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Causal Inference and RCT

• Causality is our main goal in the studies of empirical social science.

• The existence of selection biasmakes social science more difficult than science.

• Based on Rubin Causal Model, potential outcomes are the key to causal

inference. And RCTs is the golden standard for causal inference.

• Although RCTs is a powerful tool for economists, every project or topic canNOT

be carried on by it.

• This is the reason whymodern econometrics exists and develops. Themain job

of econometrics is using non-experimental data to making convincing causal

inference.
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Furious SevenWeapons（七种武器）

• To build a reasonable counterfactual world or to find a proper control group is the

core of econometric methods.
1. Randomized controlled trial(RCTs)
2. Regression(回归)
3. Matching and Propensity Score(匹配与倾向得分)
4. Instrumental Variable（工具变量）
5. Regression Discontinuity（断点回归）
6. Panel Data and Difference in Differences（双差分或倍差法)
7. Synthetic Control Method（合成控制法）

• Themost fundamental of these tools is regression. It compares treatment and

control subjects with the same observable characteristics in a generalized

manner.

• It paves the way for the more elaborate tools used in the class that follow.

• Let’s start our exciting journey fromOLS Regression.
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OLS Estimation: Simple Regression
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Class Size and Students’s Performance

• Recall in the last lecture, we discussed how to find the relationship between class

size and students’ performance.

• More specifically, we random divide the students into two groups, one with

small class size and the other with large class size.

• Then we compare the average test scores of the two groups.

• If the average test scores of the small class size group is higher than the large

class size group significantly, we can conclude that small class size is better for

students’ performance.

• However, the answer is really what we want originally?
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Question: Class Size and Student’s Performance

• More Quantitative Question:

• What is the effect on district test scores if we would increase district average class
size by 1 student (or one unit of Student-Teacher’s Ratio)

• If we could know the full relationship between two variables which can be

summarized by a real value function,f(·)

Testscore = f(ClassSize)

• Unfortunately, the function form is always unknown.
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Question: Class Size and Student’s Performance

• Two basic methods to describe the function.

• non-parametric: we don’t care the specific form of the function, unless we know all
the values of two variables, which actually are thewhole distributions of class size
and test scores.

• parametric: we have to suppose the basic form of the function, then to find values
of some unknown parameters to determine the specific function form.

• Bothmethods need to use samples to inference populations in our random and

unknown world.
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Question: Class Size and Student’s Performance

• Suppose we choose parametricmethod, then we just need to know the real value

of a parameter β1 to describe the relationship between Class Size and Test Scores

β1 = ∆Testscore

∆ClassSize

• Next step, we have to suppose specific forms of the functionf(·), still two
categories: linear and non-linear

• And we start to use the simplest function form: a linear equation, which is

graphically a straight line, to summarize the relationship between two variables.

Test score = β0 + β1 × Class size

where β1 is actually the the slope and β0 is the intercept of the straight line.
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Class Size and Student’s Performance

• BUT the average test score in district i does not only depend on the average class

size

• It also depends on other factors such as
• Student background
• Quality of the teachers
• School’s facilitates
• Quality of text books
• Random deviation��

• So the equation describing the linear relation between Test score and Class size

is betterwritten as

Test scorei = β0 + β1 × Class sizei + ui

where ui lumps together all other factors that affect average test scores.
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Terminology for Simple RegressionModel

• The linear regressionmodel with one regressor is denoted by

Yi = β0 + β1Xi + ui

• Where

• Yi is the dependent variable(Test Score)
• Xi is the independent variable or regressor(Class Size or Student-Teacher Ratio)
• β0 + β1Xi is the population regression line or the population regression function
• The intercept β0 and the slope β1 are the coefficients of the population regression
line, also known as the parameters of the population regression line.

• ui is the error termwhich contains all the other factors besidesX that determine
the value of the dependent variable, Y , for a specific observation, i.
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Graphics for Simple RegressionModel
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How to find the “best” fitting line?

• In general we don’t know β0 and β1 which are parameters of population

regression function but have to calculate them using a bunch of data: the

sample.

• So how to find the line that fits the data best? 14 / 207



The Ordinary Least Squares Estimator (OLS)

The OLS estimator

• Chooses the best regression coefficients so that the estimated regression line is

as close as possible to the observed data, where closeness is measured by the

sum of the squaredmistakesmade in predicting Y given X.

• Let b0 and b1 be estimators of β0 and β1,thus b0 ≡ β̂0,b1 ≡ β̂1

• The predicted value of Yi given Xi using these estimators is b0 + b1Xi, or

β̂0 + β̂1Xi formally denotes as Ŷi, thus

Ŷi = β̂0 + β̂1Xi
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The Ordinary Least Squares Estimator (OLS)

The OLS estimator

• The predictionmistake is the resudial, thus the difference between Yi and

Ŷi,which denotes as ûi

ûi = Yi − Ŷi = Yi − (b0 + b1Xi)

• The estimators of the slope and intercept thatminimize the sum of the squares of

ûi,thus

arg min
b0,b1

n∑
i=1

û2
i = min

b0,b1

n∑
i=1

(Yi − b0 − b1Xi)2

are called the ordinary least squares (OLS) estimators of β0 and β1.
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The Ordinary Least Squares Estimator (OLS)

• OLSminimizes sum of squared predictionmistakes:

min
b0,b1

n∑
i=1

û2
i =

n∑
i=1

(Yi − b0 − b1Xi)2

• Solve the problem by F.O.C(the first order condition)

• Step 1 for β0:
∂

∂b0

n∑
i=1

(Yi − b0 − b1Xi)2 = 0

• Step 2 for β1:
∂

∂b1

n∑
i=1

(Yi − b0 − b1Xi)2 = 0
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OLS estimator of β

OLS estimator of β:

b0 ≡ β̂0 = Y − b1X

b1 ≡ β̂1 =
∑n

i=1(Xi − X)(Yi − Y )∑n
i=1(Xi − X)(Xi − X)
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The Estimated Regression Line

• Obtain the values of OLS estimator for a certain data,

β̂1 = −2.28 and β̂0 = 698.9

• Then the regression line is
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Measures of Fit: The R2

• Because the variation of Y can be summarized by a statistic: Variance,so the

total variation of Yi, which are also called as the total sum of squares (TSS), is:

TSS =
n∑

i=1
(Yi − Y )2

• Because Yi can be decomposed into the fitted value plus the residual:

Yi = Ŷi + ûi,then likewise Yi, we can obtain

• The explained sum of squares (ESS):
∑n

i=1(Ŷi − Y )2

• The sum of squared residuals (SSR):
∑n

i=1(Ŷi − Yi)2 =
∑n

i=1 û2
i

• Andmore importantly, the variation of Yi should be a sum of the variations of Ŷi

and ûi, thus

TSS = ESS + SSR
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Measures of Fit: The R2

R2 or the coefficient of determination

R2 or the coefficient of determination, is the fraction of the sample variance of Yi

explained/predicted by Xi

R2 = ESS

TSS
= 1 − SSR

TSS

• So 0 ≤ R2 ≤ 1, it measures that howmuch can the variations of Y be explained

by the variations of Xi in share.

• NOTICE: It seems that R-squares is bigger, the regression is better, which isNOT

RIGHT in most cases. Because we DON’T care much about R2 when wemake

causal inference about two variables.
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The Least Squares Assumptions
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The Linear RegressionModel

• In order to investigate the statistical properties of OLS, we need to make some

statistical assumptions

Linear RegressionModel

Two random variables Yi andXi, their relationship can satisfy the linear regression

equation, thus

Yi = β0 + β1Xi + ui

• This is not a required assumption. We will extend the model to be nonlinear

later on.
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Assumption 1: Conditional Mean is Zero
Assumption 1: Zero conditional mean of the errors given X

The error,ui has expected value of 0 given any value of the independent variable

E[ui | Xi = x] = 0

Implications of Assumption 1

With the Iterated Expectation Law, we can obtain an extra implicit assumption

about ui, thus

E(ui) = E(E(ui|Xi)) = 0

• It seems that the assumption is too strong, but given that the linear regression

model have a intercept β0, whichmeans that we could always make the

assumption true by redefining the intercept.
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Assumption 1: Conditional Mean is Zero

• Anweaker condition that ui and Xi are uncorrelated:

Cov[ui, Xi] = E[uiXi] = 0

Covariance and Conditional Mean

Although Cov[ui, Xi] = 0 ; E[Yi|Xi], we have

Cov[ui, Xi] ̸= 0 ⇒ E[ui|Xi] ̸= 0

• if ui and Xi are correlated, then Assumption 1 is violated.

• Equivalently, the population regression line is the conditional mean of Yi given

Xi , thus

E[Yi|Xi] = β0 + β1Xi
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Assumption 1: Conditional Mean is Zero
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Assumption 2: Random Sample

Assumption 2: Random Sample

We have a i.i.d random sample of size , {(Xi, Yi), i = 1, ..., n} from the population

regressionmodel above.

• This is an implication of random sampling. Then we have such as

Cov(Xi, Xj) = 0
Cov(Yi, Xj) = 0
Cov(ui, Xj) = 0

• And it generally won’t hold in other data structures.

• time-series, cluster samples and spatial data.
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Assumption 3: Large outliers are unlikely

Assumption 3: Large outliers are unlikely

It states that observations with values of Xi, Yi or both that are far outside the usual

range of the data(Outlier) are unlikely. Mathematically, it assume that X and Y have

nonzero finite fourthmoments.

• Large outliers canmake OLS regression results misleading.

• One source of large outliers is data entry errors, such as a typographical error or

incorrectly using different units for different observations.

• Data entry errors aside, the assumption of finite kurtosis is a plausible one in

many applications with economic data.
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Assumption 3: Large outliers are unlikely
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Underlying Assumptions of OLS

• The OLS estimator is unbiased, consistent and has asymptotically normal

sampling distribution if

1. Random sampling.
2. Large outliers are unlikely.
3. The conditional mean of ui given Xi is zero.
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Underlying assumptions of OLS

• OLS is an estimator: it’s a machine that we plug data into and we get out

estimates.

• It has a sampling distribution, with a sampling variance/standard error, etc.

like the sample mean, sample difference inmeans, or the sample variance.

• Let’s discuss these characteristics of OLS in the next section.
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Properties of the OLS Estimators
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The OLS estimators

• Question of interest: What is the effect of a change in Xi(Class Size) on Yi(Test

Score)

Yi = β0 + β1Xi + ui

• We derived the OLS estimators of β0 andβ1:

β̂0 = Ȳ − β̂1X̄

β̂1 =
∑

(Xi − X̄)(Yi − Ȳ )∑
(Xi − X̄)(Xi − X̄)
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Least Squares Assumptions

1. Assumption 1: Conditional Mean is Zero

2. Assumption 2: Random Sample

3. Assumption 3: Large outliers are unlikely

• If the 3 least squares assumptions hold the OLS estimators will be

• unbiased
• consistent
• normal sampling distribution
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Properties of the OLS estimator: unbiasedness

• Skipped the proof of unbiasedness of OLS estimator, but we can show that

E
[
β̂1
]

= β1 if E[ui|Xi] = 0
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Review: Conditional Expectation Function(CEF)

• Expectation(for a continuous r.v.)

E(y) =
∫

yf(y)dy

•

• Conditional Expectation Function: the Expectation of Y conditional on X is

E(y|x) =
∫

yfY |X(y|x)dy
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Review: Properties of CEF

• Conditional Expectation Function: the Expectation of Y conditional on X is

E(y|x) =
∫

yfY |X(y|x)dy

• where fY |X(y|x) = fX,Y (x,y)
fX(x) is the conditional probability density function of Y

given X .

• Let X, Y, Z are random variables; a, b ∈ R; g(·) is a real valued function, then we

have

• E[a | Y ] = a

• E[(aX + bZ) | Y ] = aE[X | Y ] + bE[Z | Y ]
• If X and Y are independent, then E[Y | X] = E[Y ]
• E[Y g(X) | X] = g(X)E[Y | X]. In particular, E[g(Y ) | Y ] = g(Y )
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Review: the Law of Iterated Expectations(LIE)

the Law of Iterated Expectations

It states that an unconditional expectation can be written as the unconditional

average of conditional expectation function.

E(Yi) = E[E(Yi|Xi)]

and it can easily extend to

E(g(Xi)Yi) = E[E(g(Xi)Yi|Xi)] = E[g(Xi)E(Yi|Xi)]
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Proof: the Law of Iterated Expectation(LIE)

• Prove it by a continuous variable way

Proof

E[E(Y |X)] =

∫
E(Y |X = u)fX(u)du

=
∫ [ ∫

tfY (t|X = u)dt
]
fX(u)du

=
∫ ∫

tfY (t|X = u)fX(u)dtdu

=
∫

t
[ ∫

fY (t|X = u)fX(u)du
]
dt

=
∫

t
[ ∫

fXY (u, t)du
]
dt

=
∫

tfy(t)dt

= E(Y )
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Conditional Expectation and Covariance

• Please prove if E(Y |X) = 0 ⇒ Cov(X, Y ) = 0

Proof

Cov(XY ) = E(XY ) − E(X)E(Y )

= E[E(XY |X)] − E(X)E[E(Y |X)]
= E[XE(Y |X)]
= 0
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Properties of the OLS estimator: Consistency

• Notation: β̂1
p−→ β1 or plimβ̂1 = β1, so

plimβ̂1 = plim

[ ∑(Xi − X̄)(Yi − Ȳ )∑
(Xi − X̄)(Xi − X̄)

]
• Then we could obtain

plimβ̂1 = plim

[ 1
n−1

∑
(Xi − X̄)(Yi − Ȳ )

1
n−1

∑
(Xi − X̄)(Xi − X̄)

]
= plim

(
sxy

s2
x

)

where sxy and s2
x are sample covariance and sample variance.
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Math Review: ContinuousMapping Theorem

• ContinuousMapping Theorem: For every continuous function g(t) and random
variable X :

plim(g(X)) = g(plim(X))

• Example:

plim(X + Y ) = plim(X) + plim(Y )

plim(X

Y
) = plim(X)

plim(Y )
if plim(Y ) ̸= 0
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Properties of the OLS estimator: Consistency

• Base on L.L.N(the law of large numbers) and random sample(i.i.d)

s2
X

p−→ σ2
X = V ar(X)

sxy
p−→ σXY = Cov(X, Y )

• Combining with ContinuousMapping Theorem,then we obtain the OLS

estimator β̂1,when n −→ ∞

plimβ̂1 = plim

(
sxy

s2
x

)
= Cov(Xi, Yi)

V ar(Xi)

43 / 207



Properties of the OLS estimator: Consistency

plimβ̂1 = Cov(Xi, Yi)
V ar(Xi)

= Cov(Xi, (β0 + β1Xi + ui))
V ar(Xi)

= Cov(Xi, β0) + β1Cov(Xi, Xi) + Cov(Xi, ui)
V ar(Xi)

= β1 + Cov(Xi, ui)
V ar(Xi)

• Then we could obtain

plimβ̂1 = β1 if E[ui|Xi] = 0
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Wrap Up: Unbiasedness vs Consistency

• Unbiasedness & Consistency both rely on E[ui|Xi] = 0
• Unbiasedness implies that E

[
β̂1
]

= β1 for a certain sample size n.(“small

sample”)

• Consistency implies that the distribution of β̂1 becomesmore andmore _tightly

distributed around β1 if the sample size n becomes larger and larger.(“large

sample”“)

• Additionally,you could prove that β̂0 is likewiseUnbiased and Consistent on the

condition of Assumption 1.
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Sampling Distribution of β̂0 and β̂1: Recalll of Y

• Firstly, Let’s recall: Sampling Distribution of Y

• Because Y1, ..., Yn are i.i.d. and µY is the mean of the population,then for

L.L.N,we have

E(Y ) = µY

• Based on the Central Limit theorem(C.L.T) and the σ2
Y is the variance of the

population, the sample distribution in a large sample can approximates to a

normal distribution, thus

Y ∼ N(µY ,
σ2

Y

n
)

• Therefore, the OLS estimators β̂0 and β̂1 could have similar sample distributions

when three least squares assumptions hold.
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Sampling Distribution of β̂0 and β̂1: Expectation

• Unbiasedness of the OLS estimators implies that

E
[
β̂1
]

= β1 and E
[
β̂0
]

= β0

• Likewise as Ȳ ,the sample distribution of β1 or β0 in a large sample can also

approximates to a normal distribution based on the Central Limit theorem(C.L.T)

β̂1 ∼ N(β1, σ2
β̂1

)

β̂0 ∼ N(β0, σ2
β̂0

)

• Where it can be shown that

σ2
β̂1

= 1
n

V ar[(Xi − µx)ui]
[V ar(Xi)]2

)

σ2
β̂0

= 1
n

V ar(Hiui)
(E[H2

i ])2 )
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Sampling Distribution β̂1 in large-sample

• We have shown that

σ2
β̂1

= 1
n

V ar[(Xi − µx)ui]
[V ar(Xi)]2

)

• An intuition：The variation of Xi is very important.

• Because if V ar(Xi) is small, it is difficult to obtain an accurate estimate of the
effect of X on Y which implies that V ar(β̂1) is large.
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Variation of X

• Whenmore variation in Xi, then there is more information in the data that you

can use to fit the regression line.
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In a Summary

Under 3 least squares assumptions, the OLS estimators will be

• unbiased

• consistent

• normal sampling distribution

• more variation in X, more accurate estimation
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Simple OLS and RCT
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OLS Regression and RCT

• We learned RCT is the “golden standard” for causal inference.Because it can

naturally eliminate selection bias.

• So far, we did not discuss the relationship between RCT and OLS regression,

whichmeans that we can not be sure that the result from an OLS regression can

be explained as “causal”.

• Instead of using a continuous regressor X , the regression where Di is a binary

variable, a so-called dummy variable, will help us to unveil the relationship

between RCT and OLS regression.
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Regression when X is a Binary Variable

• For example, wemay define Di as follows:

Di =

1 if STR in ith school district < 20

0 if STR in ith school district ≥ 20
(4.2)

• The regression can be written as

Yi = β0 + β1Di + ui (4.1)
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Regression when X is a Binary Variable

• More precisely, the regressionmodel now is

TestScorei = β0 + β1Di + ui (4.3)

• With D as the regressor, it is not useful to think of β1 as a slope parameter.
• Since Di ∈ {0, 1}, i.e., we only observe two discrete values instead of a continuum
of regressor values.

• There is no continuous line depicting the conditional expectation function

E(TestScorei|Di) since this function is solely defined for x-positions 0 and 1.
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Regression when X is a Binary Variable

• Therefore, the interpretation of the coefficients in this regressionmodel is as

follows:

• E(Yi|Di = 0) = β0, so β0 is the expected test score in districts where Di = 0 where
STR is below 20.

• E(Yi|Di = 1) = β0 + β1 where STR is above 20

• Thus, β1 is the difference in group specific expectations, i.e., the difference in

expected test score between districts with STR < 20 and those with STR ≥ 20,

β1 = E(Yi|Di = 1) − E(Yi|Di = 0)

.
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Causality and OLS

• Let us recall, the individual treatment effect

ICE = Y1i − Y0i = δi ∀i

• The ATE is the average of the ICE and ATT is the average of the ICE for the

treated group.

ρ = E(δi) or ρ = E(δi|D = 1)

• Either way, the treatment effect is a constant, i.e., it does not depend on the

individual.

• Our OLS regression function is to estimate a constant treatment effect ρ, thus

Yi = α︸︷︷︸
E[Y0i]

+Di ρ︸︷︷︸
Y1i−Y0i

+ ηi︸︷︷︸
Y0i−E[Y0i]
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Causality and OLS

• Nowwrite out the conditional expectation of Yi for both levels of Di

E [Yi | Di = 1] = E [α + ρ + ηi | Di = 1] = α + ρ + E [ηi|Di = 1]

E [Yi | Di = 0] = E [α + ηi | Di = 0] = α + E [ηi | Di = 0]

• Take the difference

E [Yi | Di = 1] − E [Yi | Di = 0] = ρ + E [ηi|Di = 1] − E [ηi | Di = 0]︸ ︷︷ ︸
Selection bias
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Causality and OLS

• Again, our estimate of the treatment effect (ρ) is only going to be as good as our
ability to shut down the selection bias.

• Selection bias in regression model: E [ηi|Di = 1] − E [ηi | Di = 0]
• There is something in our disturbance ηi that is affecting Yi and is also

correlated with Di.
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Simple OLS Regression v.s. RCT

• In a simple regressionmodel, OLS estimators are just a generalizing continuous

version of RCT when least squares assumptions are hold.

• But in contrast to RCT, in observational studies, researchers cannot control the

assignment of treatment into a treatment group versus a control group,which

means that the two groups are incomparable.

• To make two groups comparable, we need to keep treatment and control group

“other thing equal”in observed characteristics and unobserved characteristics.

• OLS regression is valid only when least squares assumptions are hold.

• However,it is not easy to obtain inmost cases. We have to know how tomake a

convincing causal inference when these assumptions are not hold.
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Make ComparisonMake Sense
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Case: Smoke andMortality

• Criticisms from Ronald A. Fisher

• No experimental evidence to incriminate smoking as a cause of lung cancer or
other serious disease.

• Correlation between smoking andmortality may be spurious due to biased
selection of subjects.

Z

MS

• Confounder, Z, creates backdoor path between smoking andmortality
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Case: Smoke andMortality(Cochran 1968)

Table 1: Death rates(死亡率) per 1,000 person-years

Smoking group Canada U.K. U.S.

Non-smokers(不吸烟) 20.2 11.3 13.5

Cigarettes(香烟) 20.5 14.1 13.5

Cigars/pipes(雪茄/烟斗) 35.5 20.7 17.4

• It seems that taking cigars is more hazardous than others to the health?
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Case: Smoke andMortality(Cochran 1968)

Table 2: Non-smokers and smokers differ in age

Smoking group Canada U.K. U.S.

Non-smokers(不吸烟) 54.9 49.1 57.0

Cigarettes(香烟) 50.5 49.8 53.2

Cigars/pipes(雪茄/烟斗) 65.9 55.7 59.7

• Older people die at a higher rate, and for reasons other than just smoking cigars.

• Maybe cigar smokers higher observed death rates is because they’re older on

average.
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Case: Smoke andMortality(Cochran 1968)

• The problem is that the age are not balanced, thus their mean values differ for

treatment and control group.

• let’s try to balance them, whichmeans to compare mortality rates across the

different smoking groupswithin age groups so as to neutralize age imbalances

in the observed sample.

• It naturally relates to the concept of Conditional Expectation Function.

66 / 207



Case: Smoke andMortality(Cochran 1968)

How to balance?

1. Divide the smoking group samples into age groups.

2. For each of the smoking group samples, calculate the mortality rates for the age

group.

3. Construct probability weights for each age group as the proportion of the

sample with a given age.

4. Compute theweighted averages of the age groups mortality rates for each

smoking group using the probability weights.
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Case: Smoke andMortality(Cochran 1968)

Death rates Number of

Pipe-smokers Pipe-smokers Non-smokers

Age 20-50 0.15 11 29

Age 50-70 0.35 13 9

Age +70 0.5 16 2

Total 40 40

• Question: What is the average death rate for pipe smokers?

0.15 ·
(11

40

)
+ 0.35 ·

(13
40

)
+ 0.5 ·

(16
40

)
= 0.355
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Case: Smoke andMortality(Cochran 1968)

Table 3: Non-smokers and smokers differ in mortality and age

Smoking group Canada U.K. U.S.

Non-smokers(不吸烟) 20.2 11.3 13.5

Cigarettes(香烟) 28.3 12.8 17.7

Cigars/pipes(雪茄/烟斗) 21.2 12.0 14.2

• Conclusion: It seems that taking cigarettes is most hazardous, and taking pipes

is not different from non-smoking.
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Formalization: Covariates

Definition: Covariates

VariableX is predetermined with respect to the treatmentD if for each individual i,

X0
i = X1

i , i.e., the value of Xi does not depend on the value of Di. Such

characteristics are called covariates.

• Covariates are often time invariant (e.g., sex, race), but time invariance is not a

necessary condition.
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Identification under Independence

• Recall that randomization in RCTs implies

(Y0i, Y1i) ⊥⊥ D

and therefore:

E[Y |D = 1] − E[Y |D = 0] = E[Y1i|D = 1] − E[Y0i|D = 0]︸ ︷︷ ︸
by the switching equation

= E[Y1i|D = 1] − E[Y0i|D = 1]︸ ︷︷ ︸
by independence

= E[Y1i − Y0i|D = 1]︸ ︷︷ ︸
ATT

= E[Y1i − Y0i]︸ ︷︷ ︸
ATE
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Identification under Conditional Independence

• Conditional Independence Assumption(CIA): whichmeans that if we can

“balance” covariates X then we can take the treatment D as randomized, thus

(Y1i, Y0i) ⊥⊥ D|X

• Now as (Y1i, Y0i) ⊥⊥ D|X < (Y1i, Y0i) ⊥⊥ D,

E[Y1i|D = 1] − E[Y0i|D = 0] ̸= E[Y1i|D = 1] − E[Y0i|D = 1]
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Identification under Conditional Independence(CIA)

• But using the CIA assumption, then

E[Y1i|D = 1] − E[Y0i|D = 0]︸ ︷︷ ︸
association

= E[Y1i|D = 1, X] − E[Y0i|D = 0, X]︸ ︷︷ ︸
conditional on covariates

= E[Y1i|D = 1, X] − E[Y0i|D = 1, X]︸ ︷︷ ︸
conditional independence

= E[Y1i − Y0i|D = 1, X]︸ ︷︷ ︸
conditional ATT

= E[Y1i − Y0i|X]︸ ︷︷ ︸
conditional ATE
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Curse of Multiple Dimensionality

• Sub-classification in one or two dimensions as Cochran(1968) did in the case of

Smoke and Mortality is feasible.

• But as the number of covariates we would like to balance grows(like many

personal characteristics such as age, gender,education,working

experience,married,industries,income,�), then the method become less feasible.

• Assume we have k covariates and we divide each into 3 coarse categories (e.g.,

age: young, middle age, old; income: low,medium, high, etc.)

• The number of cells(or groups)is 3K .

• If k = 10 then 310 = 59049
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Making ComparisonMake Sense

• Selection on Observables

• Regression
• Matching

• Selection on Unobservables

• IV,RD,DID,FE and SCM.

• Themost fundamental tool among them is regression, which compares

treatment and control subjects who have the same observable characteristics in

a generalizedmanner.
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Multiple OLS Regression: Introduction
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Violation of the 1st Least Squares Assumption

• Recall simple OLS regression equation

Yi = β0 + β1Xi + ui

• Question: What does ui represent?

• Answer: contains all other factors(variables)which potentially affect Yi.

• Assumption 1

E(ui|Xi) = 0

• It states that ui are unrelated to Xi in the sense that,given a value of Xi,the mean
of these other factors equals zero.

• But what if they (or at least one) are correlatedwith Xi?
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Example: Class Size and Test Score

• Many other factors can affect student’s performance in the school.

• One of factors is the share of immigrants in the class. Because immigrant

childrenmay have different backgrounds from native children, such as

• parents’ education level
• family income and wealth
• parenting style
• traditional culture
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The share of immigrants as an Omitted Variable

• Class size may be related to percentage of English learners and students who are

still learning English likely have lower test scores.

• In other words, the effect of class size on scores we had obtained in simple OLS
may contain an effect of immigrants on scores.

• It implies that percentage of English learners is contained in ui, in turn that

Assumption 1 is violated.

• More precisely,the estimates of β̂1 and β̂0 are biased and inconsistent.
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Omitted Variable Bias: Introduction

• As before, Xi and Yi represent STR and Test Score,repectively.

• Besides, Wi is the variable which represents the share of english learners.

• Suppose that we have no information about it for some reasons, then we have to

omit in the regression.

• Thus we have two regressions in mind:
• Truemodel(the Long regression):

Yi = β0 + β1Xi + γWi + ui

where E(ui|Xi) = 0
• OVBmodel(the Short regression):

Yi = β0 + β1Xi + vi

where vi = γWi + ui
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Omitted Variable Bias(OVB): inconsistency

• Recall: simple OLS is consistency when n is large, thus plimβ̂1 = Cov(Xi,Yi)
V ar(Xi)

plimβ̂1 = Cov(Xi, Yi)
V arXi

= Cov(Xi, (β0 + β1Xi + vi))
V arXi

= Cov(Xi, (β0 + β1Xi + γWi + ui))
V arXi

= Cov(Xi, β0) + β1Cov(Xi, Xi) + γCov(Xi, Wi) + Cov(Xi, ui)
V arXi

= β1 + γ
Cov(Xi, Wi)

V arXi
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Omitted Variable Bias(OVB): inconsistency

• Thus we obtain

plimβ̂1 = β1 + γ
Cov(Xi, Wi)

V arXi

• β̂1 is still consistent

• if Wi is unrelated to X, thus Cov(Xi, Wi) = 0
• if Wi has no effect on Yi, thus γ = 0

• Only if both two conditions above are violated simultaneously, then β̂1 is

inconsistent.
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Omitted Variable Bias(OVB):Directions

• If OVB can be possible in our regressions,then we should guess the directions of

the bias, in case that we can’t eliminate it.

• A summary of the directions of the OVB bias

Cov(Xi, Wi) > 0 Cov(Xi, Wi) < 0

γ > 0
Positive bias Negative bias

γ < 0
Negative bias Positive bias
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Omitted Variable Bias: Examples

• Question: If we omit following variables, then what are the directions of these

biases? and why?

1. Time of day of the test
2. The number of dormitories
3. Teachers’ salary
4. Family income
5. Percentage of English learners(the share of immigrants)
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Omitted Variable Bias: Examples in R

• Regress Testscore on Class size

#>
#> Call:
#> lm(formula = testscr ~ str, data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -47.727 -14.251 0.483 12.822 48.540
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 698.9330 9.4675 73.825 < 2e-16 ***
#> str -2.2798 0.4798 -4.751 2.78e-06 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 18.58 on 418 degrees of freedom
#> Multiple R-squared: 0.05124, Adjusted R-squared: 0.04897
#> F-statistic: 22.58 on 1 and 418 DF, p-value: 2.783e-06
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Omitted Variable Bias: Examples in R

• Regress Testscore on Class size and the percentage of English learners

#>
#> Call:
#> lm(formula = testscr ~ str + el_pct, data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -48.845 -10.240 -0.308 9.815 43.461
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
#> str -1.10130 0.38028 -2.896 0.00398 **
#> el_pct -0.64978 0.03934 -16.516 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 14.46 on 417 degrees of freedom
#> Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
#> F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16
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Omitted Variable Bias: Examples in R

Table 5: Class Size and Test Score

Dependent variable:

testscr

(1) (2)

str −2.280∗∗∗ −1.101∗∗∗

(0.480) (0.380)
el_pct −0.650∗∗∗

(0.039)
Constant 698.933∗∗∗ 686.032∗∗∗

(9.467) (7.411)

Observations 420 420
R2 0.051 0.426

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Warp Up

• OVB is themost common bias when we run OLS regressions using

nonexperimental data.

• OVBmeans that there are some variables which should have been included in

the regression but actually was not.

• Then the simplest way to overcome OVB: Put omitted the variable into the right side

of the regression, whichmeans our regressionmodel should be

Yi = β0 + β1Xi + γWi + ui

• The strategy can be denoted as controlling informally, which introduces the

more general regressionmodel: Multiple OLS Regression.
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Multiple OLS Regression: Estimation
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Multiple regressionmodel with k regressors

• Themultiple regressionmodel is

Yi = β0 + β1X1,i + β2X2,i + ... + βkXk,i + ui, i = 1, ..., n (4.1)

where

• Yi is the dependent variable
• X1, X2, ...Xk are the independent variables(includes one is our of interest and
some control variables)

• βi, j = 1...k are slope coefficients on Xi corresponding.
• β0 is the estimate intercept, the value of Y when all Xj = 0, j = 1...k

• ui is the regression error term, still all other factors affect outcomes.

93 / 207



Interpretation of coefficients βi, j = 1...k

• βj is partial (marginal) effect of Xj on Y.

βj = ∂Yi

∂Xj,i

• βj is also partial (marginal) effect of E
[
Yi|X1..Xk

]
.

βj = ∂E[Yi|X1, ..., Xk]
∂Xj,i

• it does mean that we are estimate the effect of X on Y when “other things equal”,

thus the concept of ceteris paribus.

94 / 207



OLS Estimation inMultiple Regressors

• As in a Simple OLS Regression, the estimators of Multiple OLS Regression is

just a minimize the following question

argmin
∑

b0,b1,...,bk

(Yi − b0 − b1X1,i − ... − bkXk,i)2

where b0 = β̂1, b1 = β̂2, ..., bk = β̂k are estimators.
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OLS Estimation inMultiple Regressors

• Similarly in Simple OLS, based on F.O.C,the multiple OLS estimators

β̂0, β̂1, ..., β̂k are obtained by solving the following system of normal equations

∂

∂b0

n∑
i=1

û2
i =

∑(
Yi − β̂0 − β̂1X1,i − ... − β̂kXk,i

)
= 0

∂

∂b1

n∑
i=1

û2
i =

∑(
Yi − β̂0 − β̂1X1,i − ... − β̂kXk,i

)
X1,i = 0

... =
... =

...

∂

∂bk

n∑
i=1

û2
i =

∑(
Yi − β̂0 − β̂1X1,i − ... − β̂kXk,i

)
Xk,i = 0
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OLS Estimation inMultiple Regressors

• Similar to in Simple OLS, the fitted residuals are

ûi = Yi − β̂0 − β̂1X1,i − ... − β̂kXk,i

• Therefore, the normal equations also can be written as∑
ûi = 0∑

ûiX1,i = 0
... =

...∑
ûiXk,i = 0

• While it is convenient to transform equations above usingmatrix algebra to

compute these estimators, we can use partitioned regression to obtain the

formula of estimators without usingmatrices.
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Partitioned Regression: OLS Estimators inMultiple

Regression
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Partitioned regression: OLS estimators

• A useful representation of β̂j could be obtained by the partitioned regression,

which computed OLS estimators of βj ; j = 1, 2...k in following 3 steps.

1. Regress Xj on X1, X2, ...Xj−1, Xj+1, Xk , thus

Xj,i = γ0 + γ1X1i + ... + γj−1Xj−1,i + γj+1Xj+1,i... + γkXk,i + vji

2. Obtain the residuals from the regression above,denoted as X̃j,i = v̂ji

3. Regress Y on X̃j,i

• The last step implies that the OLS estimator of βj can be expressed as follows

β̂j =
∑n

i=1 (X̃ji − X̃ji)(Yi − Y )∑n
i=1 (X̃ji − X̃ji)2

=
∑n

i=1 X̃jiYi∑n
i=1 X̃2

ji
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Partitioned regression: OLS estimators

• Suppose we want to obtain an expression for β̂1.

• Then the first step: regress X1,i on other regressors, thus

X1,i = γ0 + γ2X2,i + ... + γkXk,i + vi

• Then, we can obtain

X1,i = γ̂0 + γ̂2X2,i + ... + γ̂kXk,i + X̃1,i

where X̃1,i is the fitted OLS residual,thus X̃j,i = v̂1i

• Then we could prove that

β̂1 =
∑n

i=1 X̃1,iYi∑n
i=1 X̃2

1,i
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A transformation of FWL theorem

Regression anatomy theorem

Themultiple regressionmodel is

Yi = β0 + β1X1,i + β2X2,i + ... + βkXk,i + ui, i = 1, ..., n

Then estimator of β̂0, β̂1, ..., β̂k can be expressed as following

β̂j =
∑n

i=1 X̃j,iYi∑n
i=1 X̃2

j,i

for j = 1, 2, .., k

where X̃j,i is the fitted OLS residual of the regression Xj on the other Xs.
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The intuition of partitioned regression

Partialling Out

• First, we regress Xj against the rest of the regressors (and a constant) and keep

X̃j which is the “part” of Xj that is uncorrelated

• Then, to obtain β̂j , we regress Y against X̃j which is “clean” from correlation

with other regressors.

• β̂j measures the effect of X1 after the effects of X2, ..., Xk have been partialled

out or netted out.
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Measures of Fit in Multiple Regression
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Measures of Fit: The R2

• Decompose Yi into the fitted value plus the residual Yi = Ŷi + ûi

• The total sum of squares (TSS): TSS =
∑n

i=1(Yi − Y )2

• The explained sum of squares (ESS):
∑n

i=1(Ŷi − Y )2

• The sum of squared residuals (SSR):
∑n

i=1(Ŷi − Yi)2 =
∑n

i=1 û2
i

• And

TSS = ESS + SSR

• The regression R2 is the fraction of the sample variance of Yi explained by (or

predicted by) the regressors.

R2 = ESS

TSS
= 1 − SSR

TSS

• When you put more variables into the regression, then R2 always increases when

you add another regressor. Because in general the SSR will decrease.
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Measures of Fit: The Adjusted R2

• the AdjustedR2,is a modified version of the R2 that does not necessarily

increase when a new regressor is added.

R2 = 1 − n − 1
n − k − 1

SSR

TSS
= 1 − s2

û

s2
Y

• because n−1
n−k−1 is always greater than 1, so R2 < R2

• adding a regressor has two opposite effects on the R2.
• R2 can be negative.

• Remind: neither R2 nor R2 is not the golden criterion for good or bad OLS estimation.
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Categoried Variable as independent variables in Regression
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A Special Case: Categorical Variable as X

• Recall if X is a dummy variable, then we can put it into regression equation

straightly.

• What if X is a categorical variable?

• Question: What is a categorical variable?

• For example, wemay define Di as follows:

Di =


1 small-size class if STR in ith school district < 18

2 middle-size class if 18 ≤ STR in ith school district < 22

3 large-size class if STR in ith school district ≥ 22

(4.5)
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A Special Case: Categorical Variable as X

• Naive Solution: a simple OLS regressionmodel

TestScorei = β0 + β1Di + ui

• Question: Can you explain the meanning of estimate coefficient β1?

• Answer: It doese not make sense that the coefficient of β1 can be explained as

continuous variables.
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A Special Case: Categorical Variables as X

• The first step: turn a categorical variable(Di) into multiple dummy

variables(D1i, D2i, D3i)

D1i =

1 small-sized class if STR in ith school district < 18

0 middle-sized class or large-sized class if not

D2i =

1 middle-sized class if 18 ≤ STR in ith school district < 22

0 large-sized class or small-sized class if not

D3i =

1 large-sized class if STR in ith school district ≥ 22

0 middle-sized class or small-sized class if not
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A Special Case: Categorical Variables as X

• We put these dummies into a multiple regression

TestScorei = β0 + β1D1i + β2D2i + β3D3i + ui (4.6)

• Then as a dummy variable as the independent variable in a simple regression

The coefficients (β1, β2, β3) represent the effect of every categorical class on

testscore respectively.
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A Special Case: Categorical Variables as X

• In practice, we can’t put all dummies into the regression, but only have n − 1
dummies unless we will suffer perfect multi-collinearity.

• The regressionmay be like as

TestScorei = β0 + β1D1i + β2D2i + ui (4.6)

• The default intercept term, β0,represents the large-sized class.Then, the

coefficients (β1, β2) represent testscore gaps between small_sized, middle-sized

class and large-sized class,respectively.
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Multiple Regression: Assumption
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Multiple Regression: Assumption

• Assumption 1: The conditional distribution of ui given X1i, ..., Xki has mean

zero,thus

E[ui|X1i, ..., Xki] = 0

• Assumption 2: (Yi, X1i, ..., Xki) are i.i.d.
• Assumption 3: Large outliers are unlikely.

• Assumption 4: No perfect multicollinearity.
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Perfect multicollinearity

Perfect multicollinearity arises when one of the regressors is a perfect linear

combination of the other regressors.

• Binary variables are sometimes referred to as dummy variables

• If you include a full set of binary variables (a complete andmutually exclusive

categorization) and an intercept in the regression, you will have perfect

multicollinearity.

• eg. female andmale = 1-female
• eg. West, Central and East China

• This is called the dummy variable trap.

• Solutions to the dummy variable trap: Omit one of the groups or the intercept
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Perfect multicollinearity

• regress Testscore on Class size and the percentage of English learners

#>
#> Call:
#> lm(formula = testscr ~ str + el_pct, data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -48.845 -10.240 -0.308 9.815 43.461
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
#> str -1.10130 0.38028 -2.896 0.00398 **
#> el_pct -0.64978 0.03934 -16.516 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 14.46 on 417 degrees of freedom
#> Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
#> F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16
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Perfect multicollinearity

• add a new variable nel=1-el_pct into the regression

#>
#> Call:
#> lm(formula = testscr ~ str + nel_pct + el_pct, data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -48.845 -10.240 -0.308 9.815 43.461
#>
#> Coefficients: (1 not defined because of singularities)
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 685.38247 7.41556 92.425 < 2e-16 ***
#> str -1.10130 0.38028 -2.896 0.00398 **
#> nel_pct 0.64978 0.03934 16.516 < 2e-16 ***
#> el_pct NA NA NA NA
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 14.46 on 417 degrees of freedom
#> Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
#> F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16
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Perfect multicollinearity

Table 6: Class Size and Test Score

Dependent variable:

testscr

(1) (2)

str −1.101∗∗∗ −1.101∗∗∗

(0.380) (0.380)
nel_pct 0.650∗∗∗

(0.039)
el_pct −0.650∗∗∗

(0.039)
Constant 686.032∗∗∗ 685.382∗∗∗

(7.411) (7.416)

Observations 420 420
R2 0.426 0.426

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Multicollinearity

Multicollinearitymeans that two or more regressors are highly correlated, but one

regressor isNOT a perfect linear function of one or more of the other regressors.

• multicollinearity isNOT a violation of OLS assumptions.

• It does not impose theoretical problem for the calculation of OLS estimators.

• But if two regressors are highly correlated, then the the coefficient on at least

one of the regressors is imprecisely estimated (high variance).

• To what extent two correlated variables can be seen as “highly correlated”?

• rule of thumb: correlation coefficient is over 0.8.
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Venn Diagrams for Multiple RegressionModel

• In a simple model (y on X), OLS
uses ‘Blue‘ + ‘Red‘ to estimate β.

• When y is regressed on X andW:
OLS throws away the red area
and just uses blue to estimate β.

• Idea: Red area is
contaminated(we do not know
if themovements in y are due to
X or toW).
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Venn Diagrams for Multicollinearity

• Less information (compare the Blue and Green areas in both figures) is used, the

estimation is less precise.
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Venn Diagrams for Multicollinearity

• Less information (compare the Blue and Green areas in both figures) is used, the

estimation is less precise. 120 / 207



Multiple OLS Regression and Causality

121 / 207



Independent Variable v.s Control Variables

• Generally, we would like to paymore attention to only one independent

variable(thus we would like to call it treatment variable), though there could be

many independent variables.

• Because βj is partial (marginal) effect of Xj on Y.

βj = ∂Yi

∂Xj,i

whichmeans that we are estimate the effect of X on Ywhen “other things equal”,

thus the concept of ceteris paribus.

• Therefore,other variables in the right hand of equation, we call them control

variables, which we would like to explicitly hold fixedwhen studying the effect

of X1 or D on Y .
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Independent Variable v.s Control Variables

• In a multiple regression, OLS is a way to control observable confounding factors,

which assume the source of selection bias is only from the difference in

observed characteristics(Selection-on-Observables)

• If the multiple regressionmodel is

Yi = β0 + β1X1,i + β2X2,i + ... + βkXk,i + ui, i = 1, ..., n

• Generally, we would like to paymore attention to only one independent

variable(thus we would like to call it treatment variable), though there could be

many independent variables.

• Other variables in the right hand of equation, we call them control variables,

which we would like to explicitly hold fixed when studying the effect of X1 on Y.
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Picking Control Variables

• Questions: Are “more controls” always better (or at least never worse)?

• Answer: It depends on.

• Irrelevant controls are variables which have a ZERO partial effect on the outcome, thus
the coefficient in the population regression function is zero.

• Relevant controls are variables which have a NONZERO partial effect on the dependent
variable.

• Non-Omitted Variables
• Omitted Variables

• Highly-correlated Variables

• Multicollinearity

• We will come back soon to discuss this topic again in Lecture 8 in details.
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OLS Regression, Covariates and RCT

• More specifically,regressionmodel turns into

Yi = β0 + β1Di + γ2C2,i + ... + γkCk,i + ui, i = 1, ..., n

• transform it into

Yi = β0 + β1Di + γ2...kC ′
2...k,i + ui, i = 1, ..., n

• It turns out

Yi = α + ρDi + γC ′ + ui
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OLS Regression, Covariates and RCT

• Nowwrite out the conditional expectation of Yi for both levels of Di conditional

on C
E [Yi | Di = 1, C] = E [α + ρ + γC + ui | Di = 1, C]

= α + ρ + γ + E [ui|Di = 1, C]

E [Yi | Di = 0, C] = E [α + γC + ui | Di = 0, C]
= α + γ + E [ui | Di = 0, C]

• Taking the difference

E [Yi | Di = 1, C] − E [Yi | Di = 0, C]
= ρ + E [ui|Di = 1, C] − E [ui | Di = 0, C]︸ ︷︷ ︸

Selection bias
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OLS Regression, Covariates and RCT

• Again, our estimate of the treatment effect (ρ) is only going to be as good as our
ability to eliminate the selection bias,thus

E [u1i|Di = 1, C] − E [u0i | Di = 0, C] ̸= 0

Conditional Independence Assumption(CIA)

”balance” covariates C then we can take the treatment D as randomized, thus

(Y 1, Y 0) ⊥⊥ D|C
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OLS Regression, Covariates and RCT

• This is the equivalence of the CIA assumption, which is also equivalent to the 1st

assumption of Multiple OLS

E [u1i|Di = 1, C] − E [u0i | Di = 0, C]
= E [u1i|C] − E [u0i|C]

• Then we can eliminate the selection bias, thus making

E [u1i|Di = 1, C] = E [u0i | Di = 0, C]

• Thus

E [Yi | Di = 1, C] − E [Yi | Di = 0, C] = ρ
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Wrap up

• OLS regression is valid or can obtain a causal explanation only when least

squares assumptions are held.

• Themost important assumption is

E(ui|D) = 0

or

E(ui|D, C) = E(ui|C)

• In most cases,it does not satisfy it when using nonexperimental data.

Therefore,how tomake a convincing causal inference when these assumptions

are not held is the key question.
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Hypothesis Testing
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Introduction: Class size and Test Score

Recall our simple OLS regressionmode is

TestScorei = β0 + β1STRi + ui (4.3)
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14 16 18 20 22 24 26
str

te
st
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r
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Class Size and Test Score

Then we got the result of a simple OLS regression

̂TestScore = 698.9 − 2.28 × STR, R2 = 0.051, SER = 18.6

• Don’t forget: the result are not obtained from the population

but from the sample.

• How can you be sure about the result? In other words, how confident you can

believe the result from the sample inferring to the population?

• If someone believes that cutting the class size will not help boost test scores. Can

you reject the claim based your scientific evidence-based data analysis?

• This is the work of Hypothesis Testing in OLS regressions.
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Review: Hypothesis Testing

• A hypothesis is (usually) an assertion or statement about unknown population

parameters like θ.

• Suppose we want to test whether it is significantly different from a certain value

µ0

• Then null hypothesis is

H0 : θ = µ0

• The alternative hypothesis(two-sided) is

H1 : θ ̸= µ0

• If the value µ0 does not lie within the calculated confidence interval, then we

reject the null hypothesis.

• If the value µ0 lie within the calculated confidence interval, then we fail to reject

the null hypothesis.
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Review: Hypothesis Testing

• Most countries follow the rule of criminal trials:

innocent until proven guilty(疑罪从无)
• The jury or judge starts with the “null hypothesis” that the accused person is
innocent.

• The prosecutor wants to prove their hypothesis that the accused person is guilty.
• In other words, they have to show strong evidence to make the jury or judge reject
the “null hypothesis”.

• Likewise, our rule in econometrics is

presumption of insignificance until proven.
• At first researchers have to assume that there is zero impact of independent
variable on dependent variable.

• In order to prove the relationship between the independent variable and
dependent variable, wemust provide strong enough evidence to convince readers
or policy makers to “reject” the assumption of a zero effect.
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Review: Two Type Errors(两种错误）

• In both cases, there is a certain risk that our conclusion is wrong

H0 is true HA is true

Fail to reject HO Correct Type II error

Reject HO Type I error Correct

• Type I and Type II errors can not happen at the same time

• There is a trade-off between Type I and Type II errors
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Review: Two Type Errors(两种错误）

• Question: Determine whether each situation belongs to Type I error or

Type II error.

• “宁可错杀一千，不能放过一个”
• “宁可放过一千，不能错杀一个”
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The Significance level(显著性水平)

• The significance level or size of a test, α, is themaximumprobability of

the Type I Error we tolerate.

P (Type I error) = P (reject H0 | H0 is true) = α

• In social science, the usual significance level is set at 5%. A less rigorous

standard is 10%, whereas a more stringent one is 1%.
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The Power of the Test

• The power of a test, is 1 − β, where β is the probability of the Type II Error

1 − P (Type II error) = 1 − P (reject H0 | H1 is true) = 1 − β

• Typically, we desire power to be 0.80 or greater, which alternatively equal to

minimize β ≤ 0.2.
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Review: Hypothesis Testing of PopulationMean

• Let µY,c is a specific value to which the populationmean equals(thus we suppose)

• the null hypothesis:
H0 : E(Y ) = µY,c

• the alternative hypothesis(two-sided):

H1 : E(Y ) ̸= µY,c
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Review: Hypothesis Testing of PopulationMean

• Step 1 Compute the sample mean Y

• Step 2 Compute the standard error of Y , recall

SE(Y ) = sY√
n

• Step 3 Compute the t-statistic actually computed

tact = Ȳ act − µY,c

SE(Ȳ )
• Step 4 Compute the p-value(optional)

p-value = 2Φ(−|tact|)

• Step 5 See if we can Reject the null hypothesis at a certain significance level

α,like 5%, or p-value is less than significance level.

|tact| > critical value or p − value < significance level
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Simple OLS: Hypotheses Testing

• A Simple OLS regression

Yi = β0 + β1Xi + ui

• This is the population regression equation and the key unknown population

parameters is β1.

• Then we would like to test whether β1 equals to a specific value β1,s or not

• the null hypothesis:
H0 : β1 = β1,s

• the alternative hypothesis:
H1 : β1 ̸= β1,s
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A Simple OLS: Hypotheses Testing

• Step1: Estimate Yi = β0 + β1Xi + ui by OLS to obtain β̂1

• Step2: Compute the standard error of β̂1

• Step3: Construct the t-statistic

tact = β̂1 − β1,c

SE
(
β̂1
)

• Step4: Reject the null hypothesis if

| tact |>critical value

or p − value <significance level
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Recall: General Form of the t-statistics

t = estimator − hypothesized value

standard error of the estimator

• Now the key unknown statistic is the standard error(S.E).

143 / 207



The Standard Error of β̂1

• Recall from the Simple OLS Regression
• if the least squares assumptions hold, then in large samples β̂0 and β̂1 have a joint
normal sampling distribution,thus β̂1

β̂1 ∼ N(β1, σ2
β̂1

)

• We also derived the form of the variance of the normal distribution, σ2
β̂1

is

σβ̂1
=

√
1
n

V ar[(Xi − µX)ui]
[V ar(Xi)]2

(4.21)

• The standard error of β̂1 is an estimator of the standard deviation of the

sampling distribution σβ̂1
, thus

SE
(
β̂1
)

=
√

σ̂2
β̂1

=

√√√√√ 1
n

×
1

n−2
∑

(Xi − X̄)2û2
i[

1
n

∑
(Xi − X̄)2

]2 (5.4)
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Application to Test Score and Class Size

• the OLS regression line

̂TestScore =698.9 − 22.8 × STR, R2 = 0.051, SER = 18.6
(10.4) (0.52)
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Testing a two-sided hypothesis concerning β1

• the null hypothesis H0 : β1 = 0
• It means that the class size will not affect the performance of students.

• the alternative hypothesis H1 : β1 ̸= 0
• It means that the class size do affect the performance of students (whatever
positive or negative)

• Our primary goal is to Reject the null, and then saymake a conclusion:

• Class Size doesmatter for the performance of students.
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Testing a two-sided hypothesis concerning β1

• Step1: Estimate β̂1 = −2.28
• Step2: Compute the standard error: SE(β̂1) = 0.52
• Step3: Compute the t-statistic

tact = β̂1 − β1,c

SE
(
β̂1
) = −2.28 − 0

0.52
= −4.39

• Step4: Reject the null hypothesis if

• | tact |=| −4.39 |> critical value = 1.96
• p − value = 0 < significance level = 0.05
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Application to Test Score and Class Size

• We can reject the null hypothesis that H0 : β1 = 0, whichmeans β1 ̸= 0 with a
high probability(over 95%).

• It suggests that Class sizematters the students’ performance in a very high

chance.
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Critical Values of the t-statistic
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1% and 10% significant levels

• Step4: Reject the null hypothesis at a 10% significance level

• | tact |=| −4.39 |> critical value = 1.64
• p − value = 0.00 < significance level = 0.1

• Step4: Reject the null hypothesis at a 1% significance level

• | tact |=| −4.39 |> critical value = 2.58
• p − value = 0.00 < significance level = 0.01
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Two-Sided Hypotheses: β1 in a certain value

• Step1: Estimate β̂1 = −2.28
• Step2: Compute the standard error: SE(β̂1) = 0.52
• Step3: Compute the t-statistic

tact = β̂1 − β1,c

SE
(
β̂1
) = −2.28 − (−2)

0.52
= −0.54

• Step4: can’t reject the null hypothesis at 5% significant level because

• | tact |=| −0.54 |< critical value = 1.96
• p − value = 0.59 > significance level = 0.05
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Two-Sided Hypotheses : β1 in a certain value

• We cannot reject the null hypothesis that H0 : β1 = −2.
• It suggests that there is no enough evidence to support the statement:

• cutting class size in one unit will boost the test score in 2 points.

152 / 207



One-sided Hypotheses Concerning β1

• Sometimes, we want to do a one-sided Hypothesis testing

• the null hypothesis is still unchanged H0 : β1 = −2
• the alternative hypothesis is H1 : β1 < −2

• The statement is that reducing(or inversely increasing) class size will boost(or
lower) student’s performance.

• More specifically,cutting class size in one unit will increase the test score in 2
points at least.

• Because the null hypothesis is the same for a one- and a two-sided hypothesis

test, the construction of the t-statistic is the same.

• The difference between the two is the critical value and p-value.
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One-sided Hypotheses Concerning β1

• Step1: Estimate β̂1 = −2.28
• Step2: Compute the standard error: SE(β̂1) = 0.52
• Step3: Compute the t-statistic

tact = β̂1 − β1,0

SE
(
β̂1
) = −2.28 − (−2)

0.52
= −0.54
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One-sided Hypotheses Concerning β1
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One-sided Hypotheses Concerning β1

• Step4: under the circumstance, the critical value is not the −1.96 but −1.645 at
5% significant level.

• We can’t reject the null hypothesis because

tact = −0.54 > critical value = −1.645

• The p-value is not the 2Φ(−|tact|) now but Pr(Z < tact) = Φ(tact).
• It suggests that there is NO enough evidence to support the statement:cutting class

size in one unit will increase the test score in 2 points at least.
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One-sided Hypotheses Concerning β1

• One-sided alternative hypotheses should be used only when there is a clear

reason for doing so.

• This reason could come from economic theory, prior empirical evidence, or both.

• However, even if it initially seems that the relevant alternative is one-sided,

upon reflection this might not necessarily be so.

• In practice, one-sided test is usedmuch less than two-sided test.
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Wrap up

• Hypothesis tests are useful if you have a specific null hypothesis in mind (as did

our angry taxpayer).

• Being able to accept or reject this null hypothesis based on the statistical

evidence provides a powerful tool for coping with the uncertainty inherent in

using a sample to learn about the population.

• Yet, there are many times that no single hypothesis about a regression

coefficient is dominant, and instead one would like to know a range of values of

the coefficient that are consistent with the data.

• This calls for constructing a confidence interval.
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Confidence Intervals
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Introduction

• Because any statistical estimate of the slope β1 necessarily has sampling

uncertainty, we cannot determine the true value of β1 exactly from a sample of

data.

• It is possible, however, to use the OLS estimators and its standard error to

construct a confidence interval for the slope β1
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CI for β1

• Method for constructing a confidence interval for a populationmean can be

easily extended to constructing a confidence interval for a regression

coefficient.

• Using a two-sided test, a hypothesized value for β1 will be rejected at 5%

significance level if

| tact |> critical value = 1.96

• So β̂1 will be in the confidence set if | tact |≤ critical value = 1.96
• Thus the 95% confidence interval for β1 are within ±1.96 standard errors of β̂1

β̂1 ± 1.96 · SE
(
β̂1
)

161 / 207



CI for βClassSize

• Thus the 95% confidence interval for β1 are within ±1.96 standard errors of β̂1

β̂1 ± 1.96 · SE
(
β̂1
)

= −2.28 ± (1.96 × 0.519) = [−3.3, −1.26]
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Gauss-Markov theorem and Heteroskedasticity
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Introduction

• Recall we discussed the properties of Ȳ in Chapter 2.

• an unbiased estimator of µY

• a consistent estimator of µY

• an approximate normal sampling distribution for large n
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The Efficiency of Ȳ

• the fourth properties of Ȳ in Chapter 3.

• the Best Linear Unbiased Estimator(BLUE): Ȳ is the most efficient estimator of

µY among all unbiased estimators that are weighted averages of Y1, ..., Yn,

presented by µ̂Y = 1
n

∑
aiYi,thus,

V ar(Y ) < V ar(µ̂Y )
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Unnecessary Assumption for Simple OLS

• Three Simple OLS Regression Assumptions

• Assumption 1
• Assumption 2
• Assumption 3

• Assumption 4: The error terms are homoskedastic

V ar(ui | Xi) = σ2
u

• Then β̂OLS is the Best Linear Unbiased Estimator(BLUE): it is the most efficient

estimator of β1 among all conditional unbiased estimators that are a linear

function of Y1, Y2, ..., Yn.
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Heteroskedasticity & homoskedasticity

• The error term ui is homoskedastic if the variance of the conditional

distribution of ui given Xi is constant for i = 1, ...n, in particular does not

depend on Xi.

• Otherwise, the error term is heteroskedastic.
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An Actual Example: the returns to schooling

• The spread of the dots around the line is clearly increasing with years of

education Xi.

• Variation in (log) wages is higher at higher levels of education.

• This implies that

V ar(ui | Xi) ̸= σ2
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Homoskedasticity: S.E.

• However,in many applications homoskedasticity isNOT a plausible

assumption.

• If the error terms are heteroskedastic, then you use the homoskedastic assumption

to compute the S.E. of β̂1. It will leads to

• The standard errors are wrong (often too small)
• The t-statistic does NOT have a N(0, 1) distribution (also not in large samples).
• But the estimating coefficients in OLS regression will not change.
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Heteroskedasticity & homoskedasticity

• If the error terms are heteroskedastic, we should use the original equation of S.E.

SEHeter

(
β̂1
)

=
√

σ̂2
β̂1

=

√√√√√ 1
n

×
1

n−2
∑

(Xi − X̄)2û2
i[

1
n

∑
(Xi − X̄)2

]2
• It is called as heteroskedasticity robust-standard errors,also referred to as

Eicker-Huber-White standard errors,simply Robust-Standard Errors

• In the case, it is not difficult to find that homoskedasticity is just a special case of

heteroskedasticity.
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Heteroskedasticity & homoskedasticity

• Since homoskedasticity is a special case of heteroskedasticity, these

heteroskedasticity robust formulas are also valid if the error terms are

homoskedastic.

• Hypothesis tests and confidence intervals based on above SE’s are valid both in

case of homoskedasticity and heteroskedasticity.

• In reality, since in many applications homoskedasticity is not a plausible

assumption, it is best to use heteroskedasticity robust standard errors. Using robust

standard errors rather than standard errors with homoskedasticitywill lead us

lose nothing.
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Heteroskedasticity & homoskedasticity

• It can be quite cumbersome to do this calculation by hand.Luckily,computer can

help us do the job.

• In Stata, the default option of regression is to assume homoskedasticity, to
obtain heteroskedasticity robust standard errors use the option “robust”:

regress y x , robust

• In R, many ways can finish the job. A convenient function named vcovHC() is
part of the package sandwich.
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Test Scores and Class Size
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Test Scores and Class Size
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Wrap up: Heteroskedasticity in a Simple OLS

• If the error terms are heteroskedastic

• The fourth simple OLS assumption is violated.
• The Gauss-Markov conditions do not hold.
• The OLS estimator is not BLUE (not most efficient).

• But (given that the other OLS assumptions hold)

• The OLS estimators are still unbiased.
• The OLS estimators are still consistent.
• The OLS estimators are normally distributed in large samples
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OLS withMultiple Regressors: Hypotheses tests
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Recall: the Multiple OLS Regression

• Themultiple regressionmodel is

Yi = β0 + β1X1,i + β2X2,i + ... + βkXk,i + ui, i = 1, ..., n

• Four Basic Assumptions

• Assumption 1 : E[ui | X1i, X2i..., Xki] = 0
• Assumption 2 : i.i.d sample
• Assumption 3 : Large outliers are unlikely.
• Assumption 4 : No perfect multicollinearity.

• The Sampling Distribution: the OLS estimators β̂j for j = 1, ..., k are

approximately normally distributed in large samples.
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Standard Errors for theMultiple OLS Estimators

• There is nothing conceptually different between the single- or multiple-regressor

cases.
• Standard Errors for a Simple OLS estimator β1

SE
(

β̂1

)
= σ̂β̂1

• Standard Errors for Mutiple OLS Regression estimators βj

SE
(
β̂j

)
= σ̂β̂j

• Remind: since now the joint distribution is not only for (Yi, Xi),but also for
(Xij , Xik).

• The formula for the standard errors in Multiple OLS regression are related with a

matrix named Variance-Covariancematrix
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Hypothesis Tests for a Single Coefficient

• the t-statistic in Simple OLS Regression

tact = β̂1 − β1,c

SE
(
β̂1
) ∼ N(0, 1)

• the t-statistic in Multiple OLS Regression

t = β̂j − βj,c

SE
(
β̂j

) ∼ N(0, 1)
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Hypothesis testing for single coefficient

• H0 : βj = βj,c H1 : β1 ̸= βj,c

• Step1: Estimate β̂j , by run amultiple OLS regression

Yi = β0 + β1X1i + ... + βjXji + ... + βkXki + ui

• Step2: Compute the standard error of β̂j (requires matrix algebra)

• Step3: Compute the t-statistic

tact = β̂j − βj,c

SE
(
β̂j

)
• Step4: Reject the null hypothesis if

• | tact |> critical value

• or if p − value < significance level
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Confidence Intervals for a single coefficient

• Also the same as in a simple OLS Regression.

• β̂j will be in the confidence set if | tact |≤ critical value = 1.96 at the 95%
confidence level.

• Thus the 95% confidence interval for βj are within ±1.96 standard errors of β̂j

β̂j ± 1.96 · SE
(
β̂j

)
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Test Scores and Class Size
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Case: Class Size and Test scores

• Does changing class size, while holding the percentage of English learners

constant, have a statistically significant effect on test scores? (using a 5%

significance level)

• H0 : βClassSize = 0 H1 : βClassSize ̸= 0
• Step1: Estimate β̂1 = −1.10
• Step2: Compute the standard error: SE(β̂1) = 0.43
• Step3: Compute the t-statistic

tact = β̂1 − β1,c

SE
(
β̂1
) = −1.10 − 0

0.43
= −2.54

• Step4: Reject the null hypothesis if
• | tact |=| −2.54 |> critical value.1.96
• p − value = 0.011 < significance level = 0.05
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Tests of Joint Hypotheses: on 2 or more coefficients

• Question: Can we just test more than one individual coefficient at a time?

• Suppose the angry taxpayer hypothesizes that neither the student–teacher ratio

nor expenditures per pupil have an effect on test scores, once we control for the

percentage of English learners.

• Therefore, we have to test a joint null hypothesis that both the coefficient on

student–teacher ratio and the coefficient on expenditures per pupil are zero?

H0 : βstr = 0 & βexpn = 0,

H1 : βstr ̸= 0 and/or βexpn ̸= 0
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Testing 1 hypothesis on 2 or more coefficients

• Suppose we want to test

H0 : β1 = 0 & β2 = 0 H1 : β1 ̸= 0 and/or β2 ̸= 0

• Then the F-statistic can also combine the two t-statisticst1 and t2 as follows

F = 1
2

(
t2
1 + t2

2 − 2ρ̂t1t2t1t2
1 − ρ̂2

t1t2

)

where ρ̂t1t2 is an estimator of the correlation between the two t-statistics.
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Testing 1 hypothesis on 2 or more coefficients

• In general, a joint hypothesis is a hypothesis that imposes two or more

restrictions on the regression coefficients.

H0 : βj = βj,c, βk = βk,c, ..., for a total of q restrictions

H1 : one or more of q restrictions under H0 does not hold

• where βj , βk, ... refer to different regression coefficients.

• When the regressors are highly correlated, single t-statistics can be

misleading.Instead, we use the F-statistic for testing joint hypotheses.
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Unrestricted v.s Restricted model

• The unrestrictedmodel: the model without any of the restrictions imposed. It

contains all the variables.

• The restrictedmodel: the model on which the restrictions have been imposed.

• And we want to test that H0 : β1 = 0 and β2 = 0,then H1 : β1 ̸= 0 and/or β2 ̸= 0
for the regressionmodel

Yi = β0 + β1X1,i + β2X2,i + β3X3,i + ui, i = 1, ..., n

• Then restricted model is

Yi = β0 + β3X3,i + ui
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The F-statistic with q restrictions

• The F-statistic is computed using a simple formula based on the sum of squared

residuals from two regressions.

F = (SSRrestricted − SSRunrestricted)/q

SSRunrestricted/(n − k − 1)

• SSRrestricted is the sum of squared residuals from the restricted regression.

• SSRunrestricted is the sum of squared residuals from the fullmodel.

• q is the number of restrictions under the null.

• k is the number of regressors in the unrestricted regression.
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The heteroskedasticity-robust F-statistic

• Usingmatrix to show the form of the heteroskedasticity-robust F-statistic which

is beyond the scope of our class.

• While,under the null hypothesis,regardless of whether the errors are

homoskedastic or heteroskedastic, the F-statistic with q has a sampling

distribution in large samples,

F − statistic ∼ Fq,∞

• where q is the number of restrictions

• Then we can compute the F-statistic, the critical values from the table of the Fq,∞

and obtain the p-value.
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F-Distribution
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Testing joint hypothesis with q restrictions

• H0 : βj = βj,0, ..., βm = βm,0 for a total of q restrictions.

• H1:at least one of q restrictions under H0 does not hold.

• Step1: Estimate

Yi = β0 + β1X1i + ... + βjXji + ... + βkXki + ui

by OLS

• Step2: Compute the F-statistic

• Step3 : Reject the null hypothesis if

F − Statistic > F act
q,∞

or

p − value = Pr[Fq,∞ > F act] <= significant level
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Case: Class Size and Test Scores

• We want to test hypothesis that both the coefficient on student–teacher ratio and

the coefficient on expenditures per pupil are zero?

• H0 : βstr = 0 &βexpn = 0
• H1 : βstr ̸= 0 and/or βexpn ̸= 0

• The null hypothesis consists of two restrictions q = 2
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Case: Class Size and Test Scores

• F-statistic with two restrictions has an approximate F2,∞ distribution in large

samples

Fact = 5.43 > F2,∞ = 4.61 at 1% significant level

• This implies that we reject H0 at a 1% significance level.
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The “overall” regression F-statistic

• The “overall” F-statistic test the joint hypothesis that all the k slope coefficients

are zero

• H0 : βj = βj,0, ..., βm = βm,0 for a total of q = k restrictions.
• H1: at least one of q = k restrictions under H0 does not hold.
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The “overall” regression F-statistic

• The overall F − Statistics = 147.2 which indicates at least one coefficient can
not be ZERO.
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Case: Analysis of the Test Score Data Set

196 / 207



Introduction

• How to use multiple regression in order to alleviate omitted variable bias and

demonstrate how to report results.

• So far we have considered two variables that control for unobservable student

characteristics which correlate with the student-teacher ratio and are assumed to

have an impact on test scores:

• English, the percentage of English learning students
• lunch, the share of students that qualify for a subsidized or even a free lunch at
school

• calworks,the percentage of students that qualify for a income assistance program
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Five different model equations:

• We shall consider five different model equations:

(1) TestScore = β0 + β1STR + u,

(2) TestScore = β0 + β1STR + β2english + u,

(3) TestScore = β0 + β1STR + β2english + β3lunch + u,

(4) TestScore = β0 + β1STR + β2english + β4calworks + u,

(5) TestScore = β0 + β1STR + β2english + β3lunch + β4calworks + u
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Scatter Plot: English learners and Test Scores
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Scatter Plot: Free lunch and Test Scores
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Scatter Plot: Income assistant and Test Scores
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Correlations between Variables

• The correlation coefficients are as followed:

# estimate correlation between student characteristics and test scores
cor(CASchools$testscr, CASchools$el_pct)

#> [1] -0.6441237

cor(CASchools$testscr, CASchools$meal_pct)

#> [1] -0.868772

cor(CASchools$testscr, CASchools$calw_pct)

#> [1] -0.6268534

cor(CASchools$meal_pct, CASchools$calw_pct)

#> [1] 0.7394218
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Table 8

Dependent Variable: Test Score

(1) (2)

str −2.280∗∗∗ −1.101∗∗

(0.519) (0.433)
el_pct −0.650∗∗∗

(0.031)
Constant 698.933∗∗∗ 686.032∗∗∗

(10.364) (8.728)

Observations 420 420
R2 0.051 0.426
Adjusted R2 0.049 0.424
F Statistic 22.575∗∗∗ 155.014∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust S.E. are shown in the parentheses
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Table 9

Dependent Variable: Test Score

(1) (2) (3) (4)

str −2.280∗∗∗ −1.101∗∗ −0.998∗∗∗ −1.308∗∗∗

(0.519) (0.433) (0.270) (0.339)
el_pct −0.650∗∗∗ −0.122∗∗∗ −0.488∗∗∗

(0.031) (0.033) (0.030)
meal_pct −0.547∗∗∗

(0.024)
calw_pct −0.790∗∗∗

(0.068)
Constant 698.933∗∗∗ 686.032∗∗∗ 700.150∗∗∗ 697.999∗∗∗

(10.364) (8.728) (5.568) (6.920)

Observations 420 420 420 420
R2 0.051 0.426 0.775 0.629
Adjusted R2 0.049 0.424 0.773 0.626
F Statistic 22.575∗∗∗ 155.014∗∗∗ 476.306∗∗∗ 234.638∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust S.E. are shown in the parentheses
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Table 10

Dependent Variable: Test Score

(1) (2) (3) (4) (5)

str −2.280∗∗∗ −1.101∗∗ −0.998∗∗∗ −1.308∗∗∗ −1.014∗∗∗

(0.519) (0.433) (0.270) (0.339) (0.269)
el_pct −0.650∗∗∗ −0.122∗∗∗ −0.488∗∗∗ −0.130∗∗∗

(0.031) (0.033) (0.030) (0.036)
meal_pct −0.547∗∗∗ −0.529∗∗∗

(0.024) (0.038)
calw_pct −0.790∗∗∗ −0.048

(0.068) (0.059)
Constant 698.933∗∗∗ 686.032∗∗∗ 700.150∗∗∗ 697.999∗∗∗ 700.392∗∗∗

(10.364) (8.728) (5.568) (6.920) (5.537)

Observations 420 420 420 420 420
R2 0.051 0.426 0.775 0.629 0.775
Adjusted R2 0.049 0.424 0.773 0.626 0.773
F Statistic 22.575∗∗∗ 155.014∗∗∗ 476.306∗∗∗ 234.638∗∗∗ 357.054∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust S.E. are shown in the parentheses
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The “Star War” and Regression Table
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Warp Up

• OLS regression is the most fundamental and important tool in econometricians

toolbox.

• The OLS estimators is unbiased, consistent and approximated normal

distributions if four key assumptions are satisfied.

• Using the hypothesis testing and confidence interval in OLS regression, we

could make amore reliable judgment about the relationship between the

treatment and the outcomes.

• Under several reasonable but strong assumptions(CIA), OLS regression can be

seen as a continuous version of generalizing continuous version of RCT.

• The OLS regression can be used to estimate the causal effect of the treatment on

the outcomes, and the results can be interpreted as the average treatment effect

on the treated.
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