
Data Science & AI for Economists
Lecture 6: Introduction to Python in VS Code

Zhaopeng Qu
Business School,Nanjing University

October 15 2025

Roadmap

2 / 27

Today's Agenda

1. Installing Basic Python

Installing Python
Installing VS Code and Python Extensions

2. Basic Python in Practice in VS Code:

Manage Environment and Libraries
Using VS Code/Jupyter Notebook/Lab with Copilot to Coding

3 / 27

Installing Basic Python

4 / 27

Option 1: Direct Installation(not recommended)

From Python.org
Minimal setup
Full control

Option 2: Anaconda Distribution(recommended for
beginners)

All-in-one solution
Pre-configured for data science
Recommended for this course

Option 3: Miniforge(recommended for intermediate
users)

Lightweight alternative
Community-driven
For advanced users

Installing Python

Three Ways to Install Python

Remember: Whatever you pick, double-check that your system PATH points to the new Python so the
terminal and VS Code can find it.

5 / 27

Direct install from python.org

Visit python.org/downloads and grab the latest stable release (e.g., Python 3.12).

Windows notes:

Tick Add python.exe to PATH during setup, or add
%LocalAppData%\Programs\Python\Python312\ manually later.
Use Customize installation to ensure pip is included.

MacOS notes:

The .pkg installer places Python under /Library/Frameworks/Python.framework .
Add /Library/Frameworks/Python.framework/Versions/3.12/bin to your shell profile if
python3 --version fails.

Verify with:

python3 --version
pip3 --version 6 / 27

https://www.python.org/downloads/

Installing Python via Anaconda

Download the Anaconda Individual Edition from anaconda.com.

Run the installer (≈3 GB disk space). Allow it to update your PATH when prompted (recommended for
beginners).

Launch Anaconda Navigator for a GUI to manage packages, environments, Jupyter, and VS Code
launchers.

Confirm the install:

conda --version
python --version

If the commands fail, add the install path (e.g., C:\Users\<user>\anaconda3\Scripts) to PATH
manually.

7 / 27

https://www.anaconda.com/download

Installing Python via Miniforge

Miniforge is a minimal conda-forge-first distribution—ideal when you want conda environments
without the full Anaconda bundle.

Download the installer that matches your OS/architecture from conda-forge/miniforge.

Installation footprint is small (≈400 MB) and uses the conda-forge channel by default; the Mambaforge
variant ships with mamba pre-installed.

PATH considerations:

macOS/Linux: the installer updates your shell profile; reopen the terminal or source ~/.zshrc .
Windows: check Add Miniforge3 to my PATH environment variable or add C:\Users\
<user>\miniforge3\Scripts manually.

Validate in your terminal:

conda --version

mamba --version # if you chose Mambaforge 8 / 27

https://github.com/conda-forge/miniforge

Manage Environment and Libraries

Since Python is a free and open-source programming language, there are many package managers and
environment management systems for Python.

Package manager is a tool that helps you install, update, and remove packages for your programming
language.

Environment management system is a tool that helps you create, activate, and manage your virtual
development environments.

If you want to replicate someone else's project, you have to make sure that you have the same version of
python and the same packages.

9 / 27

Manage Environment and Libraries

1. official package manager and environment management system

pip is official package manager and venv is official environment management system for Python.

2. third-party package manager and environment management system

conda is a package manager and environment management system for Python, R and many other
languages for data science by Anaconda company(sort of like RStudio for R).

conda-forge is a third-party package manager and environment management system for Python
by conda-forge community.

mamba is a faster alternative to conda by conda-forge community.

10 / 27

Basic Workflow in Python

11 / 27

Basic Workflow in Python

Basic Workflow

1. Create or import a virtual development environment

2. Activate the environment

3. Install or import necessary packages

4. Launch IDEs (such as Jupyter Lab or VS Code)

5. Select the environment and interpreter within the IDE

6. Using Copilot to help coding

12 / 27

Why we need VDE?

Collaborative Coding Challenges:

Team members may have different versions of Python installed.

Even if everyone uses the same version of Python, they might have different versions of packages and
dependencies.

You yourself may need different versions of packages or dependencies for different projects.

A Virtual Development Environment (VDE) is a self-contained, isolated workspace where you can
manage and run your Python projects.

Using a VDE helps prevent conflicts between dependencies required by different projects, ensuring
each project has exactly the right versions it needs.

Normally, there are two ways to create a VDE:

venv is official environment management system for Python.
conda is a package manager and environment management system for Python. 13 / 27

Basic Workflow

Preparing Terminal in Windows

There are many ways to open a terminal in Windows:

CMD
PowerShell
Git Bash
Anaconda Prompt
etc.

If you installed Anaconda , you can open Anaconda Prompt as your terminal.

Otherwise, you can try Git Bash as your best terminal to use shell commands.

14 / 27

Basic Workflow

Creating a Virtual Development Environment (VDE)

Open Anaconda Prompt for Windows or Terminal for Mac/Linux.

Verify the installation of conda and Python:

conda --version
conda info
python --version

See existing environments:

conda env list

Remember:

You should always create a new VDE for your projects and never use the base environment.

15 / 27

Creating a VDE

Open Anaconda Prompt for Windows or
Terminal for Mac/Linux.

Create a new VDE:

conda create -name myenv python=3.12.4

Verify again environment:

conda env list

Activate an VDE

Activate an VDE:

conda activate myenv

Verify the packages in the environment:

conda list

Basic Workflow

16 / 27

Install necessary packages:

conda install numpy pandas jupyterlab dask hv

If you want to update a package, you can use:

conda update numpy

If you want to remove a package, you can use:

conda remove numpy

install all packages from the anaconda channel:

conda install anaconda

If you want to install the package from the
conda-forge channel which is a third-party
channel:

conda install -c conda-forge condastats

Basic Workflow

Install necessary packages

Remember: every installations or updates is in the same environment.

17 / 27

Basic Workflow

Export the environment

1. Export the complete environment (contains all dependencies, the most detailed)
conda env export > environment.yml

2. Only export the manually installed packages (recommended, the most concise)
conda env export --from-history > environment.yml

3. Export to requirements.txt format (pip style)
conda list --export > requirements.txt

4. pip style freeze (only contains pip installed packages)
pip freeze > requirements.txt

18 / 27

Basic Workflow

Import the environment

create a new environment from the environment.yml file:

the most common method
cat environment.yml # check the environment.yml file
conda env create -f environment.yml
activate the environment
conda activate <environment name>

or update the environment from the environment.yml file:

conda env update -f environment.yml

or install some packages from the requirements.txt file:

pip install -r requirements.txt

19 / 27

Basic Workflow

There are many ways to run or interact with Python code:

1. Shell Command line:

python
print("Hello, World!")

2. Script File:

python main.py

1. Jupyter Notebook/Lab(IDE)

jupyter notebook

20 / 27

Basic Workflow

Launch IDEs or Editors

Launch IDEs(such as Jupyter Notebook or VS Code)

launch jupyter notebook

jupyter notebook

terminate jupyter notebook or Control + C

Deactivate an VDE

conda deactivate

21 / 27

Basic Workflow

Using Anaconda Navigator to repeat the above steps

Install Applications you want to use

Manage Environments

Click Create

Click Clone

Click Backup

Click Remove

Manage necessary packages

Launch IDEs or Editors (such as Jupyter Notebook or VS Code) within the environment

22 / 27

Python in VS Code

23 / 27

Python in VS Code

Coding Editor Selection

Recall: VS Code is a Source Code Editor which is a text editor program designed specifically for editing
source code of computer programs.

Others examples: Sublime Text, Atom, Notepad++, etc.

Recall: IDE is a software application that provides comprehensive facilities to computer programmers for
software development.

RStudio, PyCharm, Jupyter Notebook/Lab, etc.

Although I tell you many people prefer using IDEs for coding, like RStudio for using R and Jupyter
Notebook/Lab for using Python, etc.

I still strongly recommend you to use VS Code for coding for the following reasons:

It supports multiple programming languages, including R and Python, even Stata.

C il t d Oth AI d t t i
24 / 27

Installing VS Code and Python Extensions

Install the Python extension for VS Code .here

Select Python as the default language.

Control + Shift + P to open the command palette.

Language Mode: Select Python

Select interpreter for Python:

Which version of Python you want to use.

Which environment you want to use.

25 / 27

https://code.visualstudio.com/docs/python/python-tutorial

Installing Jupyter Notebook/Lab Extensions

For data science, we usually use Jupyter Notebook/Lab to code for Python.

to see the output in the cell rather than the final result in the terminal.

Install Jupyter Notebook/Lab Extensions for VS Code.

Select interpreter for Python:

Then the corresponding kernel will be automatically selected.

26 / 27

Practice with VS Code for Python

27 / 27

