大数据时代的管理决策（2024 年春）

Lecture 2：OLS Regression Estimation and Inference（I）

Zhaopeng Qu

Nanjing University Business School
March 152024

1 Review the previous lecture

2 OLS Estimation: Simple Regression

3 The Least Squares Assumptions

4 Properties of the OLS Estimators

5 Simple OLS and RCT

6 Make Comparison Make Sense

7 Multiple OLS Regression: Introduction

8 Multiple OLS Regression: Estimation

Review the previous lecture

Causal Inference and RCT

- Causality is our main goal in the studies of empirical social science.
- The existence of selection bias makes social science more difficult than science.
- Based on Rubin Causal Model, potential outcomes are the key to causal inference. And RCTs is the golden standard for causal inference.
- Although RCTs is a powerful tool for economists, every project or topic can NOT be carried on by it.
- This is the reason why modern econometrics exists and develops. The main job of econometrics is using non-experimental data to making convincing causal inference.

Furious Seven Weapons（七种武器）

－To build a reasonable counterfactual world or to find a proper control group is the core of econometric methods．

1．Randomized controlled trial（RCTs）
2．Regression（回归）
3．Matching and Propensity Score（匹配与倾向得分）
4．Instrumental Variable（工具变量）
5．Regression Discontinuity（断点回归）
6．Panel Data and Difference in Differences（双差分或倍差法）
7．Synthetic Control Method（合成控制法）
－The most fundamental of these tools is regression．It compares treatment and control subjects with the same observable characteristics in a generalized manner．
－It paves the way for the more elaborate tools used in the class that follow．
－Let＇s start our exciting journey from OLS Regression．

OLS Estimation: Simple Regression

Class Size and Students's Performance

- Recall in the last lecture, we discussed how to find the relationship between class size and students' performance.
- More specifically, we random divide the students into two groups, one with small class size and the other with large class size.
- Then we compare the average test scores of the two groups.
- If the average test scores of the small class size group is higher than the large class size group significantly, we can conclude that small class size is better for students' performance.
- However, the answer is really what we want originally?

Question: Class Size and Student's Performance

- More Quantitative Question:
- What is the effect on district test scores if we would increase district average class size by 1 student (or one unit of Student-Teacher's Ratio)
- If we could know the full relationship between two variables which can be summarized by a real value function, $f(\cdot)$

$$
\text { Testscore }=f(\text { ClassSize })
$$

- Unfortunately, the function form is always unknown.

Question: Class Size and Student's Performance

- Two basic methods to describe the function.
- non-parametric: we don't care the specific form of the function, unless we know all the values of two variables, which actually are the whole distributions of class size and test scores.
- parametric: we have to suppose the basic form of the function, then to find values of some unknown parameters to determine the specific function form.
- Both methods need to use samples to inference populations in our random and unknown world.

Question: Class Size and Student's Performance

- Suppose we choose parametric method, then we just need to know the real value of a parameter β_{1} to describe the relationship between Class Size and Test Scores

$$
\beta_{1}=\frac{\Delta \text { Testscore }}{\Delta \text { ClassSize }}
$$

- Next step, we have to suppose specific forms of the function $f(\cdot)$, still two categories: linear and non-linear
- And we start to use the simplest function form: a linear equation, which is graphically a straight line, to summarize the relationship between two variables.

$$
\text { Test score }=\beta_{0}+\beta_{1} \times \text { Class size }
$$

where β_{1} is actually the the slope and β_{0} is the intercept of the straight line.

Class Size and Student's Performance

- BUT the average test score in district i does not only depend on the average class size
- It also depends on other factors such as
- Student background
- Quality of the teachers
- School's facilitates
- Quality of text books
- Random deviation
- So the equation describing the linear relation between Test score and Class size is better written as

$$
\text { Test score }_{i}=\beta_{0}+\beta_{1} \times \text { Class size }_{i}+u_{i}
$$

where u_{i} lumps together all other factors that affect average test scores.

Terminology for Simple Regression Model

- The linear regression model with one regressor is denoted by

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

- Where
- Y_{i} is the dependent variable(Test Score)
- X_{i} is the independent variable or regressor(Class Size or Student-Teacher Ratio)
- $\beta_{0}+\beta_{1} X_{i}$ is the population regression line or the population regression function
- The intercept β_{0} and the slope β_{1} are the coefficients of the population regression line, also known as the parameters of the population regression line.
- u_{i} is the error term which contains all the other factors besides X that determine the value of the dependent variable, Y, for a specific observation, i.

Graphics for Simple Regression Model

FIGURE 4.1 Scatterplot of Test Score vs. Student-Teacher Ratio (Hypothetical Data)

The scatterplot shows hypothetical observations for seven school districts. The population regression line is $\beta_{0}+\beta_{1} \chi$. The vertical distance from the $i^{\text {th }}$ point to the population regression line is $Y_{i}-\left(\beta_{0}+\beta_{1} X_{i}\right)$, which is the population error term u_{i} for the $i^{\text {th }}$ observation.

How to find the "best" fitting line?

- In general we don't know β_{0} and β_{1} which are parameters of population regression function but have to calculate them using a bunch of data: the sample.

The Ordinary Least Squares Estimator (OLS)

The OLS estimator

- Chooses the best regression coefficients so that the estimated regression line is as close as possible to the observed data, where closeness is measured by the sum of the squared mistakes made in predicting Y given X.
- Let b_{0} and b_{1} be estimators of β_{0} and β_{1},thus $b_{0} \equiv \hat{\beta}_{0}, b_{1} \equiv \hat{\beta}_{1}$
- The predicted value of Y_{i} given X_{i} using these estimators is $b_{0}+b_{1} X_{i}$, or $\hat{\beta_{0}}+\hat{\beta}_{1} X_{i}$ formally denotes as \hat{Y}_{i}, thus

$$
\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}
$$

The Ordinary Least Squares Estimator (OLS)

The OLS estimator

- The prediction mistake is the resudial, thus the difference between Y_{i} and \hat{Y}_{i}, which denotes as \hat{u}_{i}

$$
\hat{u}_{i}=Y_{i}-\hat{Y}_{i}=Y_{i}-\left(b_{0}+b_{1} X_{i}\right)
$$

- The estimators of the slope and intercept that minimize the sum of the squares of \hat{u}_{i},thus

$$
\underset{b_{0}, b_{1}}{\arg \min } \sum_{i=1}^{n} \hat{u}_{i}^{2}=\min _{b_{0}, b_{1}} \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

are called the ordinary least squares (OLS) estimators of β_{0} and β_{1}.

The Ordinary Least Squares Estimator (OLS)

- OLS minimizes sum of squared prediction mistakes:

$$
\min _{b_{0}, b_{1}} \sum_{i=1}^{n} \hat{u}_{i}^{2}=\sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

- Solve the problem by F.O.C(the first order condition)
- Step 1 for β_{0} :

$$
\frac{\partial}{\partial b_{0}} \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}=0
$$

- Step 2 for β_{1} :

$$
\frac{\partial}{\partial b_{1}} \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}=0
$$

OLS estimator of β

OLS estimator of β :

$$
\begin{gathered}
b_{0} \equiv \hat{\beta}_{0}=\bar{Y}-b_{1} \bar{X} \\
b_{1} \equiv \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)}
\end{gathered}
$$

The Estimated Regression Line

- Obtain the values of OLS estimator for a certain data,

$$
\hat{\beta}_{1}=-2.28 \text { and } \hat{\beta}_{0}=698.9
$$

- Then the regression line is

The Estimated Regression Line

- Obtain the values of OLS estimator for a certain data,

$$
\hat{\beta}_{1}=-2.28 \text { and } \hat{\beta}_{0}=698.9
$$

- Then the regression line is

FIGURE 4.3 The Estimated Regression Line for the California Data

Measures of Fit: The R^{2}

- Because the variation of Y can be summarized by a statistic: Variance,so the total variation of Y_{i}, which are also called as the total sum of squares (TSS), is:

$$
T S S=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

- Because Y_{i} can be decomposed into the fitted value plus the residual: $Y_{i}=\hat{Y}_{i}+\hat{u}_{i}$, then likewise Y_{i}, we can obtain
- The explained sum of squares (ESS): $\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}$
- The sum of squared residuals (SSR): $\sum_{i=1}^{n}\left(\hat{Y}_{i}-Y_{i}\right)^{2}=\sum_{i=1}^{n} \hat{u}_{i}^{2}$
- And more importantly, the variation of Y_{i} should be a sum of the variations of \hat{Y}_{i} and \hat{u}_{i}, thus

$$
T S S=E S S+S S R
$$

Measures of Fit: The R^{2}

R^{2} or the coefficient of determination

R^{2} or the coefficient of determination, is the fraction of the sample variance of Y_{i} explained/predicted by X_{i}

$$
R^{2}=\frac{E S S}{T S S}=1-\frac{S S R}{T S S}
$$

- So $0 \leq R^{2} \leq 1$, it measures that how much can the variations of Y be explained by the variations of X_{i} in share.
- NOTICE: It seems that R-squares is bigger, the regression is better, which is NOT RIGHT in most cases. Because we DON'T care much about R^{2} when we make causal inference about two variables.

The Least Squares Assumptions

The Linear Regression Model

- In order to investigate the statistical properties of OLS, we need to make some statistical assumptions

The Linear Regression Model

- In order to investigate the statistical properties of OLS, we need to make some statistical assumptions

Linear Regression Model

Two random variables Y_{i} and X_{i}, their relationship can satisfy the linear regression equation, thus

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

- This is not a required assumption. We will extend the model to be nonlinear later on.

Assumption 1: Conditional Mean is Zero

Assumption 1: Zero conditional mean of the errors given X
The error, u_{i} has expected value of 0 given any value of the independent variable

$$
E\left[u_{i} \mid X_{i}=x\right]=0
$$

Assumption 1: Conditional Mean is Zero

Assumption 1: Zero conditional mean of the errors given X

The error, u_{i} has expected value of 0 given any value of the independent variable

$$
E\left[u_{i} \mid X_{i}=x\right]=0
$$

Implications of Assumption 1

With the Iterated Expectation Law, we can obtain an extra implicit assumption about u_{i}, thus

$$
E\left(u_{i}\right)=E\left(E\left(u_{i} \mid X_{i}\right)\right)=0
$$

- It seems that the assumption is too strong, but given that the linear regression model have a intercept β_{0}, which means that we could always make the assumption true by redefining the intercept.

Assumption 1: Conditional Mean is Zero

- An weaker condition that u_{i} and X_{i} are uncorrelated:

$$
\operatorname{Cov}\left[u_{i}, X_{i}\right]=E\left[u_{i} X_{i}\right]=0
$$

Covariance and Conditional Mean
Although $\operatorname{Cov}\left[u_{i}, X_{i}\right]=0 \nRightarrow E\left[Y_{i} \mid X_{i}\right]$, we have

$$
\operatorname{Cov}\left[u_{i}, X_{i}\right] \neq 0 \Rightarrow E\left[u_{i} \mid X_{i}\right] \neq 0
$$

- if u_{i} and X_{i} are correlated, then Assumption 1 is violated.
- Equivalently, the population regression line is the conditional mean of Y_{i} given X_{i}, thus

$$
E\left[Y_{i} \mid X_{i}\right]=\beta_{0}+\beta_{1} X_{i}
$$

Assumption 1: Conditional Mean is Zero

FIGURE 4.4
 The Conditional Probability Distributions and the Population Regression Line

The figure shows the conditional probability of test scores for districts with class sizes of 15,20 , and 25 students. The mean of the conditional distribution of test scores, given the studentteacher ratio, $E(Y \mid X)$, is the population regression line. At a given value of X, Y is distributed around the regression line and the error, $u=Y-\left(\beta_{0}+\beta_{1} \chi\right)$, has a conditional mean of zero for all values of X.

Assumption 2: Random Sample

Assumption 2: Random Sample

We have a i.i.d random sample of size, $\left\{\left(X_{i}, Y_{i}\right), i=1, \ldots, n\right\}$ from the population regression model above.

Assumption 2: Random Sample

Assumption 2: Random Sample

We have a i.i.d random sample of size , $\left\{\left(X_{i}, Y_{i}\right), i=1, \ldots, n\right\}$ from the population regression model above.

- This is an implication of random sampling. Then we have such as

$$
\begin{aligned}
\operatorname{Cov}\left(X_{i}, X_{j}\right) & =0 \\
\operatorname{Cov}\left(Y_{i}, X_{j}\right) & =0 \\
\operatorname{Cov}\left(u_{i}, X_{j}\right) & =0
\end{aligned}
$$

- And it generally won't hold in other data structures.
- time-series, cluster samples and spatial data.

Assumption 3: Large outliers are unlikely

Assumption 3: Large outliers are unlikely
It states that observations with values of X_{i}, Y_{i} or both that are far outside the usual range of the data(Outlier) are unlikely. Mathematically, it assume that X and Y have nonzero finite fourth moments.

- Large outliers can make OLS regression results misleading.
- One source of large outliers is data entry errors, such as a typographical error or incorrectly using different units for different observations.
- Data entry errors aside, the assumption of finite kurtosis is a plausible one in many applications with economic data.

Assumption 3: Large outliers are unlikely

FIGURE 4.5 The Sensitivity of OLS to Large Outliers

This hypothetical data set has one outlier. The OLS regression line estimated with the outlier shows a strong positive relationship between X and Y, but the OLS regression line estimated without the outlier shows no relationship.

Underlying Assumptions of OLS

- The OLS estimator is unbiased, consistent and has asymptotically normal sampling distribution if

1. Random sampling.
2. Large outliers are unlikely.
3. The conditional mean of u_{i} given X_{i} is zero.

Underlying assumptions of OLS

- OLS is an estimator: it's a machine that we plug data into and we get out estimates.
- It has a sampling distribution, with a sampling variance/standard error, etc. like the sample mean, sample difference in means, or the sample variance.
- Let's discuss these characteristics of OLS in the next section.

Properties of the OLS Estimators

The OLS estimators

- Question of interest: What is the effect of a change in X_{i} (Class Size) on Y_{i} (Test Score)

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

- We derived the OLS estimators of β_{0} and β_{1} :

$$
\hat{\beta_{0}}=\bar{Y}-\hat{\beta}_{1} \bar{X}
$$

The OLS estimators

- Question of interest: What is the effect of a change in X_{i} (Class Size) on Y_{i} (Test Score)

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

- We derived the OLS estimators of β_{0} and β_{1} :

$$
\begin{gathered}
\hat{\beta_{0}}=\bar{Y}-\hat{\beta}_{1} \bar{X} \\
\hat{\beta}_{1}=\frac{\sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)}
\end{gathered}
$$

Least Squares Assumptions

1. Assumption 1: Conditional Mean is Zero
2. Assumption 2: Random Sample
3. Assumption 3: Large outliers are unlikely

- If the 3 least squares assumptions hold the OLS estimators will be
- unbiased
- consistent
- normal sampling distribution

Properties of the OLS estimator: unbiasedness

- Skipped the proof of unbiasedness of OLS estimator, but we can show that

$$
E\left[\hat{\beta_{1}}\right]=\beta_{1} \text { if } E\left[u_{i} \mid X_{i}\right]=0
$$

Review: Conditional Expectation Function(CEF)

- Expectation(for a continuous r.v.)

$$
E(y)=\int y f(y) d y
$$

- Conditional Expectation Function: the Expectation of Y conditional on X is

$$
E(y \mid x)=\int y f_{Y \mid X}(y \mid x) d y
$$

Review: Properties of CEF

- Conditional Expectation Function: the Expectation of Y conditional on X is

$$
E(y \mid x)=\int y f_{Y \mid X}(y \mid x) d y
$$

- where $f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}$ is the conditional probability density function of Y given X.
- Let X, Y, Z are random variables; $a, b \in \mathbb{R} ; g(\cdot)$ is a real valued function, then we have
- $E[a \mid Y]=a$
- $E[(a X+b Z) \mid Y]=a E[X \mid Y]+b E[Z \mid Y]$
- If X and Y are independent, then $E[Y \mid X]=E[Y]$
- $E[Y g(X) \mid X]=g(X) E[Y \mid X]$. In particular, $E[g(Y) \mid Y]=g(Y)$

Review: the Law of Iterated Expectations(LIE)

the Law of Iterated Expectations

It states that an unconditional expectation can be written as the unconditional average of conditional expectation function.

$$
E\left(Y_{i}\right)=E\left[E\left(Y_{i} \mid X_{i}\right)\right]
$$

Review: the Law of Iterated Expectations(LIE)

the Law of Iterated Expectations

It states that an unconditional expectation can be written as the unconditional average of conditional expectation function.

$$
E\left(Y_{i}\right)=E\left[E\left(Y_{i} \mid X_{i}\right)\right]
$$

and it can easily extend to

$$
E\left(g\left(X_{i}\right) Y_{i}\right)=E\left[E\left(g\left(X_{i}\right) Y_{i} \mid X_{i}\right)\right]=E\left[g\left(X_{i}\right) E\left(Y_{i} \mid X_{i}\right)\right]
$$

Proof: the Law of Iterated Expectation(LIE)

- Prove it by a continuous variable way

Proof

$$
E[E(Y \mid X)]=
$$

Proof: the Law of Iterated Expectation(LIE)

- Prove it by a continuous variable way

Proof

$$
E[E(Y \mid X)]=\int E(Y \mid X=u) f_{X}(u) d u
$$

Proof: the Law of Iterated Expectation(LIE)

- Prove it by a continuous variable way

Proof

$$
\begin{aligned}
E[E(Y \mid X)] & =\int E(Y \mid X=u) f_{X}(u) d u \\
& =\int\left[\int t f_{Y}(t \mid X=u) d t\right] f_{X}(u) d u
\end{aligned}
$$

Proof: the Law of Iterated Expectation(LIE)

- Prove it by a continuous variable way

Proof

$$
\begin{aligned}
E[E(Y \mid X)] & =\int E(Y \mid X=u) f_{X}(u) d u \\
& =\int\left[\int t f_{Y}(t \mid X=u) d t\right] f_{X}(u) d u \\
& =\iint t f_{Y}(t \mid X=u) f_{X}(u) d t d u
\end{aligned}
$$

Proof: the Law of Iterated Expectation(LIE)

- Prove it by a continuous variable way

Proof

$$
\begin{aligned}
E[E(Y \mid X)] & =\int E(Y \mid X=u) f_{X}(u) d u \\
& =\int\left[\int t f_{Y}(t \mid X=u) d t\right] f_{X}(u) d u \\
& =\iint t f_{Y}(t \mid X=u) f_{X}(u) d t d u \\
& =\int t\left[\int f_{Y}(t \mid X=u) f_{X}(u) d u\right] d t
\end{aligned}
$$

Proof: the Law of Iterated Expectation(LIE)

- Prove it by a continuous variable way

Proof

$$
\begin{aligned}
E[E(Y \mid X)] & =\int E(Y \mid X=u) f_{X}(u) d u \\
& =\int\left[\int t f_{Y}(t \mid X=u) d t\right] f_{X}(u) d u \\
& =\iint t f_{Y}(t \mid X=u) f_{X}(u) d t d u \\
& =\int t\left[\int f_{Y}(t \mid X=u) f_{X}(u) d u\right] d t \\
& =\int t\left[\int f_{X Y}(u, t) d u\right] d t
\end{aligned}
$$

Proof: the Law of Iterated Expectation(LIE)

- Prove it by a continuous variable way

Proof

$$
\begin{aligned}
E[E(Y \mid X)] & =\int E(Y \mid X=u) f_{X}(u) d u \\
& =\int\left[\int t f_{Y}(t \mid X=u) d t\right] f_{X}(u) d u \\
& =\iint t f_{Y}(t \mid X=u) f_{X}(u) d t d u \\
& =\int t\left[\int f_{Y}(t \mid X=u) f_{X}(u) d u\right] d t \\
& =\int t\left[\int f_{X Y}(u, t) d u\right] d t \\
& =\int t f_{y}(t) d t
\end{aligned}
$$

Proof: the Law of Iterated Expectation(LIE)

- Prove it by a continuous variable way

Proof

$$
\begin{aligned}
E[E(Y \mid X)] & =\int E(Y \mid X=u) f_{X}(u) d u \\
& =\int\left[\int t f_{Y}(t \mid X=u) d t\right] f_{X}(u) d u \\
& =\iint t f_{Y}(t \mid X=u) f_{X}(u) d t d u \\
& =\int t\left[\int f_{Y}(t \mid X=u) f_{X}(u) d u\right] d t \\
& =\int t\left[\int f_{X Y}(u, t) d u\right] d t \\
& =\int t f_{y}(t) d t \\
& =E(Y)
\end{aligned}
$$

Conditional Expectation and Covariance

- Please prove if $E(Y \mid X)=0 \Rightarrow \operatorname{Cov}(X, Y)=0$

Proof

$$
\operatorname{Cov}(X Y)=E(X Y)-E(X) E(Y)
$$

Conditional Expectation and Covariance

- Please prove if $E(Y \mid X)=0 \Rightarrow \operatorname{Cov}(X, Y)=0$

Proof

$$
\begin{aligned}
\operatorname{Cov}(X Y) & =E(X Y)-E(X) E(Y) \\
& =E[E(X Y \mid X)]-E(X) E[E(Y \mid X)]
\end{aligned}
$$

Conditional Expectation and Covariance

- Please prove if $E(Y \mid X)=0 \Rightarrow \operatorname{Cov}(X, Y)=0$

Proof

$$
\begin{aligned}
\operatorname{Cov}(X Y) & =E(X Y)-E(X) E(Y) \\
& =E[E(X Y \mid X)]-E(X) E[E(Y \mid X)] \\
& =E[X E(Y \mid X)]
\end{aligned}
$$

Conditional Expectation and Covariance

- Please prove if $E(Y \mid X)=0 \Rightarrow \operatorname{Cov}(X, Y)=0$

Proof

$$
\begin{aligned}
\operatorname{Cov}(X Y) & =E(X Y)-E(X) E(Y) \\
& =E[E(X Y \mid X)]-E(X) E[E(Y \mid X)] \\
& =E[X E(Y \mid X)] \\
& =0
\end{aligned}
$$

Properties of the OLS estimator: Consistency

- Notation: $\hat{\beta}_{1} \xrightarrow{p} \beta_{1}$ or $\operatorname{plim} \hat{\beta}_{1}=\beta_{1}$, so

$$
\operatorname{plim} \hat{\beta}_{1}=\operatorname{plim}\left[\frac{\sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)}\right]
$$

- Then we could obtain

$$
p \lim \hat{\beta}_{1}=p \lim \left[\frac{\frac{1}{n-1} \sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\frac{1}{n-1} \sum\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)}\right]=p \lim \left(\frac{s_{x y}}{s_{x}^{2}}\right)
$$

where $s_{x y}$ and s_{x}^{2} are sample covariance and sample variance.

Math Review: Continuous Mapping Theorem

- Continuous Mapping Theorem: For every continuous function $g(t)$ and random variable X :

$$
\operatorname{plim}(g(X))=g(\operatorname{plim}(X))
$$

- Example:

$$
\begin{aligned}
& \operatorname{plim}(X+Y)=\operatorname{plim}(X)+\operatorname{plim}(Y) \\
& \operatorname{plim}\left(\frac{X}{Y}\right)=\frac{\operatorname{plim}(X)}{\operatorname{plim}(Y)} \text { if } \operatorname{plim}(Y) \neq 0
\end{aligned}
$$

Properties of the OLS estimator: Consistency

- Base on L.L.N(the law of large numbers) and random sample(i.i.d)

$$
\begin{gathered}
s_{X}^{2} \xrightarrow{p} \sigma_{X}^{2}=\operatorname{Var}(X) \\
s_{x y} \xrightarrow{p} \sigma_{X Y}=\operatorname{Cov}(X, Y)
\end{gathered}
$$

- Combining with Continuous Mapping Theorem, then we obtain the OLS estimator $\hat{\beta}_{1}$, when $n \longrightarrow \infty$

$$
p \lim \hat{\beta_{1}}=\operatorname{plim}\left(\frac{s_{x y}}{s_{x}^{2}}\right)=\frac{\operatorname{Cov}\left(X_{i}, Y_{i}\right)}{\operatorname{Var}\left(X_{i}\right)}
$$

Properties of the OLS estimator: Consistency

$$
p \lim \hat{\beta}_{1}=\frac{\operatorname{Cov}\left(X_{i}, Y_{i}\right)}{\operatorname{Var}\left(X_{i}\right)}
$$

Properties of the OLS estimator: Consistency

$$
\begin{aligned}
\operatorname{plim} \hat{\beta}_{1} & =\frac{\operatorname{Cov}\left(X_{i}, Y_{i}\right)}{\operatorname{Var}\left(X_{i}\right)} \\
& =\frac{\operatorname{Cov}\left(X_{i},\left(\beta_{0}+\beta_{1} X_{i}+u_{i}\right)\right)}{\operatorname{Var}\left(X_{i}\right)}
\end{aligned}
$$

Properties of the OLS estimator: Consistency

$$
\begin{aligned}
\operatorname{pim} \hat{\beta}_{1} & =\frac{\operatorname{Cov}\left(X_{i}, Y_{i}\right)}{\operatorname{Var}\left(X_{i}\right)} \\
& =\frac{\operatorname{Cov}\left(X_{i},\left(\beta_{0}+\beta_{1} X_{i}+u_{i}\right)\right)}{\operatorname{Var}\left(X_{i}\right)} \\
& =\frac{\operatorname{Cov}\left(X_{i}, \beta_{0}\right)+\beta_{1} \operatorname{Cov}\left(X_{i}, X_{i}\right)+\operatorname{Cov}\left(X_{i}, u_{i}\right)}{\operatorname{Var}\left(X_{i}\right)}
\end{aligned}
$$

Properties of the OLS estimator: Consistency

$$
\begin{aligned}
\operatorname{pim} \hat{\beta}_{1} & =\frac{\operatorname{Cov}\left(X_{i}, Y_{i}\right)}{\operatorname{Var}\left(X_{i}\right)} \\
& =\frac{\operatorname{Cov}\left(X_{i},\left(\beta_{0}+\beta_{1} X_{i}+u_{i}\right)\right)}{\operatorname{Var}\left(X_{i}\right)} \\
& =\frac{\operatorname{Cov}\left(X_{i}, \beta_{0}\right)+\beta_{1} \operatorname{Cov}\left(X_{i}, X_{i}\right)+\operatorname{Cov}\left(X_{i}, u_{i}\right)}{\operatorname{Var}\left(X_{i}\right)} \\
& =\beta_{1}+\frac{\operatorname{Cov}\left(X_{i}, u_{i}\right)}{\operatorname{Var}\left(X_{i}\right)}
\end{aligned}
$$

Properties of the OLS estimator: Consistency

$$
\begin{aligned}
\operatorname{plim} \hat{\beta}_{1} & =\frac{\operatorname{Cov}\left(X_{i}, Y_{i}\right)}{\operatorname{Var}\left(X_{i}\right)} \\
& =\frac{\operatorname{Cov}\left(X_{i},\left(\beta_{0}+\beta_{1} X_{i}+u_{i}\right)\right)}{\operatorname{Var}\left(X_{i}\right)} \\
& =\frac{\operatorname{Cov}\left(X_{i}, \beta_{0}\right)+\beta_{1} \operatorname{Cov}\left(X_{i}, X_{i}\right)+\operatorname{Cov}\left(X_{i}, u_{i}\right)}{\operatorname{Var}\left(X_{i}\right)} \\
& =\beta_{1}+\frac{\operatorname{Cov}\left(X_{i}, u_{i}\right)}{\operatorname{Var}\left(X_{i}\right)}
\end{aligned}
$$

- Then we could obtain

$$
\operatorname{plim} \hat{\beta_{1}}=\beta_{1} \text { if } E\left[u_{i} \mid X_{i}\right]=0
$$

Wrap Up: Unbiasedness vs Consistency

- Unbiasedness \& Consistency both rely on $E\left[u_{i} \mid X_{i}\right]=0$
- Unbiasedness implies that $E\left[\hat{\beta}_{1}\right]=\beta_{1}$ for a certain sample size \mathbf{n}.("small sample")
- Consistency implies that the distribution of $\hat{\beta_{1}}$ becomes more and more _tightly distributed around β_{1} if the sample size \mathbf{n} becomes larger and larger.("large sample"")
- Additionally,you could prove that $\hat{\beta_{0}}$ is likewise Unbiased and Consistent on the condition of Assumption 1.

Sampling Distribution of $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$: Recalll of \bar{Y}

- Firstly, Let's recall: Sampling Distribution of \bar{Y}
- Because Y_{1}, \ldots, Y_{n} are i.i.d. and μ_{Y} is the mean of the population,then for L.L.N,we have

$$
E(\bar{Y})=\mu_{Y}
$$

- Based on the Central Limit theorem(C.L.T) and the σ_{Y}^{2} is the variance of the population, the sample distribution in a large sample can approximates to a normal distribution, thus

$$
\bar{Y} \sim N\left(\mu_{Y}, \frac{\sigma_{Y}^{2}}{n}\right)
$$

- Therefore, the OLS estimators $\hat{\beta_{0}}$ and $\hat{\beta_{1}}$ could have similar sample distributions when three least squares assumptions hold.

Sampling Distribution of $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$: Expectation

- Unbiasedness of the OLS estimators implies that

$$
E\left[\hat{\beta_{1}}\right]=\beta_{1} \text { and } E\left[\hat{\beta}_{0}\right]=\beta_{0}
$$

- Likewise as \bar{Y},the sample distribution of β_{1} or β_{0} in a large sample can also approximates to a normal distribution based on the Central Limit theorem(C.L.T)

$$
\begin{aligned}
& \hat{\beta_{1}} \sim N\left(\beta_{1}, \sigma_{\hat{\beta}_{1}}^{2}\right) \\
& \hat{\beta_{0}} \sim N\left(\beta_{0}, \sigma_{\hat{\beta_{0}}}^{2}\right)
\end{aligned}
$$

- Where it can be shown that

$$
\begin{aligned}
& \left.\sigma_{\hat{\beta}_{1}}^{2}=\frac{1}{n} \frac{\operatorname{Var}\left[\left(X_{i}-\mu_{x}\right) u_{i}\right]}{\left[\operatorname{Var}\left(X_{i}\right)\right]^{2}}\right) \\
& \left.\sigma_{\hat{\beta}_{0}}^{2}=\frac{1}{n} \frac{\operatorname{Var}\left(H_{i} u_{i}\right)}{\left(E\left[H_{i}^{2}\right]\right)^{2}}\right)
\end{aligned}
$$

Sampling Distribution $\hat{\beta}_{1}$ in large-sample

- We have shown that

$$
\left.\sigma_{\hat{\beta}_{1}}^{2}=\frac{1}{n} \frac{\operatorname{Var}\left[\left(X_{i}-\mu_{x}\right) u_{i}\right]}{\left[\operatorname{Var}\left(X_{i}\right)\right]^{2}}\right)
$$

- An intuition: The variation of X_{i} is very important.
- Because if $\operatorname{Var}\left(X_{i}\right)$ is small, it is difficult to obtain an accurate estimate of the effect of X on Y which implies that $\operatorname{Var}\left(\hat{\beta_{1}}\right)$ is large.

Variation of X

- When more variation in X_{i}, then there is more information in the data that you can use to fit the regression line.

In a Summary

Under 3 least squares assumptions, the OLS estimators will be

- unbiased
- consistent
- normal sampling distribution
- more variation in X, more accurate estimation

Simple OLS and RCT

OLS Regression and RCT

- We learned RCT is the "golden standard" for causal inference.Because it can naturally eliminate selection bias.
- So far, we did not discuss the relationship between RCT and OLS regression, which means that we can not be sure that the result from an OLS regression can be explained as "causal".
- Instead of using a continuous regressor X, the regression where D_{i} is a binary variable, a so-called dummy variable, will help us to unveil the relationship between RCT and OLS regression.

Regression when X is a Binary Variable

- For example, we may define D_{i} as follows:

$$
D_{i}=\left\{\begin{array}{l}
1 \text { if } S T R \text { in } i^{t h} \text { school district }<20 \tag{4.2}\\
0 \text { if } S T R \text { in } i^{t h} \text { school district } \geq \mathbf{2 0}
\end{array}\right.
$$

- The regression can be written as

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} D_{i}+u_{i} \tag{4.1}
\end{equation*}
$$

Regression when X is a Binary Variable

- More precisely, the regression model now is

$$
\begin{equation*}
\text { TestScore }_{i}=\beta_{0}+\beta_{1} D_{i}+u_{i} \tag{4.3}
\end{equation*}
$$

- With D as the regressor, it is not useful to think of β_{1} as a slope parameter.
- Since $D_{i} \in\{0,1\}$, i.e., we only observe two discrete values instead of a continuum of regressor values.
- There is no continuous line depicting the conditional expectation function $E\left(\right.$ TestS $\left.^{\text {core }}{ }_{i} \mid D_{i}\right)$ since this function is solely defined for x-positions 0 and 1 .

Class Size and STR

Dummy Regression

Class Size and STR

Dummy Regression

Regression when X is a Binary Variable

- Therefore, the interpretation of the coefficients in this regression model is as follows:
- $E\left(Y_{i} \mid D_{i}=0\right)=\beta_{0}$, so β_{0} is the expected test score in districts where $D_{i}=0$ where $S T R$ is below 20.
- $E\left(Y_{i} \mid D_{i}=1\right)=\beta_{0}+\beta_{1}$ where $S T R$ is above 20
- Thus, β_{1} is the difference in group specific expectations, i.e., the difference in expected test score between districts with $S T R<20$ and those with $S T R \geq 20$,

$$
\beta_{1}=E\left(Y_{i} \mid D_{i}=1\right)-E\left(Y_{i} \mid D_{i}=0\right)
$$

Causality and OLS

- Let us recall, the individual treatment effect

$$
I C E=Y_{1 i}-Y_{0 i}=\delta_{i} \quad \forall i
$$

- The ATE is the average of the ICE and ATT is the average of the ICE for the treated group.

$$
\rho=E\left(\delta_{i}\right) \text { or } \rho=E\left(\delta_{i} \mid D=1\right)
$$

- Either way, the treatment effect is a constant, i.e., it does not depend on the individual.
- Our OLS regression function is to estimate a constant treatment effect ρ, thus

$$
\mathbf{Y}_{i}=\underbrace{\alpha}_{E\left[\mathrm{Y}_{0 i}\right]}+\mathbf{D}_{i} \underbrace{\rho}_{\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i}}+\underbrace{\eta_{i}}_{\mathrm{Y}_{0 i}-E\left[\mathrm{Y}_{0 i}\right]}
$$

Causality and OLS

- Now write out the conditional expectation of Y_{i} for both levels of D_{i}

$$
\begin{aligned}
& E\left[\mathbf{Y}_{i} \mid \mathbf{D}_{i}=1\right]=E\left[\alpha+\rho+\eta_{i} \mid \mathbf{D}_{i}=1\right]=\alpha+\rho+E\left[\eta_{i} \mid \mathbf{D}_{i}=1\right] \\
& E\left[\mathbf{Y}_{i} \mid \mathbf{D}_{i}=0\right]=E\left[\alpha+\eta_{i} \mid \mathbf{D}_{i}=0\right]=\alpha+E\left[\eta_{i} \mid \mathbf{D}_{i}=0\right]
\end{aligned}
$$

- Take the difference

$$
E\left[\mathbf{Y}_{i} \mid \mathbf{D}_{i}=1\right]-E\left[\mathbf{Y}_{i} \mid \mathbf{D}_{i}=0\right]=\rho+\underbrace{E\left[\eta_{i} \mid \mathbf{D}_{i}=1\right]-E\left[\eta_{i} \mid \mathbf{D}_{i}=0\right]}_{\text {Selection bias }}
$$

Causality and OLS

- Again, our estimate of the treatment effect (ρ) is only going to be as good as our ability to shut down the selection bias.
- Selection bias in regression model: $E\left[\eta_{i} \mid \mathbf{D}_{i}=1\right]-E\left[\eta_{i} \mid \mathbf{D}_{i}=0\right]$
- There is something in our disturbance η_{i} that is affecting Y_{i} and is also correlated with D_{i}.

Simple OLS Regression v.s. RCT

- In a simple regression model, OLS estimators are just a generalizing continuous version of RCT when least squares assumptions are hold.
- But in contrast to RCT, in observational studies, researchers cannot control the assignment of treatment into a treatment group versus a control group,which means that the two groups are incomparable.
- To make two groups comparable, we need to keep treatment and control group "other thing equal"in observed characteristics and unobserved characteristics.
- OLS regression is valid only when least squares assumptions are hold.
- However, it is not easy to obtain in most cases. We have to know how to make a convincing causal inference when these assumptions are not hold.

Make Comparison Make Sense

Case: Smoke and Mortality

- Criticisms from Ronald A. Fisher
- No experimental evidence to incriminate smoking as a cause of lung cancer or other serious disease.
- Correlation between smoking and mortality may be spurious due to biased selection of subjects.

Case: Smoke and Mortality

- Criticisms from Ronald A. Fisher
- No experimental evidence to incriminate smoking as a cause of lung cancer or other serious disease.
- Correlation between smoking and mortality may be spurious due to biased selection of subjects.

- Confounder, Z, creates backdoor path between smoking and mortality

Case：Smoke and Mortality（Cochran 1968）

Table 1：Death rates（死亡率）per 1，000 person－years

Smoking group	Canada	U．K．	U．S．
Non－smokers（不吸烟）	20.2	11.3	13.5
Cigarettes（香烟）	20.5	14.1	13.5
Cigars／pipes（雪茄／烟斗）	35.5	20.7	17.4

Case：Smoke and Mortality（Cochran 1968）

Table 1：Death rates（死亡率）per 1，000 person－years

Smoking group	Canada	U．K．	U．S．
Non－smokers（不吸烟）	20.2	11.3	13.5
Cigarettes（香烟）	20.5	14.1	13.5
Cigars／pipes（雪茄／烟斗）	35.5	20.7	17.4

－It seems that taking cigars is more hazardous than others to the health？

Case：Smoke and Mortality（Cochran 1968）

Table 2：Non－smokers and smokers differ in age

Smoking group	Canada	U．K．	U．S．
Non－smokers（不吸烟）	54.9	49.1	57.0
Cigarettes（香烟）	50.5	49.8	53.2
Cigars／pipes（雪茄／烟斗）	65.9	55.7	59.7

Case：Smoke and Mortality（Cochran 1968）

Table 2：Non－smokers and smokers differ in age

Smoking group	Canada	U．K．	U．S．
Non－smokers（不吸烟）	54.9	49.1	57.0
Cigarettes（香烟）	50.5	49.8	53.2
Cigars／pipes（雪茄／烟斗）	65.9	55.7	59.7

－Older people die at a higher rate，and for reasons other than just smoking cigars．
－Maybe cigar smokers higher observed death rates is because they＇re older on average．

Case: Smoke and Mortality(Cochran 1968)

- The problem is that the age are not balanced, thus their mean values differ for treatment and control group.
- let's try to balance them, which means to compare mortality rates across the different smoking groups within age groups so as to neutralize age imbalances in the observed sample.
- It naturally relates to the concept of Conditional Expectation Function.

Case: Smoke and Mortality(Cochran 1968)

How to balance?

1. Divide the smoking group samples into age groups.
2. For each of the smoking group samples, calculate the mortality rates for the age group.
3. Construct probability weights for each age group as the proportion of the sample with a given age.
4. Compute the weighted averages of the age groups mortality rates for each smoking group using the probability weights.

Case: Smoke and Mortality(Cochran 1968)

	Death rates	Number of	
	Pipe-smokers	Pipe-smokers	Non-smokers
Age 20-50	0.15	11	29
Age 50-70	0.35	13	9
Age +70	0.5	16	2
Total		40	40

- Question: What is the average death rate for pipe smokers?

Case: Smoke and Mortality(Cochran 1968)

	Death rates	Number of	
	Pipe-smokers	Pipe-smokers	Non-smokers
Age 20-50	0.15	11	29
Age 50-70	0.35	13	9
Age +70	0.5	16	2
Total		40	40

- Question: What is the average death rate for pipe smokers?

$$
0.15 \cdot\left(\frac{11}{40}\right)+0.35 \cdot\left(\frac{13}{40}\right)+0.5 \cdot\left(\frac{16}{40}\right)=0.355
$$

Case: Smoke and Mortality(Cochran 1968)

	Death rates	Number of	
	Pipe-smokers	Pipe-smokers	Non-smokers
Age 20-50	0.15	11	29
Age 50-70	0.35	13	9
Age +70	0.5	16	2
Total		40	40

- Question: What would the average mortality rate be for pipe smokers if they had the same age distribution as the non-smokers?

Case: Smoke and Mortality(Cochran 1968)

	Death rates	Number of	
	Pipe-smokers	Pipe-smokers	Non-smokers
Age 20-50	0.15	11	29
Age 50-70	0.35	13	9
Age +70	0.5	16	2
Total		40	40

- Question: What would the average mortality rate be for pipe smokers if they had the same age distribution as the non-smokers?

$$
0.15 \cdot\left(\frac{29}{40}\right)+0.35 \cdot\left(\frac{9}{40}\right)+0.5 \cdot\left(\frac{2}{40}\right)=0.212
$$

Case：Smoke and Mortality（Cochran 1968）

Table 3：Non－smokers and smokers differ in mortality and age

Smoking group	Canada	U．K．	U．S．
Non－smokers（不吸烟）	20.2	11.3	13.5
Cigarettes（香烟）	28.3	12.8	17.7
Cigars／pipes（雪茄／烟斗）	21.2	12.0	14.2

Case：Smoke and Mortality（Cochran 1968）

Table 3：Non－smokers and smokers differ in mortality and age

Smoking group	Canada	U．K．	U．S．
Non－smokers（不吸烟）	20.2	11.3	13.5
Cigarettes（香烟）	28.3	12.8	17.7
Cigars／pipes（雪茄／烟斗）	21.2	12.0	14.2

－Conclusion：It seems that taking cigarettes is most hazardous，and taking pipes is not different from non－smoking．

Formalization: Covariates

Definition: Covariates

Variable X is predetermined with respect to the treatment D if for each individual i, $X_{i}^{0}=X_{i}^{1}$, i.e., the value of X_{i} does not depend on the value of D_{i}. Such characteristics are called covariates.

- Covariates are often time invariant (e.g., sex, race), but time invariance is not a necessary condition.

Identification under Independence

- Recall that randomization in RCTs implies

$$
\left(Y_{0 i}, Y_{1 i}\right) \Perp D
$$

and therefore:

$$
E[Y \mid D=1]-E[Y \mid D=0]=\underbrace{E\left[Y_{1 i} \mid D=1\right]-E\left[Y_{0 i} \mid D=0\right]}_{\text {by the switching equation }}
$$

Identification under Independence

- Recall that randomization in RCTs implies

$$
\left(Y_{0 i}, Y_{1 i}\right) \Perp D
$$

and therefore:

$$
\begin{aligned}
E[Y \mid D=1]-E[Y \mid D=0] & =\underbrace{E\left[Y_{1 i} \mid D=1\right]-E\left[Y_{0 i} \mid D=0\right]}_{\text {by the switching equation }} \\
& =\underbrace{E\left[Y_{1 i} \mid D=1\right]-E\left[Y_{0 i} \mid D=1\right]}_{\text {by independence }}
\end{aligned}
$$

Identification under Independence

- Recall that randomization in RCTs implies

$$
\left(Y_{0 i}, Y_{1 i}\right) \Perp D
$$

and therefore:

$$
\begin{aligned}
E[Y \mid D=1]-E[Y \mid D=0] & =\underbrace{E\left[Y_{1 i} \mid D=1\right]-E\left[Y_{0 i} \mid D=0\right]}_{\text {by the switching equation }} \\
& =\underbrace{E\left[Y_{1 i} \mid D=1\right]-E\left[Y_{0 i} \mid D=1\right]}_{\text {by independence }} \\
& =\underbrace{E\left[Y_{1 i}-Y_{0 i} \mid D=1\right]}_{\text {ATT }}
\end{aligned}
$$

Identification under Independence

- Recall that randomization in RCTs implies

$$
\left(Y_{0 i}, Y_{1 i}\right) \Perp D
$$

and therefore:

$$
\begin{aligned}
E[Y \mid D=1]-E[Y \mid D=0] & =\underbrace{E\left[Y_{1 i} \mid D=1\right]-E\left[Y_{0 i} \mid D=0\right]}_{\text {by the switching equation }} \\
& =\underbrace{E\left[Y_{1 i} \mid D=1\right]-E\left[Y_{0 i} \mid D=1\right]}_{\text {by independence }} \\
& =\underbrace{E\left[Y_{1 i}-Y_{0 i} \mid D=1\right]}_{\text {ATT }} \\
& =\underbrace{E\left[Y_{1 i}-Y_{0 i}\right]}_{\text {ATE }}
\end{aligned}
$$

Identification under Conditional Independence

- Conditional Independence Assumption(CIA): which means that if we can "balance" covariates X then we can take the treatment D as randomized, thus

$$
\left(Y_{1 i}, Y_{0 i}\right) \Perp D \mid X
$$

- Now as $\left(Y_{1 i}, Y_{0 i}\right) \Perp D \mid X \nLeftarrow\left(Y_{1 i}, Y_{0 i}\right) \Perp D$,

Identification under Conditional Independence

- Conditional Independence Assumption(CIA): which means that if we can "balance" covariates X then we can take the treatment D as randomized, thus

$$
\left(Y_{1 i}, Y_{0 i}\right) \Perp D \mid X
$$

- Now as $\left(Y_{1 i}, Y_{0 i}\right) \Perp D \mid X \nLeftarrow\left(Y_{1 i}, Y_{0 i}\right) \Perp D$,

$$
E\left[Y_{1 i} \mid D=1\right]-E\left[Y_{0 i} \mid D=0\right] \neq E\left[Y_{1 i} \mid D=1\right]-E\left[Y_{0 i} \mid D=1\right]
$$

Identification under Conditional Independence(CIA)

- But using the CIA assumption, then

$$
\underbrace{E\left[Y_{1 i} \mid D=1\right]-E\left[Y_{0 i} \mid D=0\right]}_{\text {association }}=\underbrace{E\left[Y_{1 i} \mid D=1, X\right]-E\left[Y_{0 i} \mid D=0, X\right]}_{\text {conditional on covariates }}
$$

Identification under Conditional Independence(CIA)

- But using the CIA assumption, then

$$
\begin{aligned}
\underbrace{E\left[Y_{1 i} \mid D=1\right]-E\left[Y_{0 i} \mid D=0\right]}_{\text {association }} & =\underbrace{E\left[Y_{1 i} \mid D=1, X\right]-E\left[Y_{0 i} \mid D=0, X\right]}_{\text {conditional on covariates }} \\
& =\underbrace{E\left[Y_{1 i} \mid D=1, X\right]-E\left[Y_{0 i} \mid D=1, X\right]}_{\text {conditional independence }}
\end{aligned}
$$

Identification under Conditional Independence(CIA)

- But using the CIA assumption, then

$$
\begin{aligned}
\underbrace{E\left[Y_{1 i} \mid D=1\right]-E\left[Y_{0 i} \mid D=0\right]}_{\text {association }} & =\underbrace{E\left[Y_{1 i} \mid D=1, X\right]-E\left[Y_{0 i} \mid D=0, X\right]}_{\text {conditional on covariates }} \\
& =\underbrace{E\left[Y_{1 i} \mid D=1, X\right]-E\left[Y_{0 i} \mid D=1, X\right]}_{\text {conditional independence }} \\
& =\underbrace{E\left[Y_{1 i}-Y_{0 i} \mid D=1, X\right]}_{\text {conditional ATT }}
\end{aligned}
$$

Identification under Conditional Independence(CIA)

- But using the CIA assumption, then

$$
\begin{aligned}
\underbrace{E\left[Y_{1 i} \mid D=1\right]-E\left[Y_{0 i} \mid D=0\right]}_{\text {association }} & =\underbrace{E\left[Y_{1 i} \mid D=1, X\right]-E\left[Y_{0 i} \mid D=0, X\right]}_{\text {conditional on covariates }} \\
& =\underbrace{E\left[Y_{1 i} \mid D=1, X\right]-E\left[Y_{0 i} \mid D=1, X\right]}_{\text {conditional independence }} \\
& =\underbrace{E\left[Y_{1 i}-Y_{0 i} \mid D=1, X\right]}_{\text {conditional ATT }} \\
& =\underbrace{E\left[Y_{1 i}-Y_{0 i} \mid X\right]}_{\text {conditional ATE }}
\end{aligned}
$$

Curse of Multiple Dimensionality

- Sub-classification in one or two dimensions as Cochran(1968) did in the case of Smoke and Mortality is feasible.
- But as the number of covariates we would like to balance grows(like many personal characteristics such as age, gender,education,working experience,married, industries, income,), then the method become less feasible.
- Assume we have k covariates and we divide each into 3 coarse categories (e.g., age: young, middle age, old; income: low,medium, high, etc.)
- The number of cells(or groups)is 3^{K}.
- If $k=10$ then $3^{10}=59049$

Making Comparison Make Sense

- Selection on Observables
- Regression
- Matching
- Selection on Unobservables
- IV,RD,DID,FE and SCM.
- The most fundamental tool among them is regression, which compares treatment and control subjects who have the same observable characteristics in a generalized manner.

Multiple OLS Regression: Introduction

Violation of the 1st Least Squares Assumption

- Recall simple OLS regression equation

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

- Question: What does u_{i} represent?
- Answer: contains all other factors(variables) which potentially affect Y_{i}.
- Assumption 1

$$
E\left(u_{i} \mid X_{i}\right)=0
$$

- It states that u_{i} are unrelated to X_{i} in the sense that,given a value of X_{i}, the mean of these other factors equals zero.
- But what if they (or at least one) are correlated with X_{i} ?

Example: Class Size and Test Score

- Many other factors can affect student's performance in the school.
- One of factors is the share of immigrants in the class. Because immigrant children may have different backgrounds from native children, such as
- parents' education level
- family income and wealth
- parenting style
- traditional culture

The share of immigrants and STR

The share of immigrants and STR

The share of immigrants and STR

The share of immigrants and STR

The share of immigrants and STR

The share of immigrants as an Omitted Variable

- Class size may be related to percentage of English learners and students who are still learning English likely have lower test scores.
- In other words, the effect of class size on scores we had obtained in simple OLS may contain an effect of immigrants on scores.
- It implies that percentage of English learners is contained in u_{i}, in turn that Assumption 1 is violated.
- More precisely,the estimates of $\hat{\beta}_{1}$ and $\hat{\beta}_{0}$ are biased and inconsistent.

Omitted Variable Bias: Introduction

- As before, X_{i} and Y_{i} represent STR and Test Score,repectively.
- Besides, W_{i} is the variable which represents the share of english learners.
- Suppose that we have no information about it for some reasons, then we have to omit in the regression.
- Thus we have two regressions in mind:
- True model(the Long regression):

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\gamma W_{i}+u_{i}
$$

where $E\left(u_{i} \mid X_{i}\right)=0$

- OVB model(the Short regression):

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+v_{i}
$$

where $v_{i}=\gamma W_{i}+u_{i}$

Omitted Variable Bias(OVB): inconsistency

- Recall: simple OLS is consistency when \mathbf{n} is large, thus $\operatorname{plim} \hat{\beta_{1}}=\frac{\operatorname{Cov}\left(X_{i}, Y_{i}\right)}{\operatorname{Var}\left(X_{i}\right)}$

Omitted Variable Bias(OVB): inconsistency

- Recall: simple OLS is consistency when \mathbf{n} is large, thus $\operatorname{plim} \hat{\beta_{1}}=\frac{\operatorname{Cov}\left(X_{i}, Y_{i}\right)}{\operatorname{Var}\left(X_{i}\right)}$

$$
\operatorname{plim} \hat{\beta}_{1}=\frac{\operatorname{Cov}\left(X_{i}, Y_{i}\right)}{\operatorname{Var} X_{i}}
$$

Omitted Variable Bias(OVB): inconsistency

- Recall: simple OLS is consistency when \mathbf{n} is large, thus $\operatorname{plim} \hat{\beta_{1}}=\frac{\operatorname{Cov}\left(X_{i}, Y_{i}\right)}{\operatorname{Var}\left(X_{i}\right)}$

$$
\begin{aligned}
\operatorname{plim} \hat{\beta}_{1} & =\frac{\operatorname{Cov}\left(X_{i}, Y_{i}\right)}{\operatorname{Var} X_{i}} \\
& =\frac{\operatorname{Cov}\left(X_{i},\left(\beta_{0}+\beta_{1} X_{i}+v_{i}\right)\right)}{\operatorname{Var} X_{i}}
\end{aligned}
$$

Omitted Variable Bias(OVB): inconsistency

- Recall: simple OLS is consistency when \mathbf{n} is large, thus $\operatorname{plim} \hat{\beta_{1}}=\frac{\operatorname{Cov}\left(X_{i}, Y_{i}\right)}{\operatorname{Var}\left(X_{i}\right)}$

$$
\begin{aligned}
\operatorname{plim} \hat{\beta}_{1} & =\frac{\operatorname{Cov}\left(X_{i}, Y_{i}\right)}{\operatorname{Var} X_{i}} \\
& =\frac{\operatorname{Cov}\left(X_{i},\left(\beta_{0}+\beta_{1} X_{i}+v_{i}\right)\right)}{\operatorname{Var} X_{i}} \\
& =\frac{\operatorname{Cov}\left(X_{i},\left(\beta_{0}+\beta_{1} X_{i}+\gamma W_{i}+u_{i}\right)\right)}{\operatorname{Var} X_{i}}
\end{aligned}
$$

Omitted Variable Bias(OVB): inconsistency

- Recall: simple OLS is consistency when \mathbf{n} is large, thus $\operatorname{plim} \hat{\beta_{1}}=\frac{\operatorname{Cov}\left(X_{i}, Y_{i}\right)}{\operatorname{Var}\left(X_{i}\right)}$

$$
\begin{aligned}
\operatorname{plim} \hat{\beta}_{1} & =\frac{\operatorname{Cov}\left(X_{i}, Y_{i}\right)}{\operatorname{Var} X_{i}} \\
& =\frac{\operatorname{Cov}\left(X_{i},\left(\beta_{0}+\beta_{1} X_{i}+v_{i}\right)\right)}{\operatorname{Var} X_{i}} \\
& =\frac{\operatorname{Cov}\left(X_{i},\left(\beta_{0}+\beta_{1} X_{i}+\gamma W_{i}+u_{i}\right)\right)}{\operatorname{Var} X_{i}} \\
& =\frac{\operatorname{Cov}\left(X_{i}, \beta_{0}\right)+\beta_{1} \operatorname{Cov}\left(X_{i}, X_{i}\right)+\gamma \operatorname{Cov}\left(X_{i}, W_{i}\right)+\operatorname{Cov}\left(X_{i}, u_{i}\right)}{\operatorname{Var} X_{i}}
\end{aligned}
$$

Omitted Variable Bias(OVB): inconsistency

- Recall: simple OLS is consistency when \mathbf{n} is large, thus $\operatorname{plim} \hat{\beta_{1}}=\frac{\operatorname{Cov}\left(X_{i}, Y_{i}\right)}{\operatorname{Var}\left(X_{i}\right)}$

$$
\begin{aligned}
\operatorname{plim} \hat{\beta}_{1} & =\frac{\operatorname{Cov}\left(X_{i}, Y_{i}\right)}{\operatorname{Var} X_{i}} \\
& =\frac{\operatorname{Cov}\left(X_{i},\left(\beta_{0}+\beta_{1} X_{i}+v_{i}\right)\right)}{\operatorname{Var} X_{i}} \\
& =\frac{\operatorname{Cov}\left(X_{i},\left(\beta_{0}+\beta_{1} X_{i}+\gamma W_{i}+u_{i}\right)\right)}{\operatorname{Var} X_{i}} \\
& =\frac{\operatorname{Cov}\left(X_{i}, \beta_{0}\right)+\beta_{1} \operatorname{Cov}\left(X_{i}, X_{i}\right)+\gamma \operatorname{Cov}\left(X_{i}, W_{i}\right)+\operatorname{Cov}\left(X_{i}, u_{i}\right)}{\operatorname{Var} X_{i}} \\
& =\beta_{1}+\gamma \frac{\operatorname{Cov}\left(X_{i}, W_{i}\right)}{\operatorname{Var} X_{i}}
\end{aligned}
$$

Omitted Variable Bias(OVB): inconsistency

- Thus we obtain

$$
p \lim \hat{\beta}_{1}=\beta_{1}+\gamma \frac{\operatorname{Cov}\left(X_{i}, W_{i}\right)}{\operatorname{Var} X_{i}}
$$

- $\hat{\beta}_{1}$ is still consistent
- if W_{i} is unrelated to X , thus $\operatorname{Cov}\left(X_{i}, W_{i}\right)=0$
- if W_{i} has no effect on Y_{i}, thus $\gamma=0$
- Only if both two conditions above are violated simultaneously, then $\hat{\beta}_{1}$ is inconsistent.

Omitted Variable Bias(OVB):Directions

- If OVB can be possible in our regressions, then we should guess the directions of the bias, in case that we can't eliminate it.
- A summary of the directions of the OVB bias

Omitted Variable Bias(OVB):Directions

- If OVB can be possible in our regressions, then we should guess the directions of the bias, in case that we can't eliminate it.
- A summary of the directions of the OVB bias

$$
\operatorname{Cov}\left(X_{i}, W_{i}\right)>0 \quad \operatorname{Cov}\left(X_{i}, W_{i}\right)<0
$$

$\gamma>0$

Omitted Variable Bias(OVB):Directions

- If OVB can be possible in our regressions, then we should guess the directions of the bias, in case that we can't eliminate it.
- A summary of the directions of the OVB bias

$$
\operatorname{Cov}\left(X_{i}, W_{i}\right)>0 \quad \operatorname{Cov}\left(X_{i}, W_{i}\right)<0
$$

$\gamma>0$

> Positive bias

Omitted Variable Bias(OVB):Directions

- If OVB can be possible in our regressions, then we should guess the directions of the bias, in case that we can't eliminate it.
- A summary of the directions of the OVB bias

$$
\operatorname{Cov}\left(X_{i}, W_{i}\right)>0 \quad \operatorname{Cov}\left(X_{i}, W_{i}\right)<0
$$

$\gamma>0$
Positive bias
Negative bias
$\gamma<0$

Omitted Variable Bias(OVB):Directions

- If OVB can be possible in our regressions, then we should guess the directions of the bias, in case that we can't eliminate it.
- A summary of the directions of the OVB bias

$$
\operatorname{Cov}\left(X_{i}, W_{i}\right)>0 \quad \operatorname{Cov}\left(X_{i}, W_{i}\right)<0
$$

$\gamma>0$

> Positive bias

Negative bias
$\gamma<0$
Negative bias

Omitted Variable Bias(OVB):Directions

- If OVB can be possible in our regressions, then we should guess the directions of the bias, in case that we can't eliminate it.
- A summary of the directions of the OVB bias

$$
\operatorname{Cov}\left(X_{i}, W_{i}\right)>0 \quad \operatorname{Cov}\left(X_{i}, W_{i}\right)<0
$$

$\gamma>0$

Positive bias
Negative bias

Negative bias
$\gamma<0$

Omitted Variable Bias: Examples

- Question: If we omit following variables, then what are the directions of these biases? and why?

1. Time of day of the test
2. The number of dormitories
3. Teachers' salary
4. Family income
5. Percentage of English learners(the share of immigrants)

Omitted Variable Bias: Examples in R

- Regress Testscore on Class size

```
#>
#>
#>
#>
```

\#> Call:
\#> lm(formula $=$ testscr ~ str, data = ca)
\#> Residuals:
\#> Min $\quad 1 Q$ Median $\quad 3 Q \quad$ Max
\#> Coefficients:
\#> Estimate Std. Error t value Pr(>|t|)
\#> (Intercept) $698.9330 \quad 9.467573 .825<2 e-16$ ***
\#> str -2.2798 $0.4798-4.7512 .78 e-06$ ***
\#> ---
\#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\#> Residual standard error: 18.58 on 418 degrees of freedom
\#> Multiple R-squared: 0.05124 , Adjusted R-squared: 0.04897
\#> F-statistic: 22.58 on 1 and 418 DF, p-value: $2.783 e-06$

Omitted Variable Bias: Examples in R

- Regress Testscore on Class size and the percentage of English learners

```
#>
#> Call:
#> lm(formula = testscr ~ str + el_pct, data = ca)
#>
#> Residuals:
\# \(>\quad\) Min \(\quad 1 Q\) Median 32 Max
#> -48.845 -10.240 -0.308 9.815 43.461
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
#> str -1.10130 0.38028 -2.896 0.00398 **
#> el_pct -0.64978 0.03934 -16.516 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 14.46 on 417 degrees of freedom
#> Multiple R-squared: 0.4264. Adjusted R-squared: 0.4237
```


Omitted Variable Bias: Examples in R

Table 5: Class Size and Test Score

	Dependent variable:	
	testscr	
	(1)	(2)
str	$\begin{gathered} -2.280^{* * *} \\ (0.480) \end{gathered}$	$\begin{gathered} -1.101^{* * *} \\ (0.380) \end{gathered}$
el_pct		$\begin{gathered} -0.650^{* * *} \\ (0.039) \end{gathered}$
Constant	$\begin{gathered} 698.933^{* * *} \\ (9.467) \\ \hline \end{gathered}$	$\begin{gathered} 686.032^{* * *} \\ (7.411) \end{gathered}$
Observations	420	420
R^{2}	0.051	0.426

Warp Up

- OVB is the most common bias when we run OLS regressions using nonexperimental data.
- OVB means that there are some variables which should have been included in the regression but actually was not.
- Then the simplest way to overcome OVB: Put omitted the variable into the right side of the regression, which means our regression model should be

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\gamma W_{i}+u_{i}
$$

- The strategy can be denoted as controlling informally, which introduces the more general regression model: Multiple OLS Regression.

Multiple OLS Regression: Estimation

Multiple regression model with k regressors

- The multiple regression model is

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{1, i}+\beta_{2} X_{2, i}+\ldots+\beta_{k} X_{k, i}+u_{i}, i=1, \ldots, n \tag{4.1}
\end{equation*}
$$

where

- Y_{i} is the dependent variable
- $X_{1}, X_{2}, \ldots X_{k}$ are the independent variables(includes one is our of interest and some control variables)
- $\beta_{i}, j=1 \ldots k$ are slope coefficients on X_{i} corresponding.
- β_{0} is the estimate intercept, the value of Y when all $X_{j}=0, j=1 \ldots k$
- u_{i} is the regression error term, still all other factors affect outcomes.

Interpretation of coefficients $\beta_{i}, j=1 \ldots k$

- β_{j} is partial (marginal) effect of X_{j} on Y .

$$
\beta_{j}=\frac{\partial Y_{i}}{\partial X_{j, i}}
$$

- β_{j} is also partial (marginal) effect of $E\left[Y_{i} \mid X_{1} . . X_{k}\right]$.

$$
\beta_{j}=\frac{\partial E\left[Y_{i} \mid X_{1}, \ldots, X_{k}\right]}{\partial X_{j, i}}
$$

- it does mean that we are estimate the effect of X on Y when "other things equal", thus the concept of ceteris paribus.

OLS Estimation in Multiple Regressors

- As in a Simple OLS Regression, the estimators of Multiple OLS Regression is just a minimize the following question

OLS Estimation in Multiple Regressors

- As in a Simple OLS Regression, the estimators of Multiple OLS Regression is just a minimize the following question

$$
\operatorname{argmin} \sum_{b_{0}, b_{1}, \ldots, b_{k}}\left(Y_{i}-b_{0}-b_{1} X_{1, i}-\ldots-b_{k} X_{k, i}\right)^{2}
$$

where $b_{0}=\hat{\beta}_{1}, b_{1}=\hat{\beta}_{2}, \ldots, b_{k}=\hat{\beta}_{k}$ are estimators.

OLS Estimation in Multiple Regressors

- Similarly in Simple OLS, based on F.O.C,the multiple OLS estimators $\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{k}$ are obtained by solving the following system of normal equations

OLS Estimation in Multiple Regressors

- Similarly in Simple OLS, based on F.O.C,the multiple OLS estimators $\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{k}$ are obtained by solving the following system of normal equations

$$
\frac{\partial}{\partial b_{0}} \sum_{i=1}^{n} \hat{u}_{i}^{2}=\sum\left(Y_{i}-\hat{\beta_{0}}-\hat{\beta}_{1} X_{1, i}-\ldots-\hat{\beta_{k}} X_{k, i}\right) \quad=0
$$

OLS Estimation in Multiple Regressors

- Similarly in Simple OLS, based on F.O.C,the multiple OLS estimators $\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{k}$ are obtained by solving the following system of normal equations

$$
\begin{array}{ll}
\frac{\partial}{\partial b_{0}} \sum_{i=1}^{n} \hat{u}_{i}^{2}=\sum\left(Y_{i}-\hat{\beta_{0}}-\hat{\beta}_{1} X_{1, i}-\ldots-\hat{\beta}_{k} X_{k, i}\right) & =0 \\
\frac{\partial}{\partial b_{1}} \sum_{i=1}^{n} \hat{u}_{i}^{2}=\sum\left(Y_{i}-\hat{\beta_{0}}-\hat{\beta}_{1} X_{1, i}-\ldots-\hat{\beta}_{k} X_{k, i}\right) X_{1, i} & =0
\end{array}
$$

OLS Estimation in Multiple Regressors

- Similarly in Simple OLS, based on F.O.C,the multiple OLS estimators $\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{k}$ are obtained by solving the following system of normal equations

$$
\begin{array}{rlrl}
\frac{\partial}{\partial b_{0}} \sum_{i=1}^{n} \hat{u}_{i}^{2} & =\sum\left(Y_{i}-\hat{\beta_{0}}-\hat{\beta_{1}} X_{1, i}-\ldots-\hat{\beta_{k}} X_{k, i}\right) & =0 \\
\frac{\partial}{\partial b_{1}} \sum_{i=1}^{n} \hat{u}_{i}^{2} & =\sum\left(Y_{i}-\hat{\beta_{0}}-\hat{\beta}_{1} X_{1, i}-\ldots-\hat{\beta}_{k} X_{k, i}\right) X_{1, i} & =0 \\
\vdots & =\vdots & & =\vdots \\
\frac{\partial}{\partial b_{k}} \sum_{i=1}^{n} \hat{u}_{i}^{2} & =\sum\left(Y_{i}-\hat{\beta_{0}}-\hat{\beta_{1}} X_{1, i}-\ldots-\hat{\beta_{k}} X_{k, i}\right) X_{k, i} & & =0
\end{array}
$$

OLS Estimation in Multiple Regressors

- Similar to in Simple OLS, the fitted residuals are

$$
\hat{u}_{i}=Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{1, i}-\ldots-\hat{\beta}_{k} X_{k, i}
$$

- Therefore, the normal equations also can be written as

$$
\begin{aligned}
\sum \hat{u}_{i} & =0 \\
\sum \hat{u}_{i} X_{1, i} & =0 \\
\vdots & =\vdots \\
\sum \hat{u}_{i} X_{k, i} & =0
\end{aligned}
$$

- While it is convenient to transform equations above using matrix algebra to compute these estimators, we can use partitioned regression to obtain the formula of estimators without using matrices.

Partitioned Regression: OLS Estimators in Multiple Regression

Partitioned regression: OLS estimators

- A useful representation of $\hat{\beta}_{j}$ could be obtained by the partitioned regression, which computed OLS estimators of $\beta_{j} ; j=1,2 \ldots k$ in following 3 steps.

1. Regress X_{j} on $X_{1}, X_{2}, \ldots X_{j-1}, X_{j+1}, X_{k}$, thus

$$
X_{j, i}=\gamma_{0}+\gamma_{1} X_{1 i}+\ldots+\gamma_{j-1} X_{j-1, i}+\gamma_{j+1} X_{j+1, i} \ldots+\gamma_{k} X_{k, i}+v_{j i}
$$

2. Obtain the residuals from the regression above,denoted as $\tilde{X}_{j, i}=\hat{v}_{j i}$
3. Regress Y on $\tilde{X}_{j, i}$

- The last step implies that the OLS estimator of β_{j} can be expressed as follows

$$
\hat{\beta}_{j}=\frac{\sum_{i=1}^{n}\left(\tilde{X}_{j i}-\tilde{X}_{j i}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(\tilde{X}_{j i}-\tilde{X}_{j i}\right)^{2}}=\frac{\sum_{i=1}^{n} \tilde{X}_{j i} Y_{i}}{\sum_{i=1}^{n} \tilde{X}_{j i}^{2}}
$$

Partitioned regression: OLS estimators

- Suppose we want to obtain an expression for $\hat{\beta}_{1}$.
- Then the first step: regress $X_{1, i}$ on other regressors, thus

Partitioned regression: OLS estimators

- Suppose we want to obtain an expression for $\hat{\beta}_{1}$.
- Then the first step: regress $X_{1, i}$ on other regressors, thus

$$
X_{1, i}=\gamma_{0}+\gamma_{2} X_{2, i}+\ldots+\gamma_{k} X_{k, i}+v_{i}
$$

Partitioned regression: OLS estimators

- Suppose we want to obtain an expression for $\hat{\beta}_{1}$.
- Then the first step: regress $X_{1, i}$ on other regressors, thus

$$
X_{1, i}=\gamma_{0}+\gamma_{2} X_{2, i}+\ldots+\gamma_{k} X_{k, i}+v_{i}
$$

- Then, we can obtain

$$
X_{1, i}=\hat{\gamma}_{0}+\hat{\gamma}_{2} X_{2, i}+\ldots+\hat{\gamma}_{k} X_{k, i}+\tilde{X}_{1, i}
$$

where $\tilde{X}_{1, i}$ is the fitted OLS residual,thus $\tilde{X}_{j, i}=\hat{v}_{1 i}$

- Then we could prove that

$$
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n} \tilde{X}_{1, i} Y_{i}}{\sum_{i=1}^{n} \tilde{X}_{1, i}^{2}}
$$

A transformation of FWL theorem

Regression anatomy theorem
The multiple regression model is

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1, i}+\beta_{2} X_{2, i}+\ldots+\beta_{k} X_{k, i}+u_{i}, i=1, \ldots, n
$$

Then estimator of $\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{k}$ can be expressed as following

$$
\hat{\beta}_{j}=\frac{\sum_{i=1}^{n} \tilde{X}_{j, i} Y_{i}}{\sum_{i=1}^{n} \tilde{X}_{j, i}^{2}} \text { for } j=1,2, . ., k
$$

where $\tilde{X}_{j, i}$ is the fitted OLS residual of the regression X_{j} on the other $X s$.

The intuition of partitioned regression

Partialling Out

- First, we regress X_{j} against the rest of the regressors (and a constant) and keep \tilde{X}_{j} which is the "part" of X_{j} that is uncorrelated
- Then, to obtain $\hat{\beta}_{j}$, we regress Y against \tilde{X}_{j} which is "clean" from correlation with other regressors.
- $\hat{\beta}_{j}$ measures the effect of X_{1} after the effects of X_{2}, \ldots, X_{k} have been partialled out or netted out.

Measures of Fit in Multiple Regression

Measures of Fit: The R^{2}

- Decompose Y_{i} into the fitted value plus the residual $Y_{i}=\hat{Y}_{i}+\hat{u}_{i}$
- The total sum of squares (TSS): $T S S=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}$
- The explained sum of squares (ESS): $\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}$
- The sum of squared residuals (SSR): $\sum_{i=1}^{n}\left(\hat{Y}_{i}-Y_{i}\right)^{2}=\sum_{i=1}^{n} \hat{u}_{i}^{2}$
- And

$$
T S S=E S S+S S R
$$

- The regression R^{2} is the fraction of the sample variance of Y_{i} explained by (or predicted by) the regressors.

$$
R^{2}=\frac{E S S}{T S S}=1-\frac{S S R}{T S S}
$$

- When you put more variables into the regression, then R^{2} always increases when you add another regressor. Because in general the SSR will decrease.

Measures of Fit: The Adjusted R^{2}

- the Adjusted R^{2}, is a modified version of the R^{2} that does not necessarily increase when a new regressor is added.

$$
\overline{R^{2}}=1-\frac{n-1}{n-k-1} \frac{S S R}{T S S}=1-\frac{s_{\grave{u}}^{2}}{s_{Y}^{2}}
$$

- because $\frac{n-1}{n-k-1}$ is always greater than 1 , so $\overline{R^{2}}<R^{2}$
- adding a regressor has two opposite effects on the $\overline{R^{2}}$.
- $\overline{R^{2}}$ can be negative.
- Remind: neither R^{2} nor $\overline{R^{2}}$ is not the golden criterion for good or bad OLS estimation.

Categoried Variable as independent variables in Regression

A Special Case: Categorical Variable as X

- Recall if X is a dummy variable, then we can put it into regression equation straightly.
- What if X is a categorical variable?
- Question: What is a categorical variable?
- For example, we may define D_{i} as follows:

A Special Case: Categorical Variable as X

- Recall if X is a dummy variable, then we can put it into regression equation straightly.
- What if X is a categorical variable?
- Question: What is a categorical variable?
- For example, we may define D_{i} as follows:

$$
D_{i}=\left\{\begin{array}{l}
1 \text { small-size class if } S T R \text { in } i^{t h} \text { school district }<18 \tag{4.5}\\
2 \text { middle-size class if } 18 \leq S T R \text { in } i^{\text {th }} \text { school district }<22 \\
3 \text { large-size class if } S T R \text { in } i^{\text {th }} \text { school district } \geq 22
\end{array}\right.
$$

A Special Case: Categorical Variable as X

- Naive Solution: a simple OLS regression model

$$
\text { TestScore }_{i}=\beta_{0}+\beta_{1} D_{i}+u_{i}
$$

- Question: Can you explain the meanning of estimate coefficient β_{1} ?
- Answer: It doese not make sense that the coefficient of β_{1} can be explained as continuous variables.

A Special Case: Categorical Variables as X

- The first step: turn a categorical variable $\left(D_{i}\right)$ into multiple dummy variables $\left(D_{1 i}, D_{2 i}, D_{3 i}\right)$

A Special Case: Categorical Variables as X

- The first step: turn a categorical variable $\left(D_{i}\right)$ into multiple dummy $\operatorname{variables}\left(D_{1 i}, D_{2 i}, D_{3 i}\right)$

$$
D_{1 i}=\left\{\begin{array}{l}
1 \text { small-sized class if } S T R \text { in } i^{t h} \text { school district }<18 \\
0 \text { middle-sized class or large-sized class if not }
\end{array}\right.
$$

A Special Case: Categorical Variables as X

- The first step: turn a categorical variable $\left(D_{i}\right)$ into multiple dummy variables $\left(D_{1 i}, D_{2 i}, D_{3 i}\right)$

$$
D_{1 i}=\left\{\begin{array}{l}
1 \text { small-sized class if } S T R \text { in } i^{\text {th }} \text { school district }<18 \\
0 \text { middle-sized class or large-sized class if not }
\end{array}\right.
$$

$$
D_{2 i}=\left\{\begin{array}{l}
1 \text { middle-sized class if } 18 \leq S T R \text { in } i^{t h} \text { school district }<22 \\
0 \text { large-sized class or small-sized class if not }
\end{array}\right.
$$

A Special Case: Categorical Variables as X

- The first step: turn a categorical variable $\left(D_{i}\right)$ into multiple dummy variables $\left(D_{1 i}, D_{2 i}, D_{3 i}\right)$

$$
D_{1 i}=\left\{\begin{array}{l}
1 \text { small-sized class if } S T R \text { in } i^{\text {th }} \text { school district }<18 \\
0 \text { middle-sized class or large-sized class if not }
\end{array}\right.
$$

$$
D_{2 i}=\left\{\begin{array}{l}
1 \text { middle-sized class if } 18 \leq S T R \text { in } i^{t h} \text { school district }<22 \\
0 \text { large-sized class or small-sized class if not }
\end{array}\right.
$$

$$
D_{3 i}=\left\{\begin{array}{l}
1 \text { large-sized class if } S T R \text { in } i^{t h} \text { school district } \geq \mathbf{2 2} \\
0 \text { middle-sized class or small-sized class if not }
\end{array}\right.
$$

A Special Case: Categorical Variables as X

- The first step: turn a categorical variable $\left(D_{i}\right)$ into multiple dummy variables $\left(D_{1 i}, D_{2 i}, D_{3 i}\right)$

$$
D_{1 i}=\left\{\begin{array}{l}
1 \text { small-sized class if } S T R \text { in } i^{\text {th }} \text { school district }<18 \\
0 \text { middle-sized class or large-sized class if not }
\end{array}\right.
$$

$$
D_{2 i}=\left\{\begin{array}{l}
1 \text { middle-sized class if } 18 \leq S T R \text { in } i^{t h} \text { school district }<22 \\
0 \text { large-sized class or small-sized class if not }
\end{array}\right.
$$

$$
D_{3 i}=\left\{\begin{array}{l}
1 \text { large-sized class if } S T R \text { in } i^{t h} \text { school district } \geq \mathbf{2 2} \\
0 \text { middle-sized class or small-sized class if not }
\end{array}\right.
$$

A Special Case: Categorical Variables as X

- We put these dummies into a multiple regression

$$
\begin{equation*}
\text { TestScore }_{i}=\beta_{0}+\beta_{1} D_{1 i}+\beta_{2} D_{2 i}+\beta_{3} D_{3 i}+u_{i} \tag{4.6}
\end{equation*}
$$

- Then as a dummy variable as the independent variable in a simple regression The coefficients ($\beta_{1}, \beta_{2}, \beta_{3}$) represent the effect of every categorical class on testscore respectively.

A Special Case: Categorical Variables as X

- In practice, we can't put all dummies into the regression, but only have $n-1$ dummies unless we will suffer perfect multi-collinearity.
- The regression may be like as

$$
\begin{equation*}
\text { TestScore }_{i}=\beta_{0}+\beta_{1} D_{1 i}+\beta_{2} D_{2 i}+u_{i} \tag{4.6}
\end{equation*}
$$

- The default intercept term, β_{0},represents the large-sized class.Then, the coefficients (β_{1}, β_{2}) represent testscore gaps between small_sized, middle-sized class and large-sized class,respectively.

Multiple Regression: Assumption

Multiple Regression: Assumption

- Assumption 1: The conditional distribution of u_{i} given $X_{1 i}, \ldots, X_{k i}$ has mean zero,thus

$$
E\left[u_{i} \mid X_{1 i}, \ldots, X_{k i}\right]=0
$$

- Assumption 2: $\left(Y_{i}, X_{1 i}, \ldots, X_{k i}\right)$ are i.i.d.
- Assumption 3: Large outliers are unlikely.
- Assumption 4: No perfect multicollinearity.

Perfect multicollinearity

Perfect multicollinearity arises when one of the regressors is a perfect linear combination of the other regressors.

- Binary variables are sometimes referred to as dummy variables
- If you include a full set of binary variables (a complete and mutually exclusive categorization) and an intercept in the regression, you will have perfect multicollinearity.
- eg. female and male = 1-female
- eg. West, Central and East China
- This is called the dummy variable trap.
- Solutions to the dummy variable trap: Omit one of the groups or the intercept

Perfect multicollinearity

- regress Testscore on Class size and the percentage of English learners

```
#>
#> Call:
#> lm(formula = testscr ~ str + el_pct, data = ca)
#>
#> Residuals:
\# \(>\) Min \(1 Q\) Median \(3 Q \quad\) Max
#> -48.845 -10.240 -0.308 9.815 43.461
#>
#> Coefficients:
#> Estimate Std. Error t value Pr (>|t|)
#> (Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
#> str -1.10130 0.38028 -2.896 0.00398 **
#> el_pct -0.64978 0.03934 -16.516 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 14.46 on 417 degrees of freedom
#> Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
#> F-statistic: }155\mathrm{ on 2 and 417 DF, p-value: < 2.2e-16
```


Perfect multicollinearity

- add a new variable nel=1-el_pct into the regression

```
#>
#> Call:
#> lm(formula = testscr ~ str + nel_pct + el_pct, data = ca)
#>
#> Residuals:
\#> Min 1Q Median \(3 Q \quad\) Max
#> -48.845 -10.240 -0.308 9.815 43.461
#>
#> Coefficients: (1 not defined because of singularities)
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 685.38247 7.41556 92.425 < 2e-16 ***
#> str -1.10130 0.38028 -2.896 0.00398 **
#> nel_pct 0.64978 0.03934 16.516 < 2e-16 ***
#> el_pct NA NA NA NA
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 14.46 on 417 degrees of freedom
#> Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
#> F-statistic: }155\mathrm{ on 2 and 417 DF, p-value: < 2.2e-16
```


Perfect multicollinearity

Table 6: Class Size and Test Score

	Dependent variable:	
	testscr	
	(1)	(2)
str	$-1.101^{* * *}$	$-1.101^{* * *}$
	(0.380)	(0.380)
nel_pct		$0.650^{* * *}$
		(0.039)
el_pct	$-0.650^{* * *}$	
	(0.039)	
Constant	$686.032^{* * *}$	$685.382^{* * *}$
	(7.411)	(7.416)

Multicollinearity

Multicollinearity means that two or more regressors are highly correlated, but one regressor is NOT a perfect linear function of one or more of the other regressors.

- multicollinearity is NOT a violation of OLS assumptions.
- It does not impose theoretical problem for the calculation of OLS estimators.
- But if two regressors are highly correlated, then the the coefficient on at least one of the regressors is imprecisely estimated (high variance).
- To what extent two correlated variables can be seen as "highly correlated"?
- rule of thumb: correlation coefficient is over 0.8 .

Venn Diagrams for Multiple Regression Model

- In a simple model (y on X), OLS uses 'Blue' + 'Red' to estimate β.
- When y is regressed on X and W : OLS throws away the red area and just uses blue to estimate β.
- Idea: Red area is contaminated(we do not know if the movements in y are due to X or to W).

Venn Diagrams for Multicollinearity

Figure 3b Considerable collinearity

Venn Diagrams for Multicollinearity

Figure 3a Modest collinearity

Figure 3b Considerable collinearity

- Less information (compare the Blue and Green areas in both figures) is used, the estimation is less precise.

Multiple OLS Regression and Causality

Independent Variable v.s Control Variables

- Generally, we would like to pay more attention to only one independent variable(thus we would like to call it treatment variable), though there could be many independent variables.
- Because β_{j} is partial (marginal) effect of X_{j} on Y.

$$
\beta_{j}=\frac{\partial Y_{i}}{\partial X_{j, i}}
$$

which means that we are estimate the effect of X on Y when "other things equal", thus the concept of ceteris paribus.

- Therefore,other variables in the right hand of equation, we call them control variables, which we would like to explicitly hold fixed when studying the effect of X_{1} or D on Y.

Independent Variable v.s Control Variables

- In a multiple regression, OLS is a way to control observable confounding factors, which assume the source of selection bias is only from the difference in observed characteristics(Selection-on-Observables)
- If the multiple regression model is

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1, i}+\beta_{2} X_{2, i}+\ldots+\beta_{k} X_{k, i}+u_{i}, i=1, \ldots, n
$$

- Generally, we would like to pay more attention to only one independent variable(thus we would like to call it treatment variable), though there could be many independent variables.
- Other variables in the right hand of equation, we call them control variables, which we would like to explicitly hold fixed when studying the effect of X_{1} on Y.

Picking Control Variables

- Questions: Are "more controls" always better (or at least never worse)?
- Answer: It depends on.
- Irrelevant controls are variables which have a ZERO partial effect on the outcome, thus the coefficient in the population regression function is zero.
- Relevant controls are variables which have a NONZERO partial effect on the dependent variable.
- Non-Omitted Variables
- Omitted Variables
- Highly-correlated Variables
- Multicollinearity
- We will come back soon to discuss this topic again in Lecture 8 in details.

OLS Regression, Covariates and RCT

- More specifically,regression model turns into

$$
Y_{i}=\beta_{0}+\beta_{1} D_{i}+\gamma_{2} C_{2, i}+\ldots+\gamma_{k} C_{k, i}+u_{i}, i=1, \ldots, n
$$

- transform it into

$$
Y_{i}=\beta_{0}+\beta_{1} D_{i}+\gamma_{2 \ldots k} C_{2 \ldots k, i}^{\prime}+u_{i}, i=1, \ldots, n
$$

- It turns out

$$
Y_{i}=\alpha+\rho D_{i}+\gamma C^{\prime}+u_{i}
$$

OLS Regression, Covariates and RCT

- Now write out the conditional expectation of Y_{i} for both levels of D_{i} conditional on C

$$
\begin{aligned}
E\left[\mathbf{Y}_{i} \mid \mathbf{D}_{i}=1, C\right] & =E\left[\alpha+\rho+\gamma C+u_{i} \mid \mathbf{D}_{i}=1, C\right] \\
& =\alpha+\rho+\gamma+E\left[u_{i} \mid \mathbf{D}_{i}=1, C\right] \\
E\left[\mathbf{Y}_{i} \mid \mathbf{D}_{i}=0, C\right] & =E\left[\alpha+\gamma C+u_{i} \mid \mathbf{D}_{i}=0, C\right] \\
& =\alpha+\gamma+E\left[u_{i} \mid \mathbf{D}_{i}=0, C\right]
\end{aligned}
$$

- Taking the difference

$$
\begin{array}{r}
E\left[\mathbf{Y}_{i} \mid \mathbf{D}_{i}=1, C\right]-E\left[\mathbf{Y}_{i} \mid \mathbf{D}_{i}=0, C\right] \\
=\rho+\underbrace{E\left[u_{i} \mid \mathbf{D}_{i}=1, C\right]-E\left[u_{i} \mid \mathbf{D}_{i}=0, C\right]}_{\text {Selection bias }}
\end{array}
$$

OLS Regression, Covariates and RCT

- Again, our estimate of the treatment effect (ρ) is only going to be as good as our ability to eliminate the selection bias, thus

$$
E\left[u_{1 i} \mid \mathrm{D}_{i}=1, C\right]-E\left[u_{0 i} \mid \mathrm{D}_{i}=0, C\right] \neq 0
$$

Conditional Independence Assumption(CIA)
"balance" covariates C then we can take the treatment D as randomized, thus

$$
\left(Y^{1}, Y^{0}\right) \Perp D \mid C
$$

OLS Regression, Covariates and RCT

- This is the equivalence of the CIA assumption, which is also equivalent to the 1st assumption of Multiple OLS

$$
\begin{array}{r}
E\left[u_{1 i} \mid \mathrm{D}_{i}=1, C\right]-E\left[u_{0 i} \mid \mathrm{D}_{i}=0, C\right] \\
=E\left[u_{1 i} \mid C\right]-E\left[u_{0 i} \mid C\right]
\end{array}
$$

- Then we can eliminate the selection bias, thus making

$$
E\left[u_{1 i} \mid \mathbf{D}_{i}=1, C\right]=E\left[u_{0 i} \mid \mathbf{D}_{i}=0, C\right]
$$

- Thus

$$
E\left[\mathbf{Y}_{i} \mid \mathrm{D}_{i}=1, C\right]-E\left[\mathbf{Y}_{i} \mid \mathrm{D}_{i}=0, C\right]=\rho
$$

Wrap up

- OLS regression is valid or can obtain a causal explanation only when least squares assumptions are held.
- The most important assumption is

$$
E\left(u_{i} \mid D\right)=0
$$

or

$$
E\left(u_{i} \mid D, C\right)=E\left(u_{i} \mid C\right)
$$

- In most cases,it does not satisfy it when using nonexperimental data. Therefore, how to make a convincing causal inference when these assumptions are not held is the key question.

Hypothesis Testing

Introduction: Class size and Test Score

Recall our simple OLS regression mode is

$$
\begin{equation*}
\text { TestScore }_{i}=\beta_{0}+\beta_{1} S T R_{i}+u_{i} \tag{4.3}
\end{equation*}
$$

Class Size and Test Score

Then we got the result of a simple OLS regression

$$
\text { TêstScore }=698.9-2.28 \times S T R, R^{2}=0.051, S E R=18.6
$$

- Don't forget: the result are not obtained from the population but from the sample.
- How can you be sure about the result? In other words, how confident you can believe the result from the sample inferring to the population?
- If someone believes that cutting the class size will not help boost test scores. Can you reject the claim based your scientific evidence-based data analysis?
- This is the work of Hypothesis Testing in OLS regressions.

Review: Hypothesis Testing

- A hypothesis is (usually) an assertion or statement about unknown population parameters like θ.
- Suppose we want to test whether it is significantly different from a certain value μ_{0}
- Then null hypothesis is

$$
H_{0}: \theta=\mu_{0}
$$

- The alternative hypothesis(two-sided) is

$$
H_{1}: \theta \neq \mu_{0}
$$

- If the value μ_{0} does not lie within the calculated confidence interval, then we reject the null hypothesis.
- If the value μ_{0} lie within the calculated confidence interval, then we fail to reject the null hypothesis.

Review：Hypothesis Testing

－Most countries follow the rule of criminal trials：

innocent until proven guilty（疑罪从无）

－The jury or judge starts with the＂null hypothesis＂that the accused person is innocent．
－The prosecutor wants to prove their hypothesis that the accused person is guilty．
－In other words，they have to show strong evidence to make the jury or judge reject the＂null hypothesis＂．
－Likewise，our rule in econometrics is presumption of insignificance until proven．
－At first researchers have to assume that there is zero impact of independent variable on dependent variable．
－In order to prove the relationship between the independent variable and dependent variable，we must provide strong enough evidence to convince readers or policy makers to＂reject＂the assumption of a zero effect．

Review：Two Type Errors（两种错误）

－In both cases，there is a certain risk that our conclusion is wrong

	H_{0} is true	H_{A} is true
Fail to reject H_{O}	Correct	Type II error
Reject H_{O}	Type I error	Correct

－Type I and Type II errors can not happen at the same time
－There is a trade－off between Type I and Type II errors

Review：Two Type Errors（两种错误）

－Question：Determine whether each situation belongs to Type I error or Type II error．

- ＂宁可错杀一千，不能放过一个＂
- ＂宁可放过一千，不能错杀一个＂

The Significance level（显著性水平）

－The significance level or size of a test，α ，is the maximum probability of the Type I Error we tolerate．

$$
P(\text { Type I error })=P\left(\text { reject } H_{0} \mid H_{0} \text { is true }\right)=\alpha
$$

－In social science，the usual significance level is set at 5\％．A less rigorous standard is 10% ，whereas a more stringent one is 1% ．

The Power of the Test

- The power of a test, is $1-\beta$, where β is the probability of the Type II Error

$$
1-P(\text { Type II error })=1-P\left(\text { reject } H_{0} \mid H_{1} \text { is true }\right)=1-\beta
$$

- Typically, we desire power to be 0.80 or greater, which alternatively equal to minimize $\beta \leq 0.2$.

Review: Hypothesis Testing of Population Mean

- Let $\mu_{Y, c}$ is a specific value to which the population mean equals(thus we suppose) - the null hypothesis:

$$
H_{0}: E(Y)=\mu_{Y, c}
$$

- the alternative hypothesis(two-sided):

$$
H_{1}: E(Y) \neq \mu_{Y, c}
$$

Review: Hypothesis Testing of Population Mean

- Step 1 Compute the sample mean \bar{Y}
- Step 2 Compute the standard error of \bar{Y}, recall

$$
S E(\bar{Y})=\frac{s_{Y}}{\sqrt{n}}
$$

- Step 3 Compute the t-statistic actually computed

$$
t^{a c t}=\frac{\bar{Y}^{a c t}-\mu_{Y, c}}{S E(\bar{Y})}
$$

- Step 4 Compute the p-value(optional)

$$
\mathrm{p} \text {-value }=2 \Phi\left(-\left|t^{a c t}\right|\right)
$$

- Step 5 See if we can Reject the null hypothesis at a certain significance level α,like 5%, or p -value is less than significance level.

$$
\left|t^{a c t}\right|>\text { critical value or } p-\text { value }<\text { significance level }
$$

Simple OLS: Hypotheses Testing

- A Simple OLS regression

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

- This is the population regression equation and the key unknown population parameters is β_{1}.
- Then we would like to test whether β_{1} equals to a specific value $\beta_{1, s}$ or not
- the null hypothesis:

$$
H_{0}: \beta_{1}=\beta_{1, s}
$$

- the alternative hypothesis:

$$
H_{1}: \beta_{1} \neq \beta_{1, s}
$$

A Simple OLS: Hypotheses Testing

- Step1: Estimate $Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}$ by OLS to obtain $\hat{\beta}_{1}$
- Step2: Compute the standard error of $\hat{\beta_{1}}$
- Step3: Construct the t-statistic

$$
t^{a c t}=\frac{\hat{\beta}_{1}-\beta_{1, c}}{S E\left(\hat{\beta}_{1}\right)}
$$

- Step4: Reject the null hypothesis if

$$
\begin{gathered}
\left|t^{\text {act }}\right|>\text { critical value } \\
\text { or } p-\text { value }<\text { significance level }
\end{gathered}
$$

Recall: General Form of the t-statistics

$$
t=\frac{\text { estimator }- \text { hypothesized value }}{\text { standard error of the estimator }}
$$

- Now the key unknown statistic is the standard error(S.E).

The Standard Error of $\hat{\beta}_{1}$

- Recall from the Simple OLS Regression
- if the least squares assumptions hold, then in large samples $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ have a joint normal sampling distribution, thus $\hat{\beta}_{1}$

$$
\hat{\beta}_{1} \sim N\left(\beta_{1}, \sigma_{\hat{\beta}_{1}}^{2}\right)
$$

- We also derived the form of the variance of the normal distribution, $\sigma_{\hat{\beta}_{1}}^{2}$ is

$$
\begin{equation*}
\sigma_{\hat{\beta}_{1}}=\sqrt{\frac{1}{n} \frac{\operatorname{Var}\left[\left(X_{i}-\mu_{X}\right) u_{i}\right]}{\left[\operatorname{Var}\left(X_{i}\right)\right]^{2}}} \tag{4.2}
\end{equation*}
$$

- The standard error of $\hat{\beta}_{1}$ is an estimator of the standard deviation of the sampling distribution $\sigma_{\hat{\beta}_{1}}$, thus

$$
\begin{equation*}
S E\left(\hat{\beta}_{1}\right)=\sqrt{\hat{\sigma}_{\hat{\beta}_{1}}^{2}}=\sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum\left(X_{i}-\bar{X}\right)^{2} \hat{u}_{i}^{2}}{\left[\frac{1}{n} \sum\left(X_{i}-\bar{X}\right)^{2}\right]^{2}}} \tag{5.4}
\end{equation*}
$$

Application to Test Score and Class Size

- the OLS regression line

$$
\begin{aligned}
\text { TêstScore }= & 698.9-22.8 \times S T R, R^{2}=0.051, S E R=18.6 \\
& (10.4)(0.52)
\end{aligned}
$$

Testing a two-sided hypothesis concerning β_{1}

- the null hypothesis $H_{0}: \beta_{1}=0$
- It means that the class size will not affect the performance of students.
- the alternative hypothesis $H_{1}: \beta_{1} \neq 0$
- It means that the class size do affect the performance of students (whatever positive or negative)
- Our primary goal is to Reject the null, and then say make a conclusion:
- Class Size does matter for the performance of students.

Testing a two-sided hypothesis concerning β_{1}

- Step1: Estimate $\hat{\beta}_{1}=-2.28$
- Step2: Compute the standard error: $S E\left(\hat{\beta_{1}}\right)=0.52$
- Step3: Compute the t-statistic

$$
t^{a c t}=\frac{\hat{\beta}_{1}-\beta_{1, c}}{S E\left(\hat{\beta}_{1}\right)}=\frac{-2.28-0}{0.52}=-4.39
$$

- Step4: Reject the null hypothesis if
- $\left|t^{a c t}\right|=|-4.39|>$ critical value $=1.96$
- $p-$ value $=0<$ significance level $=0.05$

Application to Test Score and Class Size

```
. regress test_score class_size, robust
```

Linear regression			420	
	Number of obs	$=$	19.26	
	$F(1,418)$		$=$	0.0000
	Prob $>\mathrm{F}$		$=$	0.0512
	R-squared		$=$	18.581

		Robust test_score			Coef.	Std. Err.

- We can reject the null hypothesis that $H_{0}: \beta_{1}=0$, which means $\beta_{1} \neq 0$ with a high probability(over 95\%).
- It suggests that Class size matters the students' performance in a very high chance.

Critical Values of the t-statistic

The critical value of t-statistic depends on significance level α

1\% and 10\% significant levels

- Step4: Reject the null hypothesis at a $\mathbf{1 0 \%}$ significance level
- $\left|t^{a c t}\right|=|-4.39|>$ critical value $=1.64$
- $p-$ value $=0.00<$ significance level $=0.1$
- Step4: Reject the null hypothesis at a 1% significance level
- $\left|t^{a c t}\right|=|-4.39|>$ critical value $=2.58$
- $p-$ value $=0.00<$ significance level $=0.01$

Two-Sided Hypotheses: β_{1} in a certain value

- Step1: Estimate $\hat{\beta}_{1}=-2.28$
- Step2: Compute the standard error: $S E\left(\hat{\beta_{1}}\right)=0.52$
- Step3: Compute the t -statistic

$$
t^{a c t}=\frac{\hat{\beta}_{1}-\beta_{1, c}}{S E\left(\hat{\beta}_{1}\right)}=\frac{-2.28-(-2)}{0.52}=-0.54
$$

- Step4: can't reject the null hypothesis at 5% significant level because
- $\left|t^{a c t}\right|=|-0.54|<$ critical value $=1.96$
- $p-$ value $=0.59>$ significance level $=0.05$

Two-Sided Hypotheses : β_{1} in a certain value

```
. lincom class_size-(-2)
(1) class_size = -2
\begin{tabular}{r|rccccc}
\hline test_score & Coef. & Std. Err. & \(t\) & \(P>|t|\) & [95\% Conf. Interval] \\
\hline\((1)\) & \(\mathbf{- . 2 7 9 8 0 8 3}\) & \(\mathbf{. 5 1 9 4 8 9 2}\) & \(\mathbf{- 0 . 5 4}\) & \(\mathbf{0 . 5 9 0}\) & \(\mathbf{- 1 . 3 0 0 9 4 5}\) &. \(\mathbf{7 4 1 3 2 8 6}\) \\
\hline
\end{tabular}
```

- We cannot reject the null hypothesis that $H_{0}: \beta_{1}=-2$.
- It suggests that there is no enough evidence to support the statement:
- cutting class size in one unit will boost the test score in 2 points.

One-sided Hypotheses Concerning β_{1}

- Sometimes, we want to do a one-sided Hypothesis testing
- the null hypothesis is still unchanged $H_{0}: \beta_{1}=-2$
- the alternative hypothesis is $H_{1}: \beta_{1}<-2$
- The statement is that reducing(or inversely increasing) class size will boost(or lower) student's performance.
- More specifically,cutting class size in one unit will increase the test score in 2 points at least.
- Because the null hypothesis is the same for a one- and a two-sided hypothesis test, the construction of the t-statistic is the same.
- The difference between the two is the critical value and p -value.

One-sided Hypotheses Concerning β_{1}

- Step1: Estimate $\hat{\beta}_{1}=-2.28$
- Step2: Compute the standard error: $S E\left(\hat{\beta_{1}}\right)=0.52$
- Step3: Compute the t -statistic

$$
t^{a c t}=\frac{\hat{\beta}_{1}-\beta_{1,0}}{S E\left(\hat{\beta}_{1}\right)}=\frac{-2.28-(-2)}{0.52}=-0.54
$$

One-sided Hypotheses Concerning β_{1}

One-sided Hypotheses Concerning β_{1}

- Step4: under the circumstance, the critical value is not the -1.96 but -1.645 at 5\% significant level.
- We can't reject the null hypothesis because

$$
t^{a c t}=-0.54>\text { critical value }=-1.645
$$

- The p -value is not the $2 \Phi\left(-\left|t^{a c t}\right|\right)$ now but $\operatorname{Pr}\left(Z<t^{a c t}\right)=\Phi\left(t^{a c t}\right)$.
- It suggests that there is NO enough evidence to support the statement:cutting class size in one unit will increase the test score in 2 points at least.

One-sided Hypotheses Concerning β_{1}

- One-sided alternative hypotheses should be used only when there is a clear reason for doing so.
- This reason could come from economic theory, prior empirical evidence, or both.
- However, even if it initially seems that the relevant alternative is one-sided, upon reflection this might not necessarily be so.
- In practice, one-sided test is used much less than two-sided test.

Wrap up

- Hypothesis tests are useful if you have a specific null hypothesis in mind (as did our angry taxpayer).
- Being able to accept or reject this null hypothesis based on the statistical evidence provides a powerful tool for coping with the uncertainty inherent in using a sample to learn about the population.
- Yet, there are many times that no single hypothesis about a regression coefficient is dominant, and instead one would like to know a range of values of the coefficient that are consistent with the data.
- This calls for constructing a confidence interval.

Confidence Intervals

Introduction

- Because any statistical estimate of the slope β_{1} necessarily has sampling uncertainty, we cannot determine the true value of β_{1} exactly from a sample of data.
- It is possible, however, to use the OLS estimators and its standard error to construct a confidence interval for the slope β_{1}

CI for β_{1}

- Method for constructing a confidence interval for a population mean can be easily extended to constructing a confidence interval for a regression coefficient.
- Using a two-sided test, a hypothesized value for β_{1} will be rejected at 5\% significance level if

$$
\left|t^{a c t}\right|>\text { critical value }=1.96
$$

- So $\hat{\beta}_{1}$ will be in the confidence set if $\left|t^{\text {act }}\right| \leq$ critical value $=1.96$
- Thus the 95% confidence interval for β_{1} are within ± 1.96 standard errors of $\hat{\beta}_{1}$

$$
\hat{\beta}_{1} \pm 1.96 \cdot S E\left(\hat{\beta}_{1}\right)
$$

CI for $\beta_{\text {ClassSize }}$

- Thus the 95% confidence interval for β_{1} are within ± 1.96 standard errors of $\hat{\beta}_{1}$

$$
\hat{\beta}_{1} \pm 1.96 \cdot S E\left(\hat{\beta}_{1}\right)=-2.28 \pm(1.96 \times 0.519)=[-3.3,-1.26]
$$

Gauss-Markov theorem and Heteroskedasticity

Introduction

- Recall we discussed the properties of \bar{Y} in Chapter 2.
- an unbiased estimator of μ_{Y}
- a consistent estimator of μ_{Y}
- an approximate normal sampling distribution for large n

The Efficiency of \bar{Y}

- the fourth properties of \bar{Y} in Chapter 3.
- the Best Linear Unbiased Estimator(BLUE): \bar{Y} is the most efficient estimator of μ_{Y} among all unbiased estimators that are weighted averages of Y_{1}, \ldots, Y_{n}, presented by $\hat{\mu}_{Y}=\frac{1}{n} \sum a_{i} Y_{i}$,thus,

$$
\operatorname{Var}(\bar{Y})<\operatorname{Var}\left(\hat{\mu}_{Y}\right)
$$

Unnecessary Assumption for Simple OLS

- Three Simple OLS Regression Assumptions
- Assumption 1
- Assumption 2
- Assumption 3
- Assumption 4: The error terms are homoskedastic

$$
\operatorname{Var}\left(u_{i} \mid X_{i}\right)=\sigma_{u}^{2}
$$

- Then $\hat{\beta}^{O L S}$ is the Best Linear Unbiased Estimator(BLUE): it is the most efficient estimator of β_{1} among all conditional unbiased estimators that are a linear function of $Y_{1}, Y_{2}, \ldots, Y_{n}$.

Heteroskedasticity \& homoskedasticity

- The error term u_{i} is homoskedastic if the variance of the conditional distribution of u_{i} given X_{i} is constant for $i=1, \ldots n$, in particular does not depend on X_{i}.
- Otherwise, the error term is heteroskedastic.

FIGURE 5.2 An Example of Heteroskedasticity

An Actual Example: the returns to schooling

- The spread of the dots around the line is clearly increasing with years of education X_{i}.
- Variation in (log) wages is higher at higher levels of education.
- This implies that

$$
\operatorname{Var}\left(u_{i} \mid X_{i}\right) \neq \sigma_{u}^{2}
$$

Homoskedasticity: S.E.

- However, in many applications homoskedasticity is NOT a plausible assumption.
- If the error terms are heteroskedastic, then you use the homoskedastic assumption to compute the S.E. of $\hat{\beta}_{1}$. It will leads to
- The standard errors are wrong (often too small)
- The t -statistic does NOT have a $N(0,1)$ distribution (also not in large samples).
- But the estimating coefficients in OLS regression will not change.

Heteroskedasticity \& homoskedasticity

- If the error terms are heteroskedastic, we should use the original equation of S.E.

$$
S E_{H e t e r}\left(\hat{\beta}_{1}\right)=\sqrt{\hat{\sigma}_{\hat{\beta}_{1}}^{2}}=\sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum\left(X_{i}-\bar{X}\right)^{2} \hat{u}_{i}^{2}}{\left[\frac{1}{n} \sum\left(X_{i}-\bar{X}\right)^{2}\right]^{2}}}
$$

- It is called as heteroskedasticity robust-standard errors, also referred to as Eicker-Huber-White standard errors,simply Robust-Standard Errors
- In the case, it is not difficult to find that homoskedasticity is just a special case of heteroskedasticity.

Heteroskedasticity \& homoskedasticity

- Since homoskedasticity is a special case of heteroskedasticity, these heteroskedasticity robust formulas are also valid if the error terms are homoskedastic.
- Hypothesis tests and confidence intervals based on above SE's are valid both in case of homoskedasticity and heteroskedasticity.
- In reality, since in many applications homoskedasticity is not a plausible assumption, it is best to use heteroskedasticity robust standard errors. Using robust standard errors rather than standard errors with homoskedasticity will lead us lose nothing.

Heteroskedasticity \& homoskedasticity

- It can be quite cumbersome to do this calculation by hand.Luckily,computer can help us do the job.
- In Stata, the default option of regression is to assume homoskedasticity, to obtain heteroskedasticity robust standard errors use the option "robust":

$$
\text { regress } y x \text {, robust }
$$

- In R, many ways can finish the job. A convenient function named vcovHC () is part of the package sandwich.

Test Scores and Class Size

```
. regress test_score class_size
```


. regress test_score class_size, robust

Linear regression	Number of obs	$=$	420
	F (1, 418)	=	19.26
	Prob > F	=	0.0000
	R -squared	=	0.0512
	Root MSE	=	18.581

| | Coef. | Robust | Std. Err. | t | P>\|t| | [95\% Conf. Interval] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| test_score | Class size | $\mathbf{- 2 . 2 7 9 8 0 8}$ | $\mathbf{5 1 9 4 8 9 2}$ | $\mathbf{- 4 . 3 9}$ | 0.000 | $\mathbf{- 3 . 3 0 0 9 4 5}$ | $\mathbf{- 1 . 2 5 8 6 7 1}$ |
| _cons | $\mathbf{6 9 8 . 9 3 3}$ | $\mathbf{1 0 . 3 6 4 3 6}$ | $\mathbf{6 7 . 4 4}$ | $\mathbf{0 . 0 0 0}$ | $\mathbf{6 7 8 . 5 6 0 2}$ | $\mathbf{7 1 9 . 3 0 5 7}$ | |

Test Scores and Class Size

Source	SS	df	MS	Number of obs		$=$	420
Model	7794.11004	1	7794.11004	Pr		$=$	0.0000
Residual	144315.484	418	345.252353				0.0512
Total	152109.594	419	363.030056	Roo	quared E	=	$\begin{aligned} & 0.0490 \\ & 18.581 \end{aligned}$
test_score	Coef.	Std. Err.	$t \quad P>\|t\|$		[95\% Conf. Interval]		
class_size	-2.279808	$\begin{array}{r} .4798256 \\ 9.467491 \end{array}$	-4.75	0.000	$\begin{aligned} & -3.22298 \\ & 680.3231 \end{aligned}$		$\begin{array}{r} -1.336637 \\ 717.5428 \end{array}$
_cons	698.933		73.82	0.000			

. regress test_score class_size, robust

Linear regres				Number of obs F (1, 418) Prob > F R-squared Root MSE			$\begin{array}{r} 420 \\ 19.26 \\ 0.0000 \\ 0.0512 \\ 18.581 \end{array}$
test_score	Coef.	```Robust Std. Err.```	t	$P>\|t\|$	[95\% Conf. Interval]		
$\begin{array}{r} \text { class size } \\ \text { _cons } \end{array}$	$\begin{array}{r} -2.279808 \\ 698.933 \end{array}$	$\begin{array}{r} .5194892 \\ 10.36436 \end{array}$	$\begin{aligned} & -4.39 \\ & 67.44 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$		$\begin{array}{r} -3.300945 \\ 678.5602 \end{array}$	$\begin{array}{r} -1.258671 \\ 719.3057 \end{array}$

Wrap up: Heteroskedasticity in a Simple OLS

- If the error terms are heteroskedastic
- The fourth simple OLS assumption is violated.
- The Gauss-Markov conditions do not hold.
- The OLS estimator is not BLUE (not most efficient).
- But (given that the other OLS assumptions hold)
- The OLS estimators are still unbiased.
- The OLS estimators are still consistent.
- The OLS estimators are normally distributed in large samples

OLS with Multiple Regressors: Hypotheses tests

Recall: the Multiple OLS Regression

- The multiple regression model is

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1, i}+\beta_{2} X_{2, i}+\ldots+\beta_{k} X_{k, i}+u_{i}, i=1, \ldots, n
$$

- Four Basic Assumptions
- Assumption 1: $E\left[u_{i} \mid X_{1 i}, X_{2 i} \ldots, X_{k i}\right]=0$
- Assumption 2 : i.i.d sample
- Assumption 3 : Large outliers are unlikely.
- Assumption 4 : No perfect multicollinearity.
- The Sampling Distribution: the OLS estimators $\hat{\beta}_{j}$ for $j=1, \ldots, k$ are approximately normally distributed in large samples.

Standard Errors for the Multiple OLS Estimators

- There is nothing conceptually different between the single- or multiple-regressor cases.
- Standard Errors for a Simple OLS estimator β_{1}

$$
S E\left(\hat{\beta}_{1}\right)=\hat{\sigma}_{\hat{\beta}_{1}}
$$

- Standard Errors for Mutiple OLS Regression estimators β_{j}

$$
S E\left(\hat{\beta}_{j}\right)=\hat{\sigma}_{\hat{\beta}_{j}}
$$

- Remind: since now the joint distribution is not only for $\left(Y_{i}, X_{i}\right)$, but also for $\left(X_{i j}, X_{i k}\right)$.
- The formula for the standard errors in Multiple OLS regression are related with a matrix named Variance-Covariance matrix

Hypothesis Tests for a Single Coefficient

- the t-statistic in Simple OLS Regression

$$
t^{a c t}=\frac{\hat{\beta}_{1}-\beta_{1, c}}{S E\left(\hat{\beta}_{1}\right)} \sim N(0,1)
$$

- the t-statistic in Multiple OLS Regression

$$
t=\frac{\hat{\beta}_{j}-\beta_{j, c}}{S E\left(\hat{\beta}_{j}\right)} \sim N(0,1)
$$

Hypothesis testing for single coefficient

- $H_{0}: \beta_{j}=\beta_{j, c} H_{1}: \beta_{1} \neq \beta_{j, c}$
- Step1: Estimate $\hat{\beta}_{j}$, by run a multiple OLS regression

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\ldots+\beta_{j} X_{j i}+\ldots+\beta_{k} X_{k i}+u_{i}
$$

- Step2: Compute the standard error of $\hat{\beta}_{j}$ (requires matrix algebra)
- Step3: Compute the t -statistic

$$
t^{a c t}=\frac{\hat{\beta}_{j}-\beta_{j, c}}{S E\left(\hat{\beta}_{j}\right)}
$$

- Step4: Reject the null hypothesis if
- $\left|t^{\text {act }}\right|>$ critical value
- or if p-value $<$ significance level

Confidence Intervals for a single coefficient

- Also the same as in a simple OLS Regression.
- $\hat{\beta}_{j}$ will be in the confidence set if $\left|t^{a c t}\right| \leq$ critical value $=1.96$ at the 95% confidence level.
- Thus the 95% confidence interval for β_{j} are within ± 1.96 standard errors of $\hat{\beta}_{j}$

$$
\hat{\beta}_{j} \pm 1.96 \cdot S E\left(\hat{\beta}_{j}\right)
$$

Test Scores and Class Size

. regress test_score class_size el_pct, robust

Linear regression	Number of obs	$=$	420
	F(2, 417)	$=$	223.82
	Prob $>F$	$=$	0.0000
	R-squared	$=$	0.4264
	Root MSE	$=$	14.464

test_score	Robust					
	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Con	Interval]
class_size	-1. 101296	. 4328472	-2. 54	0.011	-1.95213	-. 2504616
el_pct	-. 6497768	. 0310318	-20.94	0.000	-. 710775	-. 5887786
_cons	686.0322	8.728224	78.60	0.000	668.8754	703.189

Case: Class Size and Test scores

- Does changing class size, while holding the percentage of English learners constant, have a statistically significant effect on test scores? (using a 5\% significance level)
- $H_{0}: \beta_{\text {ClassSize }}=0 H_{1}: \beta_{\text {ClassSize }} \neq 0$
- Step1: Estimate $\hat{\beta}_{1}=-1.10$
- Step2: Compute the standard error: $S E\left(\hat{\beta_{1}}\right)=0.43$
- Step3: Compute the t -statistic

$$
t^{a c t}=\frac{\hat{\beta}_{1}-\beta_{1, c}}{S E\left(\hat{\beta}_{1}\right)}=\frac{-1.10-0}{0.43}=-2.54
$$

- Step4: Reject the null hypothesis if
- $\left|t^{a c t}\right|=|-2.54|>$ critical value.1.96
- $p-$ value $=0.011<$ significance level $=0.05$

Tests of Joint Hypotheses: on 2 or more coefficients

- Question: Can we just test more than one individual coefficient at a time?
- Suppose the angry taxpayer hypothesizes that neither the student-teacher ratio nor expenditures per pupil have an effect on test scores, once we control for the percentage of English learners.
- Therefore, we have to test a joint null hypothesis that both the coefficient on student-teacher ratio and the coefficient on expenditures per pupil are zero?

$$
\begin{aligned}
& H_{0}: \beta_{\text {str }}=0 \& \beta_{\text {expn }}=0, \\
& H_{1}: \beta_{\text {str }} \neq 0 \text { and/or } \beta_{\text {expn }} \neq 0
\end{aligned}
$$

Testing 1 hypothesis on 2 or more coefficients

- Suppose we want to test

$$
H_{0}: \beta_{1}=0 \& \beta_{2}=0 \quad H_{1}: \beta_{1} \neq 0 \text { and } / \text { or } \beta_{2} \neq 0
$$

- Then the F-statistic can also combine the two t-statisticst ${ }_{1}$ and t_{2} as follows

$$
F=\frac{1}{2}\left(\frac{t_{1}^{2}+t_{2}^{2}-2 \hat{\rho}_{t_{1} t_{2}} t_{1} t_{2}}{1-\hat{\rho}_{t_{1} t_{2}}^{2}}\right)
$$

where $\hat{\rho}_{t_{1} t_{2}}$ is an estimator of the correlation between the two t-statistics.

Testing 1 hypothesis on 2 or more coefficients

- In general, a joint hypothesis is a hypothesis that imposes two or more restrictions on the regression coefficients.

$$
\begin{aligned}
& H_{0}: \beta_{j}=\beta_{j, c}, \beta_{k}=\beta_{k, c}, \ldots, \text { for a total of } q \text { restrictions } \\
& H_{1}: \text { one or more of } q \text { restrictions under } H_{0} \text { does not hold }
\end{aligned}
$$

- where $\beta_{j}, \beta_{k}, \ldots$ refer to different regression coefficients.
- When the regressors are highly correlated, single t-statistics can be misleading.Instead, we use the F-statistic for testing joint hypotheses.

Unrestricted v.s Restricted model

- The unrestricted model: the model without any of the restrictions imposed. It contains all the variables.
- The restricted model: the model on which the restrictions have been imposed.
- And we want to test that $H_{0}: \beta_{1}=0$ and $\beta_{2}=0$,then $H_{1}: \beta_{1} \neq 0$ and/or $\beta_{2} \neq 0$ for the regression model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1, i}+\beta_{2} X_{2, i}+\beta_{3} X_{3, i}+u_{i}, i=1, \ldots, n
$$

- Then restricted model is

$$
Y_{i}=\beta_{0}+\beta_{3} X_{3, i}+u_{i}
$$

The F-statistic with q restrictions

- The F-statistic is computed using a simple formula based on the sum of squared residuals from two regressions.

$$
F=\frac{\left(S S R_{\text {restricted }}-S S R_{\text {unrestricted }}\right) / q}{S S R_{\text {unrestricted }} /(n-k-1)}
$$

- $S S R_{\text {restricted }}$ is the sum of squared residuals from the restricted regression.
- $S S R_{\text {unrestricted }}$ is the sum of squared residuals from the full model.
- q is the number of restrictions under the null.
- k is the number of regressors in the unrestricted regression.

The heteroskedasticity-robust F-statistic

- Using matrix to show the form of the heteroskedasticity-robust F-statistic which is beyond the scope of our class.
- While,under the null hypothesis,regardless of whether the errors are homoskedastic or heteroskedastic, the F-statistic with q has a sampling distribution in large samples,

$$
F-\text { statistic } \sim F_{q, \infty}
$$

- where q is the number of restrictions
- Then we can compute the F-statistic, the critical values from the table of the $F_{q, \infty}$ and obtain the p-value.

F-Distribution

TABLE 4 Critical Values for the $F_{m, \infty}$ Distribution

Degrees of Freedom	10%	5%	1%
1	2.71	3.84	6.63
2	2.30	3.00	4.61
3	2.08	2.60	3.78

Testing joint hypothesis with q restrictions

- $H_{0}: \beta_{j}=\beta_{j, 0}, \ldots, \beta_{m}=\beta_{m, 0}$ for a total of q restrictions.
- H_{1} :at least one of q restrictions under H_{0} does not hold.
- Step1: Estimate

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\ldots+\beta_{j} X_{j i}+\ldots+\beta_{k} X_{k i}+u_{i}
$$

by OLS

- Step2: Compute the F-statistic
- Step3 : Reject the null hypothesis if

$$
F-\text { Statistic }>F_{q, \infty}^{a c t}
$$

or

$$
p-\text { value }=\operatorname{Pr}\left[F_{q, \infty}>F^{a c t}\right]<=\text { significant level }
$$

Case: Class Size and Test Scores

- We want to test hypothesis that both the coefficient on student-teacher ratio and the coefficient on expenditures per pupil are zero?
- $H_{0}: \beta_{\text {str }}=0 \& \beta_{\text {expn }}=0$
- $H_{1}: \beta_{\text {str }} \neq 0$ and/or $\beta_{\text {expn }} \neq 0$
- The null hypothesis consists of two restrictions $q=2$

Case: Class Size and Test Scores

- F-statistic with two restrictions has an approximate $F_{2, \infty}$ distribution in large samples

$$
F_{a c t}=5.43>F_{2, \infty}=4.61 \text { at } 1 \% \text { significant level }
$$

- This implies that we reject H_{0} at a 1% significance level.

The "overall" regression F-statistic

- The "overall" F-statistic test the joint hypothesis that all the k slope coefficients are zero
- $H_{0}: \beta_{j}=\beta_{j, 0}, \ldots, \beta_{m}=\beta_{m, 0}$ for a total of $q=k$ restrictions.
- H_{1} : at least one of $q=k$ restrictions under H_{0} does not hold.

The "overall" regression F-statistic

. regress test_score class_size expn_stu el_pct,robust

. test class_size expn_stu el_pct
(1) class_size $=0$
(2) expn_stu = 0
(3) el_pct $=0$
$F(3,416)=147.20$
Prob > F = 0.0000

- The overall $F-$ Statistics $=147.2$ which indicates at least one coefficient can not be ZERO.

Case: Analysis of the Test Score Data Set

Introduction

- How to use multiple regression in order to alleviate omitted variable bias and demonstrate how to report results.
- So far we have considered two variables that control for unobservable student characteristics which correlate with the student-teacher ratio and are assumed to have an impact on test scores:
- English, the percentage of English learning students
- lunch, the share of students that qualify for a subsidized or even a free lunch at school
- calworks, the percentage of students that qualify for a income assistance program

Five different model equations:

- We shall consider five different model equations:
(1) TestScore $=\beta_{0}+\beta_{1} S T R+u$,
(2) TestScore $=\beta_{0}+\beta_{1}$ STR $+\beta_{2}$ english $+u$,
(3) TestScore $=\beta_{0}+\beta_{1} S T R+\beta_{2}$ english $+\beta_{3}$ lunch $+u$,
(4) TestScore $=\beta_{0}+\beta_{1} S T R+\beta_{2}$ english $+\beta_{4}$ calworks $+u$,
(5) TestScore $=\beta_{0}+\beta_{1}$ STR $+\beta_{2}$ english $+\beta_{3}$ lunch $+\beta_{4}$ calworks $+u$

Scatter Plot: English learners and Test Scores

English Learners and Test Scores

Scatter Plot: Free lunch and Test Scores

Percentage qualifying for reduced price lunch

Scatter Plot: Income assistant and Test Scores

Percentage qualifying for income assistance

Correlations between Variables

- The correlation coefficients are as followed:

```
# estimate correlation between student characteristics and tes
cor(CASchools$testscr, CASchools$el_pct)
#> [1] -0.6441237
cor(CASchools$testscr, CASchools$meal_pct)
#> [1] -0.868772
cor(CASchools$testscr, CASchools$calw_pct)
```

\#> [1] -0.6268534
cor (CASchools\$meal pct, CASchools\$calw pct)

Table 8

Dependent Variable: Test Score

	(1)	(2)
str	$-2.280^{* * *}$	$-1.101^{* *}$
	(0.519)	(0.433)
el_pct		$-0.650^{* * *}$
		(0.031)
Constant	698.933 ${ }^{* * *}$	$686.032^{* * *}$
	(10.364)	(8.728)
Observations	420	420
R^{2}	0.051	0.426
Adjusted R ${ }^{2}$	0.049	0.424
F Statistic	$22.575^{* * *}$	155.014***
Note:		$\mathrm{p}<0.05$; $^{* * *}$
	Robust S.E.	in the paren

Table 9

Dependent Variable: Test Score

	(1)	(2)	(3)	(4)
str	$-2.280^{* * *}$	$-1.101^{* *}$	$-0.998^{* * *}$	$-1.308^{* * *}$
	(0.519)	(0.433)	(0.270)	(0.339)
el_pct		$-0.650^{* * *}$	$-0.122^{* * *}$	$-0.488^{* * *}$
		(0.031)	(0.033)	(0.030)
meal_pct			$-0.547^{* * *}$	
			(0.024)	
calw_pct				$-0.790^{* * *}$
				(0.068)
Constant	$698.933^{* * *}$	$686.032^{* * *}$	$700.150^{* * *}$	$697.999^{* * *}$
	(10.364)	(8.728)	(5.568)	(6.920)
Observations	420	420	420	420
R 2	0.051	0.426	0.775	0.629
Adjusted R ${ }^{2}$	0.049	0.424	0.773	0.626

Table 10

Dependent Variable: Test Score

	(1)	(2)	(3)	(4)	(5)
str	$-2.280^{* * *}$	$-1.101^{* *}$	$-0.998^{* * *}$	$-1.308^{* * *}$	$-1.014^{* * *}$
el_pct	(0.519)	(0.433)	(0.270)	(0.339)	(0.269)
		$-0.650^{* * *}$	$-0.122^{* * *}$	$-0.488^{* * *}$	$-0.130^{* * *}$
meal_pct		(0.031)	(0.033)	(0.030)	(0.036)
			$-0.547^{* * *}$		$-0.529^{* * *}$
calw_pct			(0.024)		(0.038)
				$-0.790^{* * *}$	-0.048
Constant	$698.933^{* * *}$	$686.032^{* * *}$	$700.150^{* * *}$	$697.999^{* * *}$	$700.392^{* * *}$
	(10.364)	(8.728)	(5.568)	(6.920)	(5.537)
Observations	420	420	420	420	420
R 2	0.051	0.426	0.775	0.629	0.775
Adjusted R ${ }^{2}$	0.049	0.424	0.773	0.626	0.773

The "Star War" and Regression Table

Dependent variable: average test score in the district.

Regressor	(1)	(2)	(3)	(4)	(5)
Student-teacher ratio $\left(X_{1}\right)$	$-2.28^{* *}$	-1.10^{*}	$-1.00^{* *}$	-1.31^{*}	-1.01^{*}
	(0.52)	(0.43)	(0.27)	(0.34)	(0.27)
Percent English learners $\left(X_{2}\right)$		$-0.650^{* *}$	$-0.122^{* *}$	$-0.488^{* *}$	$-0.130^{* *}$
		(0.031)	(0.033)	(0.030)	(0.036)
Percent eligible for subsidized lunch $\left(X_{3}\right)$			-0.547^{*}		-0.529^{*}
			(0.024)		(0.038)
Percent on public income assistance $\left(X_{4}\right)$			$-0.790^{* *}$	0.048	
				(0.068)	(0.059)
Intercept	$698.9^{* *}$	$686.0^{* *}$	$700.2^{* *}$	$698.0^{* *}$	$700.4^{* *}$
	(10.4)	(8.7)	(5.6)	(6.9)	(5.5)
Summary Statistics					
$S E R$	18.58	14.46	9.08	11.65	9.08
\bar{R}^{2}	0.049	0.424	0.773	0.626	0.773
n	420	420	420	420	420

These regressions were estimated using the data on $\mathrm{K}-8$ school districts in California, described in Appendix (4.1). Heteroskedasticityrobust standard errors are given in parentheses under coefficients. The individual coefficient is statistically significant at the *5\% level or ${ }^{* *} 1 \%$ significance level using a two-sided test.

Warp Up

- OLS regression is the most fundamental and important tool in econometricians toolbox.
- The OLS estimators is unbiased, consistent and approximated normal distributions if four key assumptions are satisfied.
- Using the hypothesis testing and confidence interval in OLS regression, we could make a more reliable judgment about the relationship between the treatment and the outcomes.
- Under several reasonable but strong assumptions(CIA), OLS regression can be seen as a continuous version of generalizing continuous version of RCT.
- The OLS regression can be used to estimate the causal effect of the treatment on the outcomes, and the results can be interpreted as the average treatment effect on the treated.

