)

Once satisfied, click "Merge pull request" and then confirm.

55/ 65

Your first pull request (cont.)

QO - r g~ Go to file/function = + Addins - R test -
wmo | README.md = Environment History Connections Git = |
7 O, " Preview - - 4@ Insert - ==Run | 55| 5. - Diff | /) Commit | & - @ L | & - T, new-idea -~
1 # My first test repo Staged Status - Path
2 .gitignore
3 |Hello world! test.Rproj
4
1
Files Plots Packages Help Viewer -
© | New Folder | @ Delete .]Rename | {3 More ~
/.\ Home ~ Documents - Projects - test R
A Name Size Modified
.gitignore 408B Jan 9, 2020, 4
&l Markdownls ®' Rhistory 0B Jan 9, 2020, 4
Console Jobs = vo| README.md 35B Jan 9, 2020, 9
R test.Rproj 205 B Jan 9, 2020, 9

TUU dl'g weLLulllg LU I'guldLiiyuLe 1L ulluelr cerudlil LuliuLLivlis.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

56 / 65

Git forks lie somewhere between cloning a repo and branching from it.

In fact, if you fork a repo then you are really creating a copy of it.

Forking a repo on GitHub is very simple; just click the "Fork" button in the top-right corner of said repo.

This will create an independent copy of the repo under your GitHub account.

Once you fork a repo, you are free to do anything you want to it. (It's yours.) However, forking — in
combination with pull requests — is actually how much of the world's software is developed. For

example:

Outside user B forks A's repo. She adds a new feature (or fixes a bug she's identified) and then issues an

upstream pull request.
A is notified and can then decide whether to merge B's contribution with the main project.

57 | 65

https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/creating-a-pull-request-from-a-fork/
https://help.github.com/articles/creating-a-pull-request-from-a-fork/

Forks (cont.)

Creating forks is super easy as we've just seen. However, maintaining them involves some more leg work if

you want to stay up to date with the original repo.

 GitHub: "Syncing a fork"
« This isn't going to be an issue for completed projects. E.g. Forking the repo that contains the code and

data of a published paper.

OSS contribution

Remember that "OSS contribution" component of the course (i.e. 10% of your final grade)? Well, now is a

good time to tell you that forks, branches, and pull requests are effectively what I will be expecting of you.

« Grades aside, I want to encourage you to start thinking about contributing to software projects in general.
« Seriously, it can be something as simple as correcting typos or language. Many great programmers and
data scientists are not English first-language speakers. Helping to improve package documentation is a

small way to say thanks. (More here.)

58 / 65

https://help.github.com/articles/syncing-a-fork/
https://yihui.name/en/2013/06/fix-typo-in-documentation

Other tips

README

README files are special in GitHub because they act as repo landing pages.

« For a project tied to a research paper, this is where you should be explicit about the goal of the research
paper, the software requirements, how to run the analysis, and so forth (e.g. here).
« On the other end of the scale, many GitHub repos are basically standalone README files. Think of these

as version-controlled blog posts (e.g. here).
README files can also be added to the sub-directories of a repo, where they will act as a landing pages too.

o Particularly useful for bigger projects. Say, where you are using multiple programming languages (e.g.
here), or want to add more detail about a dataset (e.g. here).

READMESs should be written in Markdown, which GH automatically renders.

« We'll learn more about Markdown (and its close relation, R Markdown) during the course of our

homework assignments.

60 / 65

https://github.com/grantmcdermott/bycatch
https://github.com/jfiksel/github-classroom-for-teachers
https://github.com/grantmcdermott/blueparadox
https://github.com/grantmcdermott/sceptic-priors/tree/master/data
https://www.markdownguide.org/
https://rmarkdown.rstudio.com/

.gitignore

A .gitignore file tells Git what to — wait for it — ignore.

This is especially useful if you want to exclude whole folders or a class of files (e.g. based on size or type).

« Proprietary data files should be ignored from the beginning if you intend to make a repo public at some

point.
o Very large individual files (>100 MB) exceed GitHub's maximum allowable size and should be ignored

regardless. See here and here.

I typically add compiled datasets to my .gitignore in the early stages of a project.

 Reduces redundant version control history, where the main thing is the code that produces the compiled

dataset, not the end CSV in of itself. ("Source is real.")
« Simple to remove from my .gitignore once the project is being finalised (e.g. paper is being submitted).

61 / 65

https://help.github.com/articles/working-with-large-files/
https://help.github.com/articles/versioning-large-files/

.gitignore (cont.)

You can create a .gitignore file in multiple ways.

« A .gitignore file was automatically generated if you cloned your repo with an RStudio Project.
« You could also have the option of adding one when you first create a repo on GitHub.
« Or, you can create one with your preferred text editor. (Must be saved as ".gitignore".)

Once the .gitignore file is created, simply add in lines of text corresponding to the files that should be ignored.

« Toignore a single a file: FILE-I-WANT-TO-IGNORE.csv

« To ignore a whole folder (and all of its contents, subfolders, etc.): FOLDER-NAME/**
o The standard shell commands and special characters apply.

o E.g. Ignore all CSV files in the repo: *.cCSv
o E.g. Ignore all files beginning with "test": test*
o E.g. Don't ignore a particular file: !somefile.txt

62 / 65

Summary

63 / 65

Recipe (shell commands in grey)

1. Create a repo on GitHub and initialize with a README.

2. Clone the repo to your local machine. Preferably using an RStudio Project, but as you wish. (E.g. Shell
command: $ git clone REPOSITORY-URL)

3. Stage any changes you make: $ git add -A

4. Commit your changes: $ git commit -m "Helpful message"
5. Pull from GitHub: $ git pull

6. (Fix any merge conflicts.)

7. Push your changes to GitHub: $ git push

Repeat steps 3—7 (but especially steps 3 and 4) often.

64 / 65

Homework

 Find a way to access a stable and reliable internet connection.
 Apply the educational account on GitHub if you haven't already.

 Then send your Github ID to out TA.

65 / 65

