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Machine Learning and Prediction

Introduction

Machine learning is originally a branch of computer science and
statistics, tasked with developing algorithms to predict outcomes y
from observable variables x.
The learning part comes from the fact that we do not specify how
exactly the computer should predict y from x. This is left as an
empirical problem that the computer can “learn”.
In general, this means that we abstract from the underlying models
(biologic, economic, etc.) that creates the outcome that we want to
predict.

Zhaopeng Qu ( NJU ) Lec5: ML and Prediction Mar 19 2022 3 / 116



Machine Learning and Prediction

The Origins of ML and AI

Alan Truing(1912-1954) was an
English mathematician,
computer scientist and logician.
He is widely considered to be
the father of theoretical
computer science and artificial
intelligence.
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Machine Learning and Prediction

The Origins of ML and AI

Authur Samuel(1901-1990)
was an American pioneer in the
field of computer gaming and
artificial intelligence.
He pioneerly popularized the
term **”machine learning”** in
1959.
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Machine Learning and Prediction

Terminology: Econometrics V.S ML

Econometrics Machine learning
Object estimate β Fitted value of ŷ
Criterion Unbiasedness and

Consistency
Optimal fit

Evaluation Conceptual Key
assumptions

Empirical
Cross-validate fit

Key question causal or not accurate or not

Machine learning is a set of data-driven algorithms that use data to
predict or classify some variable Y as a function of other variables X.
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Machine Learning and Prediction

Terminology: Econometrics V.S ML
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Machine Learning and Prediction

Machine Learning Algorithm

Any algorithm that maps features(independent variables) into a
prediction(dependent variable) can be thought of as within the realm
of machine learning.
There are many machine learning algorithm. The best methods vary
with the particular data application.

Regression: OLS,LASSO,Ridge
Classification: logit,probit
Regression trees and random forests
Neural networks and support vector machines
…

In many cases, the theoretical properties (e.g. convergence and limit
distribution) of these algorithms are even unknown – but that is not
the point.
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Machine Learning and Prediction

Machine Learning: A broad classification

Main methodological classes:
1 Supervised learning: We have data on both an outcome y and

explanatory variables x.
Regression: if y is continuous,
Classification: if y is discrete

2 Unsupervised learning: we have no data on y, only on x.
Cluster Analysis (without specifying what to group together)
Principle Component Analysis(PCA)

3 Reinforcement learning
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Machine Learning and Prediction

Our focuses

Main Content
Basic ideas of ML
Some new econometric models(algorithms)
How and when to apply ML methods in economics in some
cases,especially for prediction

Not about
Cutting-edge ML techniques
Computational aspects
Data wrangling
Distributed computation systems
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Supervised learning

A Statistical model

Suppose the the relationship between x and y can be written as an
additive error model:

Y = f(X) + ϵ

where f() is some fixed but unknown function of X, which it
represents the systematic relationship between X and Y .
And ϵ represents idiosyncratic deviations from this systematic
relationship, so it satisfies

E(ϵ | X) = 0 and E(ϵ) = 0
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Supervised learning

Causal inference v.s Prediction

1 Causal inference: How do changes in X affect Y?
2 Prediction: Predict Y using our estimated f(X) , i.e.,

Ŷ = f̂(X)
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Supervised learning

The Objective of Superivsed Learning
In supervised learning, we want to make a prediction about the
response Y based on features X.
Because it helps us to make a prediction, it is useful to estimate f(·),
which represents the systematic relationship between features(X) and
the response(Y).

However, for prediction we do not care about f(·) itself. We can
treat it as a black box, and any approximation ˆf(·) that yields a good
prediction is good enough.

Whatever works, works
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Supervised learning

Example: predicting electricity demand

ERCOT operates the electricity grid for 75% of Texas by area.
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Supervised learning

Example: predicting electricity demand

The 8 ERCOT regions are shown
at left. We’ll focus on a basic
prediction task:

Y = demand (megawatts)
in the Coast region at 3 PM,
every day from 2010-2016.
X = average daily
temperature at Houston’s
Hobby Airport (degrees
Celsius)
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Supervised learning

Demand v.s Temperature
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Supervised learning

A linear model?
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Supervised learning

A quadratic model?
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Supervised learning

How about this model?
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Supervised learning

Formally: Optimal Objective

Formal statistics can help us though to figure out what is a good
prediction.
Formally, a supervised learning algorithm takes as an input a loss
function and searches for a function within a function class that has
a low expected prediction loss on a new data point from the same
distribution.
A very common loss function in a regression setting is the mean
squared error (MSE), thus

MSE = 1
N

ΣN
i=1(Yi − Ŷi)2
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Supervised learning

Error Decomposition

The MSE is a sample concept. The population analogue is called the
expected mean-squared error(EMSE). Because E(ϵ | x) = 0 and
E(ϵ) = 0, then

EMSE = E[f(X) + ϵ − f̂(X)]2

= E[(f(X) − f̂(X))2] + E[ϵ2] − E[2(f(X) − f̂(X))ϵ]
= E[f(X) − f̂(X)]2︸ ︷︷ ︸

Reducible error

+ V ar(ϵ)︸ ︷︷ ︸
Irreducible error

We could prove that

E(Y | X) = arg minf(X)EMSE

(Ref: MHE-Theorem 3.1.2,pp33)
Thus the Conditional Expectation Function(CEF) is the best
predictor of Y given X.
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Supervised learning

Unknown function form of f(X)

How to obtain the forms of CEF or f(X)

Parametric: assume a particular, restricted functional form
(e.g. linear, quadratic, logs, exp)

f(X) = g(βX)

The simplest one is OLS regression: f(X) = X ′β

Nonparametric: flexible forms not easily described by simple math
functions.

Matching(Nearest Neighbors)
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Supervised learning

A quick comparison
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Parametric: polynomial model
- f(X) = β0 + β1X + β2X2
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Nonparametric: k-nearest neighbors
- f(X) = average Y value of the 50
points closest to X
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Supervised learning

Estimating a parametric model: three steps
Suppose we have data in the form of (xi, yi) pairs. Now we want to
predict y at some new point y⋆.

1 Choose a functional form of the model, e.g.

f(X) = β0 + β1X

2 Choose a loss function that measures the difference between the
model predictions f(X) and the actual outcomes y. E.g. least
squares:

L(β0, β1) =
N∑

i=1
(yi − f(Xi))2

=
N∑

i=1
(yi − {β0 + β1xi})2

3 Find the parameters that minimize the loss function.
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Supervised learning

Estimating k-nearest neighbors

1 Pick the K points in the data whose xi values are closest to x⋆. Call
this neighborhood NK(x⋆).

2 Average the yi values for those points and use this average to
estimate f(x⋆):

f̂(x⋆) = 1
K

∑
i:xi∈NK(x⋆)

yi

There are no explicit parameters (i.e. β’s) to estimate.

Rather, the estimate for f(x) is defined by a particular algorithm
applied to the data set.
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Supervised learning

At x=5 and K=50
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Supervised learning

At x=10 and K=50
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Supervised learning

At x=15 and K=50
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Supervised learning

At x=20 and K=50
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Supervised learning

At x=25 and K=50
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Supervised learning

At x=30 and K=50
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Supervised learning

The predictions across all x values
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Supervised learning

Two questions

This procedure raises two obvious questions:

1 So why average the nearest K = 50 neighbors? Why not K = 2, or
K = 200?

2 And if we’re free to pick any value of K we like, how should we
choose?
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Supervised learning

K=2
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Supervised learning

K=5
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Supervised learning

K=10
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Supervised learning

K=20
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Supervised learning

K=50
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Supervised learning

K=100
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Supervised learning

K=200
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Supervised learning

K=500

10000

15000

20000

0 10 20 30
KHOU

C
O

A
S

T

Zhaopeng Qu ( NJU ) Lec5: ML and Prediction Mar 19 2022 42 / 116



Supervised learning

K=1000
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Supervised learning

K=2000
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Supervised learning

K=2357
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Supervised learning

Complexity, generalization, and interpretion

Smaller values of K give more flexible, but less stable function estimates:

they can capture very fine-scale structure in f(x), because they’re
only averaging points from a small neighborhood…
but they can also confuse noise for signal!

Larger values of K give less flexible, but more stable function estimates:

they can’t adapt as much to wiggles in f(x), because they’re
averaging points over a larger neighborhood.
but this makes them less prone to confusing noise for signal.

You probably got the sense from the pictures that there’s a “happy
medium” somewhere. How should we find it?
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Supervised learning

Measuring accuracy

A simple principle: choose the model that makes the most “accurate”
predictions, on average.
A standard measure of (in)accuracy is the root mean-squared error:

RMSEin =

√√√√ 1
n

n∑
i=1

(yi − f(xi))2

This measures, on average, how large are the errors made by the
model on the training data. (OLS minimizes this quantity over the set
of linear functions.)
RMSE is just one possible error metric, but it is pretty popular.
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Supervised learning

Measuring accuracy: linear vs. quadratric
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Supervised learning

Measuring accuracy: linear vs. quadratric
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Supervised learning

Measuring accuracy: RMSE of K for KNN
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Supervised learning

So we should pick K=2?
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Supervised learning

Overfitting

Maximizing flexibility does not work. Empirically, it leads to a
terrible prediction.
Absorb all the idiosyncratic noise(ϵ) in the prediction model.
A new observation with the same X will have a different idiosyncratic
noise, and so the prediction is off.
Remember: our aim is not to fit the model but to predict future.
To avoid overfitting, we need to find the optimal degree of
flexibility
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Supervised learning

Bias-variance trade-off

Overfitting is an illustration of the bias-variance trade-off common
to non-parametric statistics and econometrics.
Variance refers to the degree by which f̂ would change if we
estimated on a different data set.
Bias refers to the error of approximating a complex general function
by a restricted functional form – this means that ˆf(x) systematically
under-/overpredicts for regions of x.
Flexibility reduces bias but increases variance. There is an optimal
degree of flexibility.
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Supervised learning

Bias-variance trade-off

High K = high bias, low variance:

We estimate f(x) using many points, some of which might be far
away from x. These far-away points bias the prediction; their values
of f(x) are slightly off on average.
But more data points means lower variance—less chance of
memorizing random noise.

Low K = low bias, high variance:

We estimate f(x) using only points that are very close to x. Far-away
x points don’t bias the prediction with their “slightly off” y values.
But fewer data points means higher variance—more chance of
memorizing random noise.
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Supervised learning

Bias-variance trade-off and the MSE

For any r.v. X, we have E(X2) = V ar(X) + (EX)2.Then we have

EMSE = E[f(X) + ϵ − f̂(X)]2

= V ar[f(X) + ϵ − f̂(X)] + (E[f(X) + ϵ − f̂(X)])2

= V ar[f̂(X)]︸ ︷︷ ︸
var(f̂(x))

+ V ar(ϵ)︸ ︷︷ ︸
Irreducible error

+ (E[f(X) − f̂(X)])2︸ ︷︷ ︸
bias(f̂(x))

= Irreducible error + bias(f̂(x)) + var(f̂(x))

Note: f(x) is not a random variable(function) but a predetermined
function to represent the real relationship between X and Y. While
f̂(x) is a random variable(function) because this is what we obtain by
an estimate.
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Supervised learning

Bias-variance trade-off

That’s why it’s a trade-off!

Smaller estimation variance generally requires a less complex model
intuitively, one that “wiggles less” from sample to sample.

Smaller bias generally requires a more complex model
one that can “wiggle more,” to adapt to the true function.

Models that “wiggle more” can adapt to more kinds of functions, but
they’re also more prone to memorizing random noise.
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Supervised learning

Out-of-sample vs in sample

Making good predictions about the past isn’t very impressive. Our
very complex (K=2) model earned a low RMSE by simply memorizing
the random pattern of noise in the data.
So we divide the whole sample into two subsets

In sample or training data: to fit the model
Out-of-sample or testing data: Additional data used to evaluate how
good is the regression model fit(assume “future”)

Thus suppose we have data
(x1, y1), (x2, y2)...(xn, yn), (xn+1, yn+1)...(xn+m, yn+m)

n in sample: (x1, y1), (x2, y2)...(xn, yn)
m out-of-sample: (xn+1, yn+1)...(xn+m, yn+m)
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Supervised learning

Out-of-sample accuracy

Key idea: what really matters is our prediction accuracy
out-of-sample!
The only RMSE we ever really care about is out-of-sample.
The out-of-sample root mean-squared error is then:

RMSEout =

√√√√ 1
m

m∑
i=1

(yi − f(xi))2

Let’s check performance across a variety of choices for K, versus the
linear and quadratic models.
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Supervised learning

Linear model: train
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Supervised learning

Linear model: test
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Supervised learning

Quadratic model: train
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Supervised learning

Quadratic model: test
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Supervised learning

K-nearest neighbors: test
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Supervised learning

K-nearest neighbors: test at the optimal k
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Supervised learning

RMSE: Linear v.s Quadratic vs.KNN

Linear:
RMSEout = 1752

Quadratic
RMSEout = 951

K-Nearest Neighbors
RMSEout = 888
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Supervised learning

Measuring model accuracy, revisited

Recall our definition of “true” out-of-sample MSE:

EMSEout = E

[(
Y − f̂(X)

)2
]

A simple way to estimate this quantity is to train our model f̂ on
in-sample and to calculate average performance on out-of-sample:

ÊMSE = 1
Nout

Nout∑
i=1

(
yi − f̂(xi)

)2

The key word here is estimate. There are two sources of randomness
in our estimate:

f̂(x), the function estimate from in-sample.
the specific (xi, yi) pairs that end up in out-of-sample.
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Supervised learning

EMSE for 10 different random train/test splits

our-of-sample RMSE
1 955.3252
2 894.4636
3 973.9200
4 956.9058
5 966.7150
6 952.9189
7 990.4689
8 931.7302
9 971.3224

10 983.6530
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Supervised learning

EMSE across multiple values of K
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Supervised learning

Measuring model accuracy, revisited

Our ÊMSE differs from one train/test split to the next.
This is intuitive: ÊMSE just an estimate of something unknown
(EMSE⋆), and all estimates of unknown quantities have variance.
In fact, the variability of ÊMSE across different train/test splits for
fixed K can be pretty large, compared to the differences across a wide
range of K.
Before we selected K using a single train/test split and picked the K
with the lowest RMSE. Should we modify our approach?
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Supervised learning

K-fold cross validation

A more efficient solution is K-fold cross-validation:

1 Randomly divide the data set into K nonoverlapping groups, or
folds, of roughly equal size.

2 For fold k = 1 to K:
Fit the model using all data points not in fold k.
For all points (yi, xi) in fold k, predict ŷi using the fitted model.
Calculate R̂MSEk, the average error on fold k.

3 Calculate the cross-validated error rate as:

CV(K) = 1
K

K∑
k=1

ÊMSEk
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Supervised learning

K-fold cross validation

The split of the data into folds is still random, but in a way that
minimizes the overlap between each test set.
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Supervised learning

K-fold cross validation in practice

Typical values of K are 5 or 10 in practice.
All candidate models should be fit on the same set of folds.

That is, don’t create a different split to evaluate different models.
If K = N , i.e. the size of the data set, the resulting procedure is
called “leave-one-out” cross validation (LOOCV).
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Supervised learning

LOOCV vs K-fold CV

Note that LOOCV is a special case of k-fold cross-validation where K = N

Generally k-fold CV with K = 5 or K = 10 is preferable to LOOCV.
Then both training and holdout samples are of reasonable size,
achieving a balance on both bias and variance.
LOOCV tends to have a higher variance. This is because the N folds
are highly correlated – any two folds always contain almost the same
data points.
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Supervised learning

K-fold cross validation

There are two typical ways to select a model using cross validation:

1 The min rule: choose the model with the best cross-validated error.
2 The 1SE rule: choose the simplest model whose cross-validated error

is within one standard error of the minimum.

For each model, we estimate the standard error of that model’s
cross-validated EMSE as:

S.E ≈
sd
(
ÊMSE1, ÊMSE2, . . . , ÊMSEK

)
√

K

Zhaopeng Qu ( NJU ) Lec5: ML and Prediction Mar 19 2022 74 / 116



Supervised learning

Summary

Nonparametric models (like KNN):
can’t be written down in terms of simple math functions
can adapt to complex functions, but have to be reined in somehow, so
that they don’t overfit
usually have “tuning” parameters (like K in KNN) that govern the
trade-off between bias and variance.

Out-of-sample performance is the true test of a model:
In-sample RMSE is too optimistic, often wildly so.
Cross-validation using K=5 or K=10 is a practical way to quantify
out-of-sample performance.
For close calls, the 1SE rule is a widely accepted way to actually pick
the model.
Simplicity is a virtue, and the 1SE rule finds the simplest model that
doesn’t forfeit any statistically noticeable gains in performance.
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Model Selection
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Model Selection

Improved prediction accuracy

A linear model is generally thought of as a “high bias, low variance” kind
of estimator, at least compared with alternatives we’ve seen (and others
we have yet to see).

But if the number of observations n is not much larger than the
number of features p, even OLS can have high estimation variance.
The result: overfitting and poor prediction accuracy.

One solution:

Shrinking or regularizing the coefficient estimates so that they don’t
just chase noise in the training data.
Extreme case: if p > n, there isn’t even a unique OLS solution! No
option but to do something else.
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Model Selection

Model selection

The seemingly obvious approach is exhaustive enumeration:

fit all possible models under to a training set
measure the generalization error of each one on a testing set.
choose the best one.

But this can be too exhausting. What are the limiting performance factors
here?

it might take a long time to fit each model (when?)
if so, it will take even longer to repeatedly re-fit each model to
multiple training sets
and there might be way too many models to check them all.
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Model Selection

Iterative model selection

Thus a more practical approach to model-building is iterative.
Start with a working model. The iterate the following steps:

1 Consider a limited set of “small” changes to the working model.
2 Measure the performance gains/losses resulting from each small

change.
3 Choose the “best” small change to the working model. This becomes

the new working model.
4 Repeat until you can’t make any more changes that make the model

better.
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Model Selection

Iterative model selection

Forward selection
Backward selection
Stepwise selection
AIC and BIC

Different approaches to iterative model selection answer these questions in
different ways but still be demanding.
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Model Selection

Regularization:some intuition

The key to modern statistical learning is regularization: departing
from optimality to stabilize a system.
two common penalties
Ridge regression:
Lasso regression:
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Model Selection

Application: prediction using many predictors for test
scores

Predicting test scores for a school using variable describing the
school, its students, and its community.
the full data set consists of data gathered on 3932 elementary schools
in CA in 2013
The task is to use these data to develop a prediction model that will
provide good out-of-sample predictions.
The variable to be predicted is the average fifth-grade test score at
the school.
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Model Selection

Application: 817 predictors
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Ridge Regression

Ridge Regression
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Ridge Regression

Ridge regression and OLS regression

Recall in OLS regression, our model is

Yi = β0 + β1X1 + β2X2 + ... + βpXp + ui

Least-squares regression finds β̂j by minimizing SSR

min
β̂

SSR = min
β̂

n∑
i=1

û2
i

= min
β̂

n∑
i=1

(
Yi −

[
β̂1Xi,1 + · · · + β̂pXi,p

]
︸ ︷︷ ︸

=Ŷi

)2

Ridge regression makes a small change
adds a shrinkage penalty: the sum of squared coefficents

(
λ
∑

j β2
j

)
minimizes the (weighted) sum of SSR and the shrinkage penalty.
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Ridge Regression

Ridge regression and OLS regression

The ridge regression estimator minimizes the penalized sum of
squared residuals SSRridge(b)

min
β̂

Rridge = min
β̂

n∑
i=1

(
Yi −

[
β̂1Xi,1 + · · · + β̂pXi,p

]
︸ ︷︷ ︸

=ŷi

)2
+ λR

p∑
j=1

β2
j

λ (≥ 0) is a tuning parameter for the harshness of the penalty.
λ = 0 implies no penalty: back to OLS.
Each value of λ produces a new set of coefficients.
Ridge’s approach to the bias-variance tradeoff: Balance

reducing SSR, i.e.,
∑

i

(
Yi − Ŷi

)
2

reducing coefficients’magnitudes.
λ determines how much ridge “cares about” these two quantities.
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Ridge Regression

Ridge regression estimator

When k = 1, based on F.O.C, then

∂SSRridge

∂b
= −2

n∑
i=1

Xi (Yi − bXi) + 2λb = 0

Then we have Ridge regression estimator

β̂Ridge =
∑n

i=1 XiYi(∑n
i=1 X2

i + λ
)

=
(

1
1 + λ/

∑n
i=1 X2

i

) ∑n
i=1 XiYi∑n
i=1 X2

i

≡
(

1
1 + λ/

∑n
i=1 X2

i

)
β̂ < β̂
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Ridge Regression

Ridge regression estimator
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Ridge Regression

How to obtain the Ridge Shrinkage Parameter λ

Can we use the F.O.C to obtain it as we did for β No.
Then the optimal value of λ will be ZERO.

Instead, it can be chosen by minimizing the m-fold cross-validated
estimate of the RMSE.

Choose some value of λ , and estimate the MSPE by m-fold
cross-validation
Repeat for many values of λ, and choose the one that yields the
lowest RMSE.
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Ridge Regression

Penalization and standardization

Note: Scale of X can drastically affect ridge regression results.
Because the scale of X will affect β̂ and ridge is very sensitive to β.

Ridge regression pays a much larger penalty for different β

Therefore, you have to standardize variables firstly before you use
ridge regression.
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Ridge Regression

Application: Predicting School-level test scores
λ estimated by minimizing the 10-fold cross-validated RMSE.

λ̂ = 2233
Ridge have a smaller RMSE than OLS

RMSEols = 78.2; RMSEridge = 39.5
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Lasso

Lasso
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Lasso

Introduction

Least Absolute Shrinkage and Selection Operator(LASSO): it simply
replaces ridge’s squared coefficients with absolute values.

min
β̂

Rlasso = min
β̂

n∑
i=1

(
Yi −

[
β̂1Xi,1 + · · · + β̂pXi,p

]
︸ ︷︷ ︸

=ŷi

)2
+ λL

p∑
j=1

|βj |

where λL
∑p

j=1 |βj | is the penalty.
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Lasso

Lasso estimator

Unlike ridge, lasso’s penalty does not increase with the size of β.
The only way to avoid lasso’s penalty is to set βs to zero.
This feature has two benefits

1 Some coefficients will be set to zero.
2 Lasso can be used for subset/feature selection.
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Lasso

Estimate the Lasso estimator

For simplicity, p = 1

Rlasso =
n∑

i=1

(
Yi − β̂Xi,1

)2 + λL|β|

Suppose β̂ > 0, then

Rlasso =
n∑

i=1

(
Yi − β̂Xi,1

)2 + λLβ

Suppose β̂ < 0, then

Rlasso =
n∑

i=1

(
Yi − β̂Xi,1

)2 − λLβ
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Lasso

Then F.O.C

(−2)
n∑

i=1
Xi

(
Yi − β̂Lasso Xi

)
+ λLasso = 0

⇒
n∑

i=1
X2

i β̂Lasso −
n∑

i=1
XiYi = −1

2
λLasso

⇒β̂Lasso =
∑n

i=1 XiYi∑n
i=1 X2

i

− 1
2

λLasso∑n
i=1 X2

i

= β̂ols − 1
2

λLasso∑n
i=1 X2

i

Because we suppose β̂ > 0, then

β̂Lasso = max
(

β̂ − 1
2

λLasso∑n
i=1 X2

i

, 0
)

when β̂ > 0

Similar reasoning shows that when β̂ < 0

β̂Lasso = min
(

β̂ + 1
2

λLasso∑n
i=1 X2

i

, 0
)

when β̂ < 0
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Lasso

The Lasso estimator

When the OLS estimator is large, the Lasso estimator shrinks it
slightly towards zero— less than ridge.
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Lasso

The Lasso estimator

But when the OLS estimator is small, the Lasso estimator shrinks it
all the way to zero, so that the Lasso estimator is exactly zero.
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Lasso

The Lasso estimator

Lasso sets many βs to ZERO, which means “select” some useful
predictors for prediction and drops the others.
It means that Lasso can work especially well when in reality many of
the predictors are irrelevant.
Models in which most of the true β are zero are called sparse models.
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Lasso

Application: Predicting School-level test scores
λ estimated by minimizing the 10-fold cross-validated RMSE.

λ̂Lasso = 4527
Only use p = 56 predictors and Lasso have a smaller RMSE than OLS

RMSELasso = 39.7
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Principal Components

Principal Components
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Principal Components

Introduction

Ridge and Lasso reduce the RMSE by shrinking (biasing) the
estimated coefficients to zero.
In the case of Lasso, by eliminating many of the regressors entirely.
Instead, Principal components regression(PCR) collapses the very
many predictors(k) into a much smaller number(p) of linear
combinations of the predictors.
These linear combinations – called the principal components of X—
are computed so that they capture as much of the variation in the
original X’s as possible.
Because the number p of principal components is small, OLS can be
used, with the principal components as (new) regressors.
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Principal Components

Principal Components(k=2)

The easy way to combine X1 and X2 is a linear equation

aX1 + bX2

Q : What values of a and b should be used?
The Principal Components solution is to choose a and b to solve

max Var (aX1 + bX2) , subject to a2 + b2 = 1

For X1 and X2 are positively correlated, then a = b = 1√
2 , the first

principal component(PC_1) is (X1 + X2)/
√

2
the second principal component(PC_2) is (X1 − X2)/

√
2, which is

uncorrelated with the first.
The principal component weights are normalized so that the sum of
squared weights adds to 1.
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Principal Components

Principal Components(k=2)
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Principal Components

Principal Components

Principal components can be thought of as a data compression tool,
so that the compressed data have fewer regressors with as little
information loss as possible.
Data compression is used all the time to reduce very large data sets
to smaller ones.

eg. image compression, where the goal is to retain as many of the
features of the image (photograph) as possible, while reducing the file
size.
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Principal Components

Principal Components
PC1 explains 18% of the variation of all Xs.
The first 10 PCs thus PC1…PC10 explains 63%.
The first 40 PCs explains 92%.
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Principal Components

Principal Components
It turns out that p = 46 by CV method.

RMSEP C = 39.7
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Predicting School Test Scores

Predicting School Test Scores

Zhaopeng Qu ( NJU ) Lec5: ML and Prediction Mar 19 2022 108 / 116



Predicting School Test Scores

Basic procedure

Split observations into two parts.
1 The first half for model training.
2 The second half for testing.

There sets of predictors are used
1 Small(k=4): Student-teacher ratio, median local income, teacher’s

average years of experience, instructional expenditures per student.
2 Large(k=817)
3 Vary Large(k=2065):Additional school and demographic variables,

squares and cubes, and interactions. Note k > n.
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Predicting School Test Scores

The Three Sets of Predictors
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Predicting School Test Scores

Compare predictive models by predictions
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Predicting School Test Scores

Compare predictive models by predictions
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Predicting School Test Scores

Compare predictive models by predictions

THe tighter the spread of the scatter along the 45 degree line, the
better the prediction.
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Predicting School Test Scores

Compare predictive models by predictions
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Predicting School Test Scores

Compare predictive models by predictions

The most important conclusion from this application is that for the
large data set the many-predictor methods succeed where OLS fails.
Because the many-predictor methods allow the coefficients to be
biased in a way that reduces their variance by enough to compensate
for the increased bias.
One finding that may not generalize: three methods happen to
perform equally well in these data.
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Predicting School Test Scores

Summary

With many predictors, OLS will produce poor out-of-sample
predictions.
By introducing the right type of bias— shrinkage towards zero— the
variance of the prediction can be reduced by enough to offset the bias
and result in smaller RMSE.
Ridge and Lasso reduce the RMSE by shrinking (biasing) the
estimated coefficients to zero— and in the case of Lasso, by
eliminating many of the regressors entirely.
Principal components collapses X into fewer uncorrelated linear
combinations that capture as much of the variation of the X’s as
possible. Predictions are then made using the OLS regression of Y on
the principal components.
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