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Review the previous lecture

OLS Estimation: Simple Regression
The Least Squares Assumptions
Properties of the OLS Estimators
Simple OLS and RCT

Make Comparison Make Sense
Multiple OLS Regression: Introduction

Multiple OLS Regression: Estimation
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Causal Inference and RCT

* Causality is our main goal in the studies of empirical social science.
¢ The existence of makes social science more difficult than science.

* Based on Rubin Causal Model, are the key to causal
inference. And RCTs is the golden standard for causal inference.

* Although RCTs is a powerful tool for economists, every project or topic can NOT

be carried on by it.

* This is the reason why modern econometrics exists and develops. The main job

of econometrics is using non-experimental data to
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Furious Seven Weapons (-G zE)

* To build a reasonable counterfactual world or to find a proper control group is the

core of econometric methods.

1

o VAW

7.

Randomized controlled trial(RCTs)

Regression([d] J9)

Matching and Propensity Score(It # 51 [a]1547)
Instrumental Variable (TEZT &)

Regression Discontinuity (HfZ&[@)7)

Panel Data and Difference in Differences (WZEHE{EEX)
Synthetic Control Method (& B#=#li%)

* The most fundamental of these tools is regression. It compares treatment and

control subjects with the same observable characteristics in a generalized

manner.

* It paves the way for the more elaborate tools used in the class that follow.

* Let’s start our exciting journey from OLS Regression.
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Class Size and Students’s Performance

* Recallin the last lecture, we discussed how to find the relationship between class
size and students’ performance.

* More specifically, we random divide the students into two groups, one with
small class size and the other with large class size.

* Then we compare the average test scores of the two groups.

* If the average test scores of the small class size group is higher than the large
class size group significantly, we can conclude that small class size is better for
students’ performance.

* However, the answer is really what we want originally?
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Question: Class Size and Student’s Performance

¢ More Quantitative Question:

» What is the effect on district test scores if we would increase district average class
size by 1 student (or one unit of Student-Teacher’s Ratio)

* If we could know the full relationship between two variables which can be
summarized by a real value function, f(-)

Testscore = f(ClassSize)

* Unfortunately, the function form is always unknown.
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Question: Class Size and Student’s Performance

* Two basic methods to describe the function.

* non-parametric: we don’t care the specific form of the function, unless we know all
the values of two variables, which actually are the whole distributions of class size
and test scores.

* parametric: we have to suppose the basic form of the function, then to find values
of some unknown parameters to determine the specific function form.

* Both methods need to use samples to inference populations in our random and
unknown world.
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Question: Class Size and Student’s Performance

* Suppose we choose parametric method, then we just need to know the real value
of a parameter /3, to describe the relationship between Class Size and Test Scores

ATestscore

b= AClassSize

* Next step, we have to suppose specific forms of the functionf(-), still two

categories: linear and non-linear

* And we start to use the simplest function form: a linear equation, which is
graphically a straight line, to summarize the relationship between two variables.

Test score = By + 1 X Class size

where [3; is actually the the slope and f is the intercept of the straight line.
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Class Size and Student’s Performance

* BUT the average test score in district ; does not only depend on the average class
size
* Italso depends on other factors such as
* Student background
* Quality of the teachers
¢ School’s facilitates
* Quality of text books
* Random deviation
* So the equation describing the linear relation between Test score and Class size

is better written as
Test score; = By + 1 X Class size; + u;

where 1, lumps together all other factors that affect average test scores.
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Terminology for Simple Regression Model

¢ The linear regression model with one regressor is denoted by
Yi = Po+ A Xi+ui

* Where

* Y, is the dependent variable(Test Score)

+ X, is the independent variable or regressor(Class Size or Student-Teacher Ratio)

* Bo + [1X; is the population regression line or the population regression function

* The intercept 3y and the slope /3; are the coefficients of the population regression
line, also known as the parameters of the population regression line.

 w,; is the error term which contains all the other factors besides X that determine
the value of the dependent variable, Y, for a specific observation, i.
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Graphics for Simple Regression Model

[ m Scatterplot of Test Score vs. Student-Teacher Ratio
(Hypothetical Data)

The scatterplot shows Test score (Y)
hypothetical observations 700 ~
for seven school districts.
The population regres-
sion lineis B, + B,X. The
vertical distance from the
it point to the population g0 |-
regression line is

Y; — (B, + B,X), which

680

is the population error 640 -
term u; for the it" r
observation. 620
600 L '
10 15 20 25 30

Student—teacher ratio (X)
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How to find the “best” fitting line?

* In general we don’t know /3y and 3; which are parameters of population
regression function but have to calculate them using a bunch of data: the
sample.

@EITTED scatterplot of Test Score vs. Student-Teacher Ratio (California School District Data

Data from 420

California school dis-
tricts. There is a weak
negative relationship 7001

Test score
20 -

~1
]

between the student—

teacherratioand test 80

scores: The sample

correlation is —0.23. 660
640

i
15 20 25 30
Student—teacher ratio

¢ So how to find the line that fits the data best? 14/207



The Ordinary Least Squares Estimator (OLS)

The OLS estimator

* Chooses the best regression coefficients so that the estimated regression line is
as close as possible to the observed data, where closeness is measured by the
sum of the squared mistakes made in predicting Y given X.

» Let by and by be estimators of 3y and 3;,thus by = /3’0,171 = Bl

¢ The predicted value of Y; given X; using these estimators is by + b; X, or
Bo + 31 X; formally denotes as Y;, thus

Yi = fo + fi X,
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The Ordinary Least Squares Estimator (OLS)

The OLS estimator

¢ The prediction mistake is the resudial, thus the difference between Y; and
Y;,which denotes as ;

;=Y = Yi=Y; — (bo + b1 X;)

* The estimators of the slope and intercept that minimize the sum of the squares of
ﬁi,thus

argmmZu = mznz —bo — lei)2
bo,b1 i=1 i=1

are called the ordinary least squares (OLS) estimators of /5y and f3;.
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The Ordinary Least Squares Estimator (OLS)

* OLS minimizes sum of squared prediction mistakes:

* Solve the problem by F.0.C(the first order condition)
* Step 1for fy:
a n
87[70 Z(}/z - bO - leZ‘)Z =0
=1
* Step 2 for f4:
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OLS estimator of 3

OLS estimator of [3:
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The Estimated Regression Line

¢ Obtain the values of OLS estimator for a certain data,
By = —2.28 and By = 698.9

* Then the regression line is
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The Estimated Regression Line

e Obtain the values of OLS estimator for a certain data,
B = —2.28 and By = 698.9
* Then the regression line is

m The Estimated Regression Line for the California Data

The estimated regres-  Test score

sion line shows a 720
[negative]relationship 3 .
between test scores 7001 :

and the student- r

teacher ratio. If class 680

sizes fall by one

student, the estimated 660 [

regression predicts that [

640 -

test scores will increase

by 2.28 points.

600
10

|
15 20 25 30
Student—teacher ratio
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Measures of Fit: The R?

* Because the variation of Y can be summarized by a statistic: Variance,so the
total variation of Y;, which are also called as the total sum of squares (TSS), is:

n
TSS=> (Yi-Y)?
i=1
* Because Y; can be decomposed into the fitted value plus the residual:
Y, = YZ + 4;,then likewise Y}, we can obtain
« The explained sum of squares (ESS): 3", (V; — Y)?
* The sum of squared residuals (SSR): >, (Y; — Y;)2 = S0, @?
+ And more importantly, the variation of ¥; should be a sum of the variations of ¥;
and 4;, thus
TSS =ESS+ SSR
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Measures of Fit: The R?

R? or the coefficient of determination

R? or the coefficient of determination, is the fraction of the sample variance of Y;

explained/predicted by X;

2_ESS_1_SSR
- TSS TSS

e So0 < R? < 1, it measures that how much can the variations of Y be explained
by the variations of X; in share.

* NOTICE: It seems that R-squares is bigger, the regression is better, which is NOT
RIGHT in most cases. Because we DON’T care much about R? when we make

causal inference about two variables.
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The Linear Regression Model

* In order to investigate the statistical properties of OLS, we need to make some
statistical assumptions
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The Linear Regression Model

* In order to investigate the statistical properties of OLS, we need to make some
statistical assumptions

Linear Regression Model

Two random variables Y; and X, their relationship can satisfy the linear regression
equation, thus
Yi = Bo + f1Xi 4w

* This is not a required assumption. We will extend the model to be nonlinear

later on.
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Assumption 1: Conditional Mean is Zero

Assumption 1: Zero conditional mean of the errors given X

The error,u; has expected value of 0 given any value of the independent variable

E[U¢|X¢:l‘]:0

24/207



Assumption 1: Conditional Mean is Zero

Assumption 1: Zero conditional mean of the errors given X

The error,u; has expected value of 0 given any value of the independent variable

E[U¢|X¢:l‘]:0

Implications of Assumption 1

With the Iterated Expectation Law, we can obtain an extra implicit assumption
about u;, thus

E(u;) = E(E(ui] X;)) =0

* It seems that the assumption is too strong, but given that the linear regression
model have a intercept /3), which means that we could always make the
assumption true by redefining the intercept.
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Assumption 1: Conditional Mean is Zero

e An weaker condition that u; and X; are uncorrelated:

Covlu;, Xi] = E[u; X;] =0

Covariance and Conditional Mean

Although Cov[u;, X;] = 0 # E[Y;|X;], we have

COU[UZ‘,XZ‘] 75 0= E[UZ|XZ] 75 0

¢ if u; and X; are correlated, then Assumption 1is violated.
¢ Equivalently, the population regression line is the conditional mean of Y; given
X, thus
EYi|Xi] = fo + 1 Xi
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Assumption 1: Conditional Mean is Zero

Test score
720

700 L

680

660

640 -

620

600

m The Conditional Probability Distributions and the Population

Regression Line

Distribution of ¥ when X = 15

Distribution of ¥ when X = 20

/

E(Y|X =25)

Distribution of ¥ when X =25

E(Y]X = 15)

E(Y|X =20)
Bo+B:X

10

15 20 25 30
Student—teacher ratio

The figure shows the conditional probability of test scores for districts with class sizes of 15, 20,
and 25 students. The mean of the conditional distribution of test scores, given the student-
teacher ratio, £(Y| X), is the population regression line. At a given value of X, Y is distributed

around the regression line and the error,u = Y — (B, + ,X), has a conditional mean of zero
for all values of X.
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Assumption 2: Random Sample

Assumption 2: Random Sample

We have a ii.d random sample of size, {(X;,Y;),? = 1, ..., n} from the population

regression model above.
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Assumption 2: Random Sample

Assumption 2: Random Sample

We have a ii.d random sample of size, {(X;,Y;),? = 1, ..., n} from the population

regression model above.

¢ This is an implication of random sampling. Then we have such as

Cov(X;, X;)
Cov(Y;, X;)
Cov(ui, Xj)

0
0
0

* And it generally won’t hold in other data structures.

* time-series, cluster samples and spatial data.
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Assumption 3: Large outliers are unlikely

Assumption 3: Large outliers are unlikely

It states that observations with values of X, Y; or both that are far outside the usual
range of the data(Outlier) are unlikely. Mathematically, it assume that X and Y have

nonzero finite fourth moments.

 Large outliers can make OLS regression results misleading.

* One source of large outliers is data entry errors, such as a typographical error or
incorrectly using different units for different observations.

* Data entry errors aside, the assumption of finite kurtosis is a plausible one in
many applications with economic data.

28/207



Assumption 3: Large outliers are unlikely

@D The Sensitivity of OLS to Large Outliers

This hypothetical data set has one v
outlier. The OLS regression line 2000 —
estimated with the outlier shows .
a strong positive relationship between 1700 —
Xand Y, but the OLS regression line
estimated without the outlier shows 1400 —
no relationship.

1100 —
800~
OLS regression line
N including outlier
500 —
200

OLS regression line
excluding outlier
1 I

0 I
30 40 50 60 70
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Underlying Assumptions of OLS

* The OLS estimator is unbiased, consistent and has asymptotically normal
sampling distribution if
1. Random sampling.
2. Large outliers are unlikely.
3. The conditional mean of u; given X is zero.
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Underlying assumptions of OLS

* OLS is an estimator: it’s a machine that we plug data into and we get out
estimates.

* Ithas a sampling distribution, with a sampling variance/standard error, etc.
like the sample mean, sample difference in means, or the sample variance.

* Let’s discuss these characteristics of OLS in the next section.
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The OLS estimators

* Question of interest: What is the effect of a change in X;(Class Size) on Y;(Test
Score)
Yi=Po+ A Xi+u

» We derived the OLS estimators of 3y and/;:

— PN

Bo=Y — 1 X
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The OLS estimators

* Question of interest: What is the effect of a change in X;(Class Size) on Y;(Test

Score)
Yi = Bo + B1.X; + u;

» We derived the OLS estimators of 3y and/;:

— PN

Bo=Y — 1 X

B, = Y - X)(Yi - Y)
(X = X)(Xi — X)
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Least Squares Assumptions

1. Assumption 1: Conditional Mean is Zero
2. Assumption 2: Random Sample
3. Assumption 3: Large outliers are unlikely

o If the 3 least squares assumptions hold the OLS estimators will be

* unbiased
* consistent
* normal sampling distribution
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Properties of the OLS estimator: unbiasedness

* Skipped the proof of unbiasedness of OLS estimator, but we can show that

E[f1] = prif Blu| X;] =0
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Review: Conditional Expectation Function(CEF)

 Expectation(for a continuous r.v.)

B(y) = [ urw)dy

* Conditional Expectation Function: the Expectation of Y conditional on X is

Blyle) = [ yfyix(yle)dy
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Review: Properties of CEF

* Conditional Expectation Function: the Expectation of Y conditional on X is

Eyl) = [ ufyix(la)dy

* where fyx(y|r) = %;7((;6)@ is the conditional probability density function of Y’
given X.

* Let X, Y, Z are random variables; a, b € R; g(+) is a real valued function, then we
have

* Ela|Y]=a

* E[(aX +02) | Y] =aE[X |Y]|+bE[Z|Y]
« If X and Y are independent, then E[Y | X| = E[Y]
* ElYg(X) | X]=g(X)E[Y | X]. Inparticular, E[g(Y) | Y] = g(Y)
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Review: the Law of Iterated Expectations(LIE)

the Law of Iterated Expectations

It states that an unconditional expectation can be written as the unconditional
average of conditional expectation function.

E(Y:) = E[E(Yi|X))]
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Review: the Law of Iterated Expectations(LIE)

the Law of Iterated Expectations

It states that an unconditional expectation can be written as the unconditional
average of conditional expectation function.

E(Y:) = E[E(Yi|X))]
and it can easily extend to

E(9(X)Y:) = E[E(g(X:)Yi| Xy)] = E[g(Xs) E(Y;| X3)]
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Proof: the Law of Iterated Expectation(LIE)

* Prove it by a continuous variable way

E[E(Y|X)] =
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Proof: the Law of Iterated Expectation(LIE)

* Prove it by a continuous variable way

BIEWIX)) = [ BOIX = w)/fx (wdu
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Proof: the Law of Iterated Expectation(LIE)

* Prove it by a continuous variable way

BIEWIX)) = [ BOIX = w)/fx (wdu

:/[/tfy(ﬂX:u)dt}fx( )du
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Proof: the Law of Iterated Expectation(LIE)

* Prove it by a continuous variable way

E[E(Y|X)] /E Y|X = u)fx(u)du
:/[/tfy(ﬂX:u)dt}fx( )du
- //tfy(ﬂX = u) fx (u)dtdu
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Proof: the Law of Iterated Expectation(LIE)

* Prove it by a continuous variable way

E[E(Y|X)] /E YIX = u) fx (u)du
:/[/tfy(ﬂx—u)dt}fx( )du
_ //tfy(ﬂX = u) fx (u)dtdu
= [4] [ #r(tx = w)px(w)da]as
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Proof: the Law of Iterated Expectation(LIE)

* Prove it by a continuous variable way

E[E(Y|X)] /E Y|X = u)fx(u)du
:/[/tfy(ﬂx—u)dt}fx( )du

_ / (X = u) fx (u)dtdu

/
:/ [/fytp(_u u)du] dt
I
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Proof: the Law of Iterated Expectation(LIE)

* Prove it by a continuous variable way

BIEWIX)) = [ BOIX = w)/fx (wdu

J [ thvteix = wat] s (wdu

[ [t e1x = wix (ydtdu
/fy X = u) fx(u )du}dt

J
[ vt
/t

fy(t)dt
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Proof: the Law of Iterated Expectation(LIE)

* Prove it by a continuous variable way

BIEWIX)) = [ BOIX = w)/fx (wdu

J [ thvteix = wat] s (wdu
= [ [ty (01X =w fxwydtdu
/ /fy X = u) fx(u )du}dt
[ s
/tfy(t)dt
E(Y

) 39/207




Conditional Expectation and Covariance

¢ Please proveif E(Y|X)=0= Cov(X,Y) =0

Cov(XY) = E(XY) — E(X)E(Y)
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Conditional Expectation and Covariance

¢ Please proveif E(Y|X)=0= Cov(X,Y) =0

Cov(XY) = E(XY) — E(X)E(Y)
— E[B(XY|X)] - B(X)E[E(Y|X)]

40/207



Conditional Expectation and Covariance

¢ Please proveif E(Y|X)=0= Cov(X,Y) =0

Cov(XY) = E(XY) — E(X)E(Y)
E[E(XY|X)] - E(X)E[E(Y|X)]
= E[XE(Y|X)]

)
)
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Conditional Expectation and Covariance

¢ Please proveif E(Y|X)=0= Cov(X,Y) =0

Cov(XY) = E(XY) — E(X)E(Y)
E[E(XY|X)] - E(X)E[E(Y|X)]
E[XE(Y|X)]
0

)
)
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Properties of the OLS estimator: Consistency

¢ Notation: Bl SR B or plimﬁl = 1, s0

. X —
plimpB, = plim{ 2 =

e Then we could obtain

plimf =plim[: 11 X : )((i )XH :plim(i?)

where s, and s2 are sample covariance and sample variance.
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Math Review: Continuous Mapping Theorem

* Continuous Mapping Theorem: For every continuous function ¢(¢) and random
variable X:

plim(g(X)) = g(plim (X))
* Example:
plim(X +Y) = plim(X) + plim(Y)
X,  plim(X)

plim(37) = plim(Y)

v if plim(Y)#0
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Properties of the OLS estimator: Consistency

* Base on L.L.N(the law of large numbers) and random sample(i.i.d)
sk 25 0% = Var(X)

Szy Loy = Cov(X,Y)

* Combining with Continuous Mapping Theorem,then we obtain the OLS
estimator Bl,when n —> 00

Cov(X;,Y;)

s o (Sey )
plim 31 [)ZML(S;QC> - Var(X;)
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Properties of the OLS estimator: Consistency

Cov(X;,Y;)

plimf = Var(X;)
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Properties of the OLS estimator: Consistency

Cov(X;,Y;)

Var(X;)
_ Cou(Xy, (Bo + B1Xi + uy))
B Var(X;)

plimf3y =
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Properties of the OLS estimator: Consistency

Cov(X;,Y;)
Var(X;)
_ Cou(Xy, (Bo + B1Xi + uy))
B Var(X;)
_ Cov(X;, Bo) + f1Cov(Xi, X;) + Cov(X;, u;)
N Var(X;)

plimf3y =
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Properties of the OLS estimator: Consistency

Cov(X;,Y;)
Var(X;)
_ Cou(Xy, (Bo + B1Xi + uy))
B Var(X;)
_ Cov(X;, Bo) + f1Cov(Xi, X;) + Cov(X;, u;)
N Var(X;)

plimf3y =

Cov(X;, u;)

= A Var(X;)
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Properties of the OLS estimator: Consistency

Cov(X;,Y;)
Var(X;)
_ Cou(Xy, (Bo + B1Xi + uy))
N Var(X;)
_ Cov(X;, Bo) + f1Cov(Xi, X;) + Cov(X;, u;)
N Var(X;)
Cov(X;, u;)
Var(X;)

plimf3y =

=p1+

¢ Then we could obtain
plimfy = B1if Elui|X;] =0
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Wrap Up: Unbiasedness vs Consistency

* Unbiasedness & Consistency both rely on E[u;| X;] = 0

* Unbiasedness implies that F/ [’?ﬂ = [3; for a certain sample size n.(“small
sample”)

« Consistency implies that the distribution of ; becomes more and more _tightly
distributed around /3, if the sample size n becomes larger and larger.(“large
sample™)

+ Additionally,you could prove that j is likewise Unbiased and Consistent on the
condition of Assumption 1.
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Sampling Distribution of % and ? Recalll of Y

Firstly, Let’s recall: Sampling Distribution of Y’
Because Y7, ..., Y, areiid. and py is the mean of the population,then for
L.L.N,we have

E(Y) = py

Based on the Central Limit theorem(C.L.T) and the 0% is the variance of the
population, the sample distribution in a large sample can approximates to a

normal distribution, thus

Y ~N X
(:uY7n)

Therefore, the OLS estimators ,@0 and Bl could have similar sample distributions

when three least squares assumptions hold.
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Sampling Distribution of 3, and j,: Expectation

* Unbiasedness of the OLS estimators implies that

E[B1] = b1 and E[fo] = fo

+ Likewise as Y, the sample distribution of 3; or 3, in a large sample can also
approximates to a normal distribution based on the Central Limit theorem(C.L.T)

Bi~ N(Br,0%)
Bo ~ N (Bo, 020)
e Where it can be shown that
52 1Var[(Xi — pa)u]
Prn [Var(X;))?
52 lVar(HiuZ-))
b n (BE[HZ])?

)
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Sampling Distribution /3, in large-sample

¢ We have shown that
o 1Var[(X; — pg)ui]

76 "0 Var(X) )

* Anintuition: The variation of X is very important.

o Because if Var(X;) is small, it is difficult to obtain an accurate estimate of the
effect of X on Y which implies that Var(3,) is large.
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Variation of X

@I The Variance of 8, and the Variance of X

The colored dots represent ~ y
aset of X's with a small 206 —
variance. The black dots
represent a set of X/'s with
alarge variance. The 204 — ° .
regression line can be .
estimated more accurately . ~ 5
202 . o .,
with the black dots than b o, 2
.
with the colored dots. ° 0t o
o ed ig- e =
200 - o cond
e W LN
L
198 o op®
.
.
.
196 —
.
194 L Il L Il L J
97 98 99 100 101 102 103
X

* When more variation in X, then there is more information in the data that you
can use to fit the regression line.
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In a Summary

Under 3 least squares assumptions, the OLS estimators will be

unbiased
consistent
normal sampling distribution

more variation in X, more accurate estimation
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OLS Regression and RCT

* We learned RCT is the “golden standard” for causal inference.Because it can
naturally eliminate selection bias.

* So far, we did not discuss the relationship between RCT and OLS regression,
which means that we can not be sure that the result from an OLS regression can
be explained as “causal”.

* Instead of using a continuous regressor X, the regression where D; is a binary
variable, a so-called dummy variable, will help us to unveil the relationship
between RCT and OLS regression.
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Regression when X is a Binary Variable

* For example, we may define D; as follows:

1 if ST R in it" school district < 20
L (4.2)

0 if ST R in i'" school district > 20

* The regression can be written as

Y = po+ 1D + u; (CHY)
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Regression when X is a Binary Variable

* More precisely, the regression model now is
TestScore; = By + f1D; + u; 4.3)

» With D as the regressor, it is not useful to think of 3; as a slope parameter.
* Since D; € {0, 1}, i.e., we only observe two discrete values instead of a continuum
of regressor values.

¢ There is no continuous line depicting the conditional expectation function
E(TestScore;|D;) since this function is solely defined for z-positions 0 and 1.
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Class Size and STR

Dummy Regression
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Class Size and STR

Dummy Regression
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Regression when X is a Binary Variable

¢ Therefore, the interpretation of the coefficients in this regression model is as
follows:

* E(Y:|D; = 0) = fy, so f is the expected test score in districts where D; = 0 where
STR is below 20.

* E(Y;|D; =1) = By + 1 where ST R is above 20

* Thus, 3, is the difference in group specific expectations, i.e,, the difference in
expected test score between districts with ST R < 20 and those with ST R > 20,

By = B(Y|D; = 1) — E(Yi|D; = 0)
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Causality and OLS

e Letus recall, the individual treatment effect

ICE=Y,— Yy =06 Wi

 The ATE is the average of the ICE and ATT is the average of the ICE for the
treated group.
p=E(5;) or p=E(6;|D = 1)
* Either way, the treatment effect is a constant, i.e., it does not depend on the
individual.
* Our OLS regression function is to estimate a constant treatment effect p, thus
Y; = & +D; p  + \nL

N
E[Yoi] Yii—Yoi Yo, —E[Yoi]
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Causality and OLS

* Now write out the conditional expectation of Y; for both levels of D;

E[Y:|Di=0=Ela+n|D;=0=a+E|D;=0]

o Take the difference

ElYi|Di=1] - E[Y;i|D; =0] = p+ E[n:|Di = 1] — E[n; | D; = (]

Selection bias
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Causality and OLS

* Again, our estimate of the treatment effect (p) is only going to be as good as our
ability to shut down the selection bias.

* Selection bias in regression model: E [n;|D; = 1] — E [n; | D; = 0]

* There is something in our disturbance 7, that is affecting Y; and is also
correlated with D,.
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Simple OLS Regression v.s. RCT

* In a simple regression model, OLS estimators are just a generalizing continuous
version of RCT when least squares assumptions are hold.

e But in contrast to RCT, in observational studies, researchers cannot control the
assignment of treatment into a treatment group versus a control group,which
means that the two groups are incomparable.

* To make two groups comparable, we need to keep treatment and control group
“other thing equal”in observed characteristics and unobserved characteristics.

* OLS regression is valid only when least squares assumptions are hold.

* However,it is not easy to obtain in most cases. We have to know how to make a

convincing causal inference when these assumptions are not hold.
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Case: Smoke and Mortality

* Criticisms from Ronald A. Fisher
* No experimental evidence to incriminate smoking as a cause of lung cancer or
other serious disease.
* Correlation between smoking and mortality may be spurious due to biased
selection of subjects.
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Case: Smoke and Mortality

e Criticisms from Ronald A. Fisher

* No experimental evidence to incriminate smoking as a cause of lung cancer or
other serious disease.

* Correlation between smoking and mortality may be spurious due to biased
selection of subjects.

VA

S——M

» Confounder, Z, creates backdoor path between smoking and mortality
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Case: Smoke and Mortality(Cochran 1968)

Table 1: Death rates(3£ - %) per 1,000 person-years

Smoking group Canada UK. US.
Non-smokers(A~I 4H) 20.2 11.3 135
Cigarettes(Z&4H) 20.5 141 135

Cigars/pipes(ZFan/M8s}) 355 207 174
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Case: Smoke and Mortality(Cochran 1968)

Table 1: Death rates(3£ - %) per 1,000 person-years

Smoking group Canada UK. US.
Non-smokers(A~I 4H) 20.2 11.3 135
Cigarettes(Z&4H) 20.5 141 135

Cigars/pipes(ZFan/M8s}) 355 207 174

* It seems that taking cigars is more hazardous than others to the health?
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Case: Smoke and Mortality(Cochran 1968)

Table 2: Non-smokers and smokers differ in age

Smoking group Canada UK. US.
Non-smokers(AIf 1) 54.9 491 570
Cigarettes(Z 1) 50.5  49.8 53.2

Cigars/pipes(ZEan/M8s}) 659 557 597
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Case: Smoke and Mortality(Cochran 1968)

Table 2: Non-smokers and smokers differ in age

Smoking group Canada UK. US.
Non-smokers(AIf 1) 54.9 491 570
Cigarettes(Z 1) 50.5  49.8 53.2

Cigars/pipes(ZEan/M8s}) 659 557 597

¢ Older people die at a higher rate, and for reasons other than just smoking cigars.

* Maybe cigar smokers higher observed death rates is because they’re older on
average.
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Case: Smoke and Mortality(Cochran 1968)

* The problem is that the age are not balanced, thus their mean values differ for
treatment and control group.

* let’s try to balance them, which means to compare mortality rates across the
different smoking groups within age groups so as to neutralize age imbalances
in the observed sample.

* Itnaturally relates to the concept of Conditional Expectation Function.
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Case: Smoke and Mortality(Cochran 1968)

How to balance?

1. Divide the smoking group samples into age groups.

2. For each of the smoking group samples, calculate the mortality rates for the age
group.

3. Construct probability weights for each age group as the proportion of the
sample with a given age.

4. Compute the weighted averages of the age groups mortality rates for each
smoking group using the probability weights.
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Case: Smoke and Mortality(Cochran 1968)

Death rates Number of

Pipe-smokers Pipe-smokers Non-smokers

Age 20-50 0.15 1 29
Age 50-70 0.35 13 9
Age +70 0.5 16 2
Total 40 40

* Question: What is the average death rate for pipe smokers?
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Case: Smoke and Mortality(Cochran 1968)

Death rates Number of

Pipe-smokers Pipe-smokers Non-smokers

Age 20-50 0.15 1 29
Age 50-70 0.35 13

Age +70 0.5 16 2
Total 40 40

* Question: What would the average mortality rate be for pipe smokers if they
had the same age distribution as the non-smokers?
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Case: Smoke and Mortality(Cochran 1968)

Death rates Number of

Pipe-smokers Pipe-smokers Non-smokers

Age 20-50 0.15 1 29
Age 50-70 0.35 13

Age +70 0.5 16 2
Total 40 40

* Question: What would the average mortality rate be for pipe smokers if they
had the same age distribution as the non-smokers?
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Case: Smoke and Mortality(Cochran 1968)

Table 3: Non-smokers and smokers differ in mortality and age

Smoking group Canada UK. US.
Non-smokers(A~I H) 20.2 113 135
Cigarettes(& 1) 283 128 177

Cigars/pipes(F 7/ 8=})
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Case: Smoke and Mortality(Cochran 1968)

Table 3: Non-smokers and smokers differ in mortality and age

Smoking group Canada UK. US.
Non-smokers(A~I H) 20.2 113 135
Cigarettes(& 1) 283 128 177

Cigars/pipes(F 7/ 8=})

* Conclusion: It seems that taking cigarettes is most hazardous, and taking pipes
is not different from non-smoking.
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Formalization: Covariates

Definition: Covariates

Variable X is predetermined with respect to the treatment D if for each individual ¢,
X? = X!, ie, the value of X; does not depend on the value of D;. Such
characteristics are called covariates.

¢ Covariates are often time invariant (e.g., sex, race), but time invariance is nota

necessary condition.
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Identification under Independence

* Recall that randomization in RCTs implies
(Yo, Y1;) 1L D
and therefore:

E[Y|D=1]-E[Y|D=0]= E[Yu|D =1] - E[Yy|D = 0]

by the switching equation
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* Recall that randomization in RCTs implies
(Yoi, Y1) 1L D
and therefore:
ElY|D=1]-E[Y|D =0]= E[Yu|D = 1] — E[Yy|D = 0]
by the switching equation

— E[YulD = 1] - E[Yo|D = 1]
by independence
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(Yoi, Y1;) 1L D
and therefore:
ElY|D=1]-E[Y|D =0]= E[Yu|D = 1] — E[Yy|D = 0]
by the switching equation
= E[Yu|D =1] — E[Yy|D = 1]
by independence

= EY1; — Yoi|D = 1]
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Identification under Independence

* Recall that randomization in RCTs implies
(Yoi, Y1;) 1L D
and therefore:
ElY|D=1]-E[Y|D =0]= E[Yu|D = 1] — E[Yy|D = 0]
by the switching equation

= E[Yu|D =1] — E[Yy|D = 1]

by independence
= EY1; — Yo|D = 1]

ATT
= E[Y1; — Yol
~———

ATE
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Identification under Conditional Independence

* Conditional Independence Assumption(CIA): which means that if we can
“balance” covariates X then we can take the treatment D as randomized, thus

(Y14, Yo:) 1L D|X

* Now as (YM,YE)Z‘) A D‘X <+ (Yu,Ybi) 1 D,
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Identification under Conditional Independence

* Conditional Independence Assumption(CIA): which means that if we can
“balance” covariates X then we can take the treatment D as randomized, thus

(Y14, Yo:) 1L D|X
e Nowas (Y1, Yo;) 1L D|X < (Y1;,Yy) UL D,

E[Yyi|D = 1] - E[Yoi|D = 0] # E[Yui|D = 1] — E[Yy|D = 1]
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Identification under Conditional Independence(CIA)

* But using the CIA assumption, then

E[Y11|D = 1] — E[YYOZ|D = O] = E[Y11|D =1, XV} — FDI;,‘D =0, Xr}

association conditional on covariates

74/207



Identification under Conditional Independence(CIA)

* But using the CIA assumption, then

E[Y11|D = 1] — E[YYOZ|D = O] = E[Y11|D =1, XV} — FDI;,‘D =0, Xr}
association conditional on covariates

= E[YulD=1,X] - EYyD=1,X]

conditional independence

74/207



Identification under Conditional Independence(CIA)
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conditional independence
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Identification under Conditional Independence(CIA)

* But using the CIA assumption, then

E[Yy;|D = 1] — E[Yy|D =0] =

E[Yi|D=1,X]— ENVy|D =0, X]

association

conditional on covariates

E[Yi|D =1,X] — E[Yu|D =1, X]

conditional independence
EYy; — Yyu|D =1, X|

conditional ATT

E[Y1; — Yoi| X]
——_— ———

conditional ATE
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Curse of Multiple Dimensionality

* Sub-classification in one or two dimensions as Cochran(1968) did in the case of
Smoke and Mortality is feasible.

* But as the number of covariates we would like to balance grows(like many
personal characteristics such as age, gender,education,working
experience,married,industries,income, ), then the method become less feasible.

* Assume we have k covariates and we divide each into 3 coarse categories (e.g.,
age: young, middle age, old; income: low,medium, high, etc.)

+ The number of cells(or groups)is 3.
* If k = 10 then 3'° = 59049
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Making Comparison Make Sense

e Selection on Observables
* Regression
* Matching

e Selection on Unobservables
e IV,RD,DID,FE and SCM.

* The most fundamental tool among them is regression, which compares
treatment and control subjects who have the same observable characteristics in

a generalized manner.
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Violation of the 1st Least Squares Assumption

* Recall simple OLS regression equation
Yi = Bo+ A Xi+u

* Question: What does u; represent?
* Answer: contains all other factors(variables) which potentially affect Y;.
* Assumption 1
E(u;i]lX;) =0

* It states that u; are unrelated to X in the sense that,given a value of X;,the mean
of these other factors equals zero.
* But what if they (or at least one) are correlated with X;?
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Example: Class Size and Test Score

* Many other factors can affect student’s performance in the school.

* One of factors is the share of immigrants in the class. Because immigrant
children may have different backgrounds from native children, such as

* parents’ education level

* family income and wealth
* parenting style

* traditional culture
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The share of immigrants and STR
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The share of immigrants and STR
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The share of immigrants as an Omitted Variable

¢ Class size may be related to percentage of English learners and students who are
still learning English likely have lower test scores.
* In other words, the effect of class size on scores we had obtained in simple OLS
may contain an effect of immigrants on scores.
* Itimplies that percentage of English learners is contained in u;, in turn that
Assumption 1 is violated.

* More precisely,the estimates of 5; and [, are biased and inconsistent.
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Omitted Variable Bias: Introduction

* Asbefore, X; and Y; represent STR and Test Score,repectively.
* Besides, IV; is the variable which represents the share of english learners.

* Suppose that we have no information about it for some reasons, then we have to
omit in the regression.

* Thus we have two regressions in mind:
* True model(the Long regression):
Yi = Bo + B1Xs + Wi + u;
where F(u;|X;) =0
* OVB model(the Short regression):
Y = Bo+ 51X + v
where v; = YW, + u;

83/207



Omitted Variable Bias(OVB): inconsistency

« Recall: simple OLS is consistency when n is large, thus plim/3; = C‘(}Z(T)((X?;)
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Omitted Variable Bias(OVB): inconsistency
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B VarX;
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Omitted Variable Bias(OVB): inconsistency

« Recall: simple OLS is consistency when n is large, thus plim/3; = %
s Cou(X;,Y;)
A T
_ Cov(Xy, (8o + 51X + i)
B VarX;
_ Cov(X, (Bo + Bi1Xi + Wi + wi))

VarX;
_ Cov(Xy, By) + B1Cov( X5, X;) +vCov(X;, W;) + Cov(Xy, u;)
- VarX;
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Omitted Variable Bias(OVB): inconsistency

« Recall: simple OLS is consistency when n is large, thus plim/3; = %
A Cov(X;,Y;)
plimf = VarX;
. OO’U(XZ', (J() + ;lAXi + 1'/))
- VarX;
_ Cov(Xy, (Bo + 1 X + Wi + uy))
N VarX;
_ Cov(Xy, By) + B1Cov( X5, X;) +vCov(X;, W;) + Cov(Xy, u;)
- VarX;
Cov(X;, W,
=y + 42X )

VarX;
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Omitted Variable Bias(OVB): inconsistency

e Thus we obtain
Cov(X;, W;)

plimfBy = b1+~ VarX,
. ﬁAl is still consistent
o if W, is unrelated to X, thus Cov(X;, W;) =0
e if W, has no effecton Y}, thusy = 0
« Only if both two conditions above are violated simultaneously, then 3 is
inconsistent.
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Omitted Variable Bias(OVB):Directions

+ If OVB can be possible in our regressions,then we should guess the directions of
the bias, in case that we can’t eliminate it.

* A summary of the directions of the OVB bias
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Omitted Variable Bias(OVB):Directions

+ If OVB can be possible in our regressions,then we should guess the directions of
the bias, in case that we can’t eliminate it.

* A summary of the directions of the OVB bias

COU(XZ', Wl) >0 COU(XZ',WZ') <0

v>0
Positive bias Negative bias

v<0
Negative bias Positive bias
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Omitted Variable Bias: Examples

* Question: If we omit following variables, then what are the directions of these

biases? and why?
1. Time of day of the test
The number of dormitories
Teachers’ salary
Family income
Percentage of English learners(the share of immigrants)

DA
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Omitted Variable Bias: Examples in R

* Regress Testscore on Class size

#>

#> Call:

#> Im(formula = testscr ~ str, data = ca)

#>

#> Residuals:

#> Min 1Q Median 30 Max

#> -47.727 -14.251 0.483 12.822 48.540

#>

#> Coefficients:

#> Estimate Std. Error t value Pr(>|t])

#> (Intercept) 698.9330 9.4675 73.825 < 2e-16 ***

#> str -2.2798 0.4798 -4.751 2.78e-06 **x*

#> ---

#> Signif. codes: 0 '"***' (0.001 '**' 0.01 '*' 0.05 '." 0.1 ' " 1
#>

#> Residual standard error: 18.58 on 418 degrees of freedom

#> Multiple R-squared: 0.05124, Adjusted R-squared: 0.04897
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Omitted Variable Bias: Examples in R

* Regress Testscore on Class size and the percentage of English learners

#>

#> Call:

#> Im(formula = testscr ~ str + el pct, data = ca)

#>

#> Residuals:

#> Min 1Q Median 30 Max

#> -48.845 -10.240 -0.308 9.815 43.461

#>

#> Coefficients:

#> Estimate Std. Error t wvalue Pr(>|t])

#> (Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
#> str -1.10130 0.38028 -2.896 0.00398 **
#> el pct -0.64978 0.03934 -16.516 < 2e-16 ***
#> -—=

#> Signif. codes: 0 '***' (Q.001 '**' 0.01 '*' 0.05 '." 0.1 ' "' 1
#>

#> Residual standard error: 14.46 on 417 degrees of freedom
#S Mpiltinle R—-cadiiared: 0O 4264 Ad-i11ieted R—cogiiared . 0O 47237
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Omitted Variable Bias: Examples in R

Table 5: Class Size and Test Score

Dependent variable:

testscr
@ @
str —2.280%** —1.101%**
(0.480) (0.380)
el_pct —0.650""*
(0.039)
Constant 698.933***  686.032***
(9.467) (7.411)
Observations 420 420

R? 0.051 0.426
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* OVB is the most common bias when we run OLS regressions using

nonexperimental data.

¢ OVB means that there are some variables which should have been included in
the regression but actually was not.

* Then the simplest way to overcome OVB: Put omitted the variable into the right side
of the regression, which means our regression model should be

Y = Bo+ b1 Xi + YW +u;

¢ The strategy can be denoted as controlling informally, which introduces the
more general regression model: Multiple OLS Regression.
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Multiple regression model with k regressors

* The multiple regression model is
Y =Bo+ B1X1i + BoXoi+ .. + B Xpi +usi =1,...,n A1)

where
¢ Y; is the dependent variable
* X1, Xy, ... X}, are the independent variables(includes one is our of interest and
some control variables)
* Bi,j = l...k are slope coefficients on X, corresponding.
* [ is the estimate intercept, the value of Y when all X; = 0,5 = 1..k
* w,; is the regression error term, still all other factors affect outcomes.
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Interpretation of coefficients

* [, is partial (marginal) effect of X; onY.

_ oy
- 0Xj,

Bi

* (3; is also partial (marginal) effect of E[Y;| X;..Xj].

g — OE[Y;| X1, ..., X
! 0X;

* it does mean that we are estimate the effect of X on Y when “other things equal”,
thus the concept of ceteris paribus.
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OLS Estimation in Multiple Regressors

* Asin a Simple OLS Regression, the estimators of Multiple OLS Regression is
just a minimize the following question
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OLS Estimation in Multiple Regressors

* Asin a Simple OLS Regression, the estimators of Multiple OLS Regression is
just a minimize the following question

argmin Z (E — bo — leL,- — . ka]m')Q
bo,b1,...,bk

where by = 1,b1 = B9, ..., b = ), are estimators.
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OLS Estimation in Multiple Regressors

* Similarly in Simple OLS, based on F.0.C,the multiple OLS estimators
30, Bl, - @k are obtained by solving the following system of normal equations
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OLS Estimation in Multiple Regressors

* Similarly in Simple OLS, based on F.0.C,the multiple OLS estimators
30, Bl, - @k are obtained by solving the following system of normal equations

a n A A A A
8bZU?ZZ<Yi—f3o—f31X1,i—~-—ﬁka,i> =0
0 =1
o I - A
Db Zuf = Z <Yz —Bo—BiX1i— ... — 5ka,i>X1,z‘ =0
i—1

Zﬁzz = Z (Yz —Bo—P1X1i— o — /gka,i>Xk,i =0
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OLS Estimation in Multiple Regressors

* Similar to in Simple OLS, the fitted residuals are
i =Y; — o — Ble,i - Bka,z'

¢ Therefore, the normal equations also can be written as

> ;=0
ZﬁiXLi =0

> 4 Xp; =0
* While it is convenient to transform equations above using matrix algebra to

compute these estimators, we can use partitioned regression to obtain the
formula of estimators without using matrices.
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Partitioned regression: OLS estimators

« A useful representation of 3; could be obtained by the partitioned regression,
which computed OLS estimators of 5;; j = 1,2...k in following 3 steps.
1. Regress X; on X1, Xo,...X;_1, X;41, X, thus

Xji=r+tnXu+ .. +v-1Xj—i + X + Xk v

2. Obtain the residuals from the regression above,denoted as X 5 =0ji
3. RegressY on X ;

* Thelast step implies that the OLS estimator of 3; can be expressed as follows

B = e (X Xp)(Yi—-Y) Yr XY
j = = = = —n
Ly (X — Xji)? > X3
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Partitioned regression: OLS estimators

* Suppose we want to obtain an expression for ;.

* Then the first step: regress X ; on other regressors, thus
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* Suppose we want to obtain an expression for ;.

* Then the first step: regress X ; on other regressors, thus

Xii =" +72Xo; + .. + VX +v;
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Partitioned regression: OLS estimators

* Suppose we want to obtain an expression for ;.

* Then the first step: regress X ; on other regressors, thus

Xii =" +72Xo; + .. + VX +v;

e Then, we can obtain
X1 =H0 + 42 Xai + o + X + X1

where X 1,i is the fitted OLS residual,thus X i = 015

* Then we could prove that

2 Z XIL 7
B = > sz
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A transformation of FWL theorem

Regression anatomy theorem

The multiple regression model is

Y, =080+ 1 X1, + BoXo;+ ... + BiXis +usi =1,...,n
Then estimator of f3, Bl, ..., B can be expressed as following

s Y XY

Bj = e forj=1,2 .k
Bt

where X ; is the fitted OLS residual of the regression X on the other X s.
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The intuition of partitioned regression

Partialling Out
* First, we regress X against the rest of the regressors (and a constant) and keep
X; which is the “part” of X that is uncorrelated
* Then, to obtain Bj , we regress Y against X; which is “clean” from correlation

with other regressors.
. Bj measures the effect of X after the effects of Xy, ..., X;; have been partialled

out or netted out.
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Measures of Fit: The R?

* Decompose Y; into the fitted value plus the residual Y; = Y; + 4
+ The total sum of squares (TSS): 7SS = Y7 | (V; — Y)?
+ The explained sum of squares (ESS): Y7, (¥; — V)2
+ The sum of squared residuals (SSR): 7, (V; — ¥;)2 = 3.7, 02
e And
TSS=FESS+ SSR
* The regression R? is the fraction of the sample variance of Y; explained by (or
predicted by) the regressors.
ESS SSR
T TSS TSS

* When you put more variables into the regression, then R? always increases when

RQ

you add another regressor. Because in general the SSR will decrease.
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Measures of Fit: The Adjusted R*

+ the Adjusted R?,is a modified version of the R? that does not necessarily
increase when a new regressor is added.

21 n—1 SSR

n—1 oph S
n—k—1TSS

2
1— [

2
Sy
* because % is always greater than 1, so R? < R?

« adding a regressor has two opposite effects on the RR2.
* RZ? canbe negative.

* Remind: neither R? nor R? is not the golden criterion for good or bad OLS estimation.
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A Special Case: Categorical Variable as X

* Recallif X is a dummy variable, then we can put it into regression equation
straightly.

* Whatif X is a categorical variable?

* Question: What is a categorical variable?

* For example, we may define D; as follows:
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A Special Case: Categorical Variable as X

* Recallif X is a dummy variable, then we can put it into regression equation
straightly.

* Whatif X is a categorical variable?

* Question: What is a categorical variable?

* For example, we may define D; as follows:

1 small-size class if ST R in i*" school district < 18
D; = < 2 middle-size class if 18 < STR in i*" school district < 22 4.5)

3 large-size class if STR in i*" school district > 22
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A Special Case: Categorical Variable as X

* Naive Solution: a simple OLS regression model
TestScore; = By + B1D; + u;

* Question: Can you explain the meanning of estimate coefficient /3;?

* Answer: It doese not make sense that the coefficient of 3; can be explained as
continuous variables.
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A Special Case: Categorical Variables as X

¢ The first step: turn a categorical variable(D;) into multiple dummy
variables(Dh-, DQZ‘, D3z)
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A Special Case: Categorical Variables as X

¢ The first step: turn a categorical variable(D;) into multiple dummy
variables(Dh-, DQZ‘, D3z)

D { 1 small-sized class if ST R in i'" school district < 18
1i =

0 middle-sized class or large-sized class if not

109/207



A Special Case: Categorical Variables as X

¢ The first step: turn a categorical variable(D;) into multiple dummy
variables(Dh-, DQZ‘, D3z)

D { 1 small-sized class if ST R in i'" school district < 18
1i =

0 middle-sized class or large-sized class if not

1 middle-sized class if 18 < ST'R in i’ school district < 22
2 =
Z 0 large-sized class or small-sized class if not
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A Special Case: Categorical Variables as X

¢ The first step: turn a categorical variable(D;) into multiple dummy
variables(Dh-, DQZ‘, D3z)

D { 1 small-sized class if ST R in i'" school district < 18
1i =

0 middle-sized class or large-sized class if not

1 middle-sized class if 18 < ST'R in i’ school district < 22
2 =
Z 0 large-sized class or small-sized class if not

Des — {1 large-sized class if ST R in i*" school district > 22

0 middle-sized class or small-sized class if not 1097207



A Special Case: Categorical Variables as X

¢ The first step: turn a categorical variable(D;) into multiple dummy
variables(Dh-, DQZ‘, D3z)

D { 1 small-sized class if ST R in i'" school district < 18
1i =

0 middle-sized class or large-sized class if not

1 middle-sized class if 18 < ST'R in i’ school district < 22
2 =
Z 0 large-sized class or small-sized class if not

Des — {1 large-sized class if ST R in i*" school district > 22

0 middle-sized class or small-sized class if not 1097207



A Special Case: Categorical Variables as X

* We put these dummies into a multiple regression

TestScore; = By + B1D1; + PaDo; + B3D3; + u; (4.6)
* Then as a dummy variable as the independent variable in a simple regression

The coefficients (81, 52, #3) represent the effect of every categorical class on
testscore respectively.
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A Special Case: Categorical Variables as X

* In practice, we can’t put all dummies into the regression, but only have n — 1
dummies unless we will suffer perfect multi-collinearity.

* The regression may be like as
TestScore; = By + B1D1; + BaDoi + u; (4.6)

¢ The default intercept term, [Jy,represents the large-sized class.Then, the
coefficients (31, f2) represent testscore gaps between small _sized, middle-sized
class and large-sized class,respectively.
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Multiple Regression: Assumption

* Assumption 1: The conditional distribution of u; given X1;, ..., X}; has mean
zero,thus
E[ui]Xli, ceuy sz] =0

 Assumption 2: (Y, X1, ..., Xy;) are i.id.
* Assumption 3: Large outliers are unlikely.
* Assumption 4: No perfect multicollinearity.
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Perfect multicollinearity

Perfect multicollinearity arises when one of the regressors is a perfect linear
combination of the other regressors.

* Binary variables are sometimes referred to as dummy variables

¢ If you include a full set of binary variables (a complete and mutually exclusive
categorization) and an intercept in the regression, you will have perfect
multicollinearity.

* eg. female and male = 1-female
* eg. West, Central and East China

* This is called the dummy variable trap.

¢ Solutions to the dummy variable trap: Omit one of the groups or the intercept
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Perfect multicollinearity

* regress Testscore on Class size and the percentage of English learners

#>

#> Call:

#> 1lm(formula = testscr ~ str + el _pct, data = ca)

#>

#> Residuals:

#> Min 10 Median 30 Max

#> -48.845 -10.240 -0.308 9.815 43.461

#>

#> Coefficients:

#> Estimate Std. Error t value Pr(>|t])

#> (Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
#> str -1.10130 0.38028 -2.896 0.00398 **
#> el _pct -0.64978 0.03934 -16.516 < 2e-16 ***
#> ——=

#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>

#> Residual standard error: 14.46 on 417 degrees of freedom
#> Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
#> F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16
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Perfect multicollinearity

* add a new variable nel=1-el _pct into the regression

#>

#> Call:

#> 1lm(formula = testscr ~ str + nel pct + el _pct, data = ca)
#>

#> Residuals:

#> Min 10 Median 30 Max

#> -48.845 -10.240 -0.308 9.815 43.461

#>

#> Coefficients: (1 not defined because of singularities

#> Estimate Std. Error t value Pr(>|t])

#> (Intercept) 685.38247 7.41556 92.425 < 2e-16 ***

#> str -1.10130 0.38028 -2.896 0.00398 **

#> nel pct 0.64978 0.03934 16.516 < 2e-16 ***x

#> el _pct NA NA NA NA

#> -—-

#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' "' 1
#>

#> Residual standard error: 14.46 on 417 degrees of freedom
#> Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
#> F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16
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Perfect multicollinearity

Table 6: Class Size and Test Score

Dependent variable:
testscr
® Q)

str —1.101%** —1.101%**

(0.380) (0.380)
nel _pct 0.650***

(0.039)

el_pct —0.650***

(0.039)
Constant 686.032***  685.382***

(7.411) (7.416)
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Multicollinearity

Multicollinearity means that two or more regressors are highly correlated, but one
regressor is NOT a perfect linear function of one or more of the other regressors.

* multicollinearity is NOT a violation of OLS assumptions.

* Itdoes not impose theoretical problem for the calculation of OLS estimators.

* But if two regressors are highly correlated, then the the coefficient on at least
one of the regressors is imprecisely estimated (high variance).

* To what extent two correlated variables can be seen as “highly correlated”?

 rule of thumb: correlation coefficient is over 0.8.
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Venn Diagrams for Multiple Regression Model

* In a simple model (y on X), OLS
uses ‘Blue‘ + ‘Red‘ to estimate [3.

* Wheny is regressed on X and W:
OLS throws away the red area
and just uses blue to estimate [3.

¢ Idea: Red area is
contaminated(we do not know
if the movements in y are due to
X or to W).
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Venn Diagrams for Multicollinearity

e W
Figure 3a Modest collinearity Figure 3b Considerable collinearity
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Venn Diagrams for Multicollinearity

e W
Figure 3a Modest collinearity Figure 3b Considerable collinearity

¢ Less information (compare the Blue and Green areas in both figures) is used, the
estimation is less precise. 120/207
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Independent Variable v.s Control Variables

* Generally, we would like to pay more attention to only one independent
variable(thus we would like to call it treatment variable), though there could be
many independent variables.

* Because (J; is partial (marginal) effect of X; onY.

9Y;

B = 0X,,;

which means that we are estimate the effect of X on Y when “other things equal”,
thus the concept of ceteris paribus.

¢ Therefore,other variables in the right hand of equation, we call them control
variables, which we would like to explicitly hold fixed when studying the effect
of XjorDonY.

122/207



Independent Variable v.s Control Variables

* In a multiple regression, OLS is a way to control observable confounding factors,
which assume the source of selection bias is only from the difference in
observed characteristics(Selection-on-Observables)

¢ If the multiple regression model is
Y = Bo+ B1X1; + BoXoi+ .. + B Xpy +usi =1,...,n

* Generally, we would like to pay more attention to only one independent
variable(thus we would like to call it treatment variable), though there could be

many independent variables.

¢ Other variables in the right hand of equation, we call them control variables,
which we would like to explicitly hold fixed when studying the effect of X; onY.
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Picking Control Variables

* Questions: Are “more controls” always better (or at least never worse)?
* Answer: It depends on.

* Irrelevant controls are variables which have a ZERO partial effect on the outcome, thus
the coefficient in the population regression function is zero.

* Relevant controls are variables which have a NONZERO partial effect on the dependent
variable.

e Non-Omitted Variables
e Omitted Variables

* Highly-correlated Variables
* Multicollinearity

* We will come back soon to discuss this topic again in Lecture 8 in details.
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OLS Regression, Covariates and RCT

* More specifically,regression model turns into
Y = Bo + B1D;i + 202 + ... + iChryi +uii=1,...,n
* transform it into
Y = fo+ B1Di + 72.xCo i +uisi=1,...,n

e It turns out
Y, =a+pD; +7C" +u;
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OLS Regression, Covariates and RCT

* Now write out the conditional expectation of Y; for both levels of D; conditional

onC
E[YZ‘DIZLC] :E[Oé+[)+’}’c+’u7’D7:10]

=a+p+7+ EuwDi =1,C]
E[Y;|D;=0,C]=E[la+~C +u; | D; = 0,C]
=a+~v+ E[u; | D;=0,C]

¢ Taking the difference

E[Y;| D, =1,C]— E[Y; | D; = 0,C]
=p+ EuD;=1,C] - Eu; | D; = 0,C]

Selection bias
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OLS Regression, Covariates and RCT

* Again, our estimate of the treatment effect () is only going to be as good as our
ability to eliminate the selection bias,thus

E[w;iD; =1,C] = Eug; | D =0,C] #0

Conditional Independence Assumption(CIA)

“balance” covariates C' then we can take the treatment D as randomized, thus

(YL y% 1L D|C
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OLS Regression, Covariates and RCT

* This is the equivalence of the CIA assumption, which is also equivalent to the 1st
assumption of Multiple OLS

E[u1i|D; = 1,C] — E [ug; | D; = 0,C]
=F [Ulz‘C] —F [UUZ‘C]

* Then we can eliminate the selection bias, thus making
E[u1;|D; = 1,C] = E[ugi | D; = 0,C]
e Thus

E[Yi|D;=1,C]—E[Y; | D; =0,C] = p
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Wrap up

* OLS regression is valid or can obtain a causal explanation only when least

squares assumptions are held.

* The most important assumption is

or
E(u;|D,C) = E(u;|C)

* In most cases,it does not satisfy it when using nonexperimental data.
Therefore,how to make a convincing causal inference when these assumptions

are not held is the key question.
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Introduction: Class size and Test Score

Recall our simple OLS regression mode is

TestScore; = By + B1STR; + u; 4.3)

690 -

660 -

testscr

630 -

14 16 18 20 22 24 26
str 131/207



Class Size and Test Score

Then we got the result of a simple OLS regression

TestScore = 698.9 — 2.28 x STR, R? = 0.051, SER = 18.6

* Don’t forget: the result are not obtained from the population
but from the sample.

* How can you be sure about the result? In other words, how confident you can
believe the result from the sample inferring to the population?

* If someone believes that cutting the class size will not help boost test scores. Can

you reject the claim based your scientific evidence-based data analysis?

* This is the work of Hypothesis Testing in OLS regressions.
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Review: Hypothesis Testing

* A hypothesis is (usually) an assertion or statement about unknown population
parameters like 0.
* Suppose we want to test whether it is significantly different from a certain value
Ho
* Then null hypothesis is
Hy:0=pp

* The alternative hypothesis(two-sided) is

Hy:0# po

e If the value p¢ does not lie within the calculated confidence interval, then we
reject the null hypothesis.

« If the value ji( lie within the calculated confidence interval, then we fail to reject
the null hypothesis.
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Review: Hypothesis Testing

* Most countries follow the rule of criminal trials:
innocent until proven guilty(£FFE I TT)
¢ The jury or judge starts with the “null hypothesis” that the accused person is
innocent.
* The prosecutor wants to prove their hypothesis that the accused person is guilty.
¢ In other words, they have to show strong evidence to make the jury or judge reject
the “null hypothesis”.
» Likewise, our rule in econometrics is
presumption of insignificance until proven.
* Atfirst researchers have to assume that there is zero impact of independent
variable on dependent variable.
* In order to prove the relationship between the independent variable and
dependent variable, we must provide strong enough evidence to convince readers
or policy makers to “reject” the assumption of a zero effect.

134/207



Review: Two Type Errors(Ffh§Eix )

* Inboth cases, there is a certain risk that our conclusion is wrong

Hj is true H 4 is true
Fail to reject Hp Correct Type II error
Reject Hop Type I error Correct

* TypeIand Type II errors can not happen at the same time

¢ There is a trade-off between Type I and Type II errors
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Review: Two Type Errors(Ffh§Eix )

* Question: Determine whether each situation belongs to Type I error or
Type Il error.
o “THHR—TF. THERE—1
- FARE—F, REEER—A
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The Significance level (2 Z 47K )

¢ The significance level or size of a test, ¢, is the maximum probability of
the Type I Error we tolerate.

P(Type I error) = P(reject Hy | Hy is true) = «

* In social science, the usual significance level is set at 5%. A less rigorous
standard is 10%, whereas a more stringent one is 1%.
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The Power of the Test

 The power of a test, is 1 — /3, where 3 is the probability of the Type II Error
1 — P(Type II error) =1 — P(reject Hy | Hy istrue) =1—f

* Typically, we desire power to be 0.80 or greater, which alternatively equal to
minimize 5 < 0.2.
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Review: Hypothesis Testing of Population Mean

* Let 11y, is a specific value to which the population mean equals(thus we suppose)

¢ the null hypothesis:
H() . E(Y) = ,uy,c

* the alternative hypothesis(two-sided):

Hy: E(Y) 7é Hy,c
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Review: Hypothesis Testing of Population Mean

+ Step 1 Compute the sample mean' Y’
» Step 2 Compute the standard error of Y, recall

SE(Y) = 57%

Step 3 Compute the t-statistic actually computed
_ yact _ [y
~ SE(®Y)

act

* Step 4 Compute the p-value(optional)
p-value = 2&(—[t*"|)

* Step 5 See if we can Reject the null hypothesis at a certain significance level
a,like 5%, or p-value is less than significance level.

[t*!| > critical value or p — value < significance level
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Simple OLS: Hypotheses Testing

* A Simple OLS regression
Yi = Bo + B1.Xi + u

This is the population regression equation and the key unknown population
parameters is [3;.

* Then we would like to test whether 3; equals to a specific value 3; ; or not
¢ the null hypothesis:

Hy: B1 = Pi,s
* the alternative hypothesis:

Hy: 1 # Bs
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A Simple OLS: Hypotheses Testing

* Stepl: Estimate Y; = 3y + 51X + u; by OLS to obtain ,5’1
+ Step2: Compute the standard error of 3

* Step3: Construct the t-statistic

tact 51 51 c
sE (f)

* Step4: Reject the null hypothesis if

| % |>critical value

or p—wvalue <significance level
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Recall: General Form of the t-statistics

estimator — hypothesized value

standard error of the estimator

* Now the key unknown statistic is the standard error(S.E).
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The Standard Error of /3’1

* Recall from the Simple OLS Regression
« if the least squares assumptions hold, then in large samples 3, and (3, have a joint
normal sampling distribution,thus Bl

B NN(BlaO'EI)
2

* We also derived the form of the variance of the normal distribution, o 5

2 is
1

1 Var[(X; — pux)u)
05 = \/ D War(XP (4.21)
« The standard error of 3 is an estimator of the standard deviation of the
sampling distribution o, , thus
R 1 X; — X)2a?
SE () = \f62 = | x =2 2 . ) (5.4)
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Application to Test Score and Class Size

- regress test_score class_size, robust

Linear regression Number of obs = 420
F(1l, 418) = 19.26
Prob > F = 0.0000
R-squared = 0.0512
Root MSE = 18.581
Robust

test score Coef. Std. Err. t P>t [¢5% Conf. Intervall
class size =-2.279808 .5194892 -4.39 0.000 =3.300345 =1.258671
_cons 698.933 10.36436 67.44 0.000 678.5602 719.3057

* the OLS regression line

TestScore =698.9 — 22.8 x STR, R* = 0.051, SER = 18.6
(10.4) (0.52)
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Testing a two-sided hypothesis concerning /3

* the null hypothesis Hj : 5; =0

* It means that the class size will not affect the performance of students.

* the alternative hypothesis H; : 3; # 0

* It means that the class size do affect the performance of students (whatever
positive or negative)

* Our primary goal is to Reject the null, and then say make a conclusion:

¢ Class Size does matter for the performance of students.
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Testing a two-sided hypothesis concerning /3

* Stepl: Estimate B =—2.28
« Step2: Compute the standard error: SE(f;) = 0.52

* Step3: Compute the t-statistic

tact _ Bl - 5170 _ —2.28—0
SE (,@1) 0.52

= —4.39

* Step4: Reject the null hypothesis if

o |t |=| —4.39 |> critical value = 1.96
* p—wvalue = 0 < significance level = 0.05
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Application to Test Score and Class Size

. regress test_score class_size, robust

Linear regression Number of obs = 420
F(l, 418) = 19.26
Prob > F = 0.0000
R-sguared = 0.0512
Root MSE = 18.581
Robust

test_score Coef. std. Err. t P>t 65% Conf. Interval]
leﬁﬁ_ﬁizb -2.279808 .5194892 -4.39 0.000 -3.300545 -1.258671
_cons 698.933 10.36436 67.44 0.000 678 .5602 719.3057

* We can reject the null hypothesis that [y : ; = 0, which means 3; # 0 witha
high probability(over 95%).

* It suggests that Class size matters the students’ performance in a very high
chance.
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Critical Values of the t-statistic

The critical value of f-statistic depends on significance level a

0.005 0.005 0.025 \2_
258 0 2.58 196 0 1.96
Large sample distribution of t-statistic Large sample distribution of t-statistic
0.05 0.05
184 0 164

Large sample distribution of t-statistic
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1% and 10% significant levels

* Step4: Reject the null hypothesis at a 10% significance level
o |t |=| —4.39 |> critical value = 1.64
* p—value = 0.00 < significance level = 0.1

* Step4: Reject the null hypothesis at a 1% significance level

o |t |=| —4.39 |> critical value = 2.58
* p—wvalue = 0.00 < significance level = 0.01
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Two-Sided Hypotheses: 3, in a certain value

* Stepl: Estimate 31 = —2.28
« Step2: Compute the standard error: SE(f;) = 0.52

* Step3: Compute the t-statistic

et _ D1 =Pre  2228-(-2)

SE (31) 0.52

* Step4: can’t reject the null hypothesis at 5% significant level because

o |t |=| —0.54 |< critical value = 1.96
e p—wvalue = 0.59 > signi ficance level = 0.05

151/207



Two-Sided Hypotheses: 3, in a certain value

. lincom class_size-(-2)
(1) class_size = -2
test_score Coef. 5td. Err. t P>|t] [95% Conf. Interval]
(1) -.2798083 .5194892 -0.54 0.52%0 -1.300945 .7413286

* We cannot reject the null hypothesis that Hy : 5; = —2.

* It suggests that there is no enough evidence to support the statement:

* cutting class size in one unit will boost the test score in 2 points.
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One-sided Hypotheses Concerning /3;

* Sometimes, we want to do a one-sided Hypothesis testing
¢ the null hypothesis is still unchanged Hy : 31 = —2

* the alternative hypothesisis H; : f; < —2

* The statement is that reducing(or inversely increasing) class size will boost(or
lower) student’s performance.

* More specifically,cutting class size in one unit will increase the test score in 2
points at least.

* Because the null hypothesis is the same for a one- and a two-sided hypothesis
test, the construction of the t-statistic is the same.

* The difference between the two is the critical value and p-value.
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One-sided Hypotheses Concerning /3;

 Stepl: Estimate B =—2.28
+ Step2: Compute the standard error: SE(f;) = 0.52

* Step3: Compute the t-statistic

3 — —2.28 — (2
tact — /81 /8170 — 8 < ) — _054

SE <31> 0.52
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One-sided Hypotheses Concerning /3,

Right tail test
Hy = py> pg Y
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One-sided Hypotheses Concerning /3;

* Step4: under the circumstance, the critical value is not the —1.96 but —1.645 at
5% significant level.

* We can’t reject the null hypothesis because
% = —0.54 > critical value = —1.645

* The p-value is not the 2&(—|t?“!|) now but Pr(Z < t2) = §(t2<).

* It suggests that there is NO enough evidence to support the statement:cutting class
size in one unit will increase the test score in 2 points at least.
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One-sided Hypotheses Concerning /3;

* One-sided alternative hypotheses should be used only when there is a clear
reason for doing so.

¢ This reason could come from economic theory, prior empirical evidence, or both.

» However, even if it initially seems that the relevant alternative is one-sided,
upon reflection this might not necessarily be so.

* In practice, one-sided test is used much less than two-sided test.
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Wrap up

* Hypothesis tests are useful if you have a specific null hypothesis in mind (as did
our angry taxpayer).

* Being able to accept or reject this null hypothesis based on the statistical
evidence provides a powerful tool for coping with the uncertainty inherent in
using a sample to learn about the population.

* Yet, there are many times that no single hypothesis about a regression
coefficient is dominant, and instead one would like to know a range of values of
the coefficient that are consistent with the data.

* This calls for constructing a confidence interval.
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Introduction

* Because any statistical estimate of the slope 3; necessarily has sampling
uncertainty, we cannot determine the true value of 3, exactly from a sample of
data.

* Itis possible, however, to use the OLS estimators and its standard error to
construct a confidence interval for the slope 3;
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* Method for constructing a confidence interval for a population mean can be
easily extended to constructing a confidence interval for a regression
coefficient.

* Using a two-sided test, a hypothesized value for 3; will be rejected at 5%
significance level if

| % |> eritical value = 1.96

« So 31 will be in the confidence set if | t°°* |< critical value = 1.96

» Thus the 95% confidence interval for 5 are within £1.96 standard errors of Bl

B 4+1.96-SE (Bl)
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. regress test_score class_size, robust

Linear regression Number of obs = 420
F(1, 418) = 19.26
Prob > F = 0.0000
R-sguared = 0.0512
Root MSE = 18.581
Robust

test_score Coef. std. Err. t P>t [85% Conf. Intervall]
les:i_sizt: -2.279808 .5194892 -4.39 0.000 -3.300945 -1.258671
_cons 698.933 10.36436 67.44 0.000 678.5602 719.3057

* Thus the 95% confidence interval for 3, are within £1.96 standard errors of Bl

B +1.96- SE (1) = —2.28 % (1.96 x 0.519) = [3.3,~1.26]
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Introduction

+ Recall we discussed the properties of Y in Chapter 2.

¢ an unbiased estimator of 1y
* a consistent estimator of /1y
* an approximate normal sampling distribution for large n
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The Efficiency of Y

+ the fourth properties of Y in Chapter 3.

+ the Best Linear Unbiased Estimator(BLUE): Y is the most efficient estimator of
1y among all unbiased estimators that are weighted averages of Y7, ..., Y,
presented by /iy = % > a;Y;,thus,

Var(Y) < Var(jy)
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Unnecessary Assumption for Simple OLS

* Three Simple OLS Regression Assumptions
e Assumption1
e Assumption 2
e Assumption 3

* Assumption 4: The error terms are homoskedastic
2
Var(u; | X;) = o,

+ Then 3955 is the Best Linear Unbiased Estimator(BLUE): it is the most efficient
estimator of 5, among all conditional unbiased estimators that are a linear
functionof Y7, Y5, ..., Y.
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Heteroskedasticity & homoskedasticity

e The error term u; is homoskedastic if the variance of the conditional
distribution of u; given Xj is constant for i = 1, ...n, in particular does not
depend on X;.

¢ Otherwise, the error term is heteroskedastic.

m An Example of Heteroskedasticity
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An Actual Example: the returns to schooling

In(wage)
(2]

years of education

¢ The spread of the dots around the line is clearly increasing with years of
education X;.
* Variation in (log) wages is higher at higher levels of education.
* This implies that
Var(u; | X;) # o2
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Homoskedasticity: S.E.

* However,in many applications homoskedasticity is NOT a plausible
assumption.

* If the error terms are heteroskedastic, then you use the homoskedastic assumption
to compute the S.E. of 3;. It will leads to

* The standard errors are wrong (often too small)
¢ The t-statistic does NOT have a N (0, 1) distribution (also not in large samples).
* But the estimating coefficients in OLS regression will not change.
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Heteroskedasticity & homoskedasticity

o If the error terms are heteroskedastic, we should use the original equation of S.E.

A g (X — X)2a7
SEHeter (Bl) =,/6% = 2

o Itis called as heteroskedasticity robust-standard errors,also referred to as
Eicker-Huber-White standard errors,simply Robust-Standard Errors

* In the case, it is not difficult to find that homoskedasticity is just a special case of
heteroskedasticity.
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https://en.wikipedia.org/wiki/Heteroscedasticity-consistent_standard_errors

Heteroskedasticity & homoskedasticity

* Since homoskedasticity is a special case of heteroskedasticity, these
heteroskedasticity robust formulas are also valid if the error terms are
homoskedastic.

* Hypothesis tests and confidence intervals based on above SE’s are valid both in

case of homoskedasticity and heteroskedasticity.

* Inreality, since in many applications homoskedasticity is not a plausible
assumption, it is best to use heteroskedasticity robust standard errors. Using robust
standard errors rather than standard errors with homoskedasticity will lead us

lose nothing.
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Heteroskedasticity & homoskedasticity

¢ It can be quite cumbersome to do this calculation by hand.Luckily,computer can
help us do the job.

* In Stata, the default option of regression is to assume homoskedasticity, to
obtain heteroskedasticity robust standard errors use the option “robust”:

regress y x , robust

* In R, many ways can finish the job. A convenient function named vcovHC () is
part of the package sandwich.
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Test Scores and Class Size

- regress test_score class_size

Source Ss df MS Number of cbs = 420
F(l, 418) = 22.58
Model 7794.11004 1 7794.11004 Prob > F = 0.0000
Residual 144315.484 418 345.252353 R-squared = 0.0512
Adj R-squared = 0.0490
Total 152109.594 419 363.030056 Root MSE = 18.581

test_score Coef. Std. Err. t P>t [95% Conf. Interval]
clasﬁ_size =2.279808 .4798256 -4.75 0.000 -3.22298 =1.336637
_cons 698.933 9.467491 73.82 0.000 680.3231 717.5428

. regress test_score class_size, robust
Linear regression Number of obs = 420
F(l, 418) = 19.26
Prob > F = 0.0000
R-squared = 0.0512
Root MSE = 18.581
Robust

test_score Coef. Std. Err. t P>t [95% Conf. Interval]
class size =2.279808 .5194892 -4.39 0.000 =3.300945 =1.258671
_cons 698.933 10.36436 67.44 0.000 678.5602 719.3057
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Test Scores and Class Size

- regress test_score class_size

Source Ss df MS Number of cbs = 420
F(l, 418) = 22.58
Model 7794.11004 1 7794.11004 Prob > F = 0.0000
Residual 144315.484 418 345.252353 R-squared = 0.0512
Adj R-squared = 0.0490
Total 152109.594 419 363.030056 Root MSE = 18.581

test_score Coef. Std. Err. t P>t [95% Conf. Interval]
class_size =2.279808 .4798256 -4.75 0.000 -3.22298 =1.336637
_cons 698.933 9.467491 73.82 0.000 680.3231 717.5428

. regress test_score class_size, robust
Linear regression Number of obs = 420
F(l, 418) = 19.26
Prob > F = 0.0000
R-squared = 0.0512
Root MSE = 18.581
Robust

test_score Coef. Std. Err. t P>t [95% Conf. Interval]
class size =2.279808 .5194892 -4.39 0.000 =3.300945 =1.258671
_cons 698.933 10.36436 67.44 0.000 678.5602 719.3057
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Wrap up: Heteroskedasticity in a Simple OLS

o If the error terms are heteroskedastic

¢ The fourth simple OLS assumption is violated.
* The Gauss-Markov conditions do not hold.
* The OLS estimator is not BLUE (not most efficient).

* But(given that the other OLS assumptions hold)

» The OLS estimators are still unbiased.
e The OLS estimators are still consistent.
* The OLS estimators are normally distributed in large samples
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Recall: the Multiple OLS Regression

* The multiple regression model is
Yi =080+ 1 X1+ feXoi+ ...+ BeXpi +ui,i=1,...,n

* Four Basic Assumptions
* Assumptionl: Flu; | X1, Xo;..., Xxi] =0
* Assumption 2 : i.i.d sample
» Assumption 3: Large outliers are unlikely.
* Assumption 4 : No perfect multicollinearity.
* The Sampling Distribution: the OLS estimators Bj forj=1,...,kare
approximately normally distributed in large samples.
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Standard Errors for the Multiple OLS Estimators

* There is nothing conceptually different between the single- or multiple-regressor
cases.

* Standard Errors for a Simple OLS estimator ;
SE (1) =,
* Standard Errors for Mutiple OLS Regression estimators [3;
SE (ﬂj> =0 Bj
* Remind: since now the joint distribution is not only for (Y;, X;),but also for
(Xij, Xik)-

¢ The formula for the standard errors in Multiple OLS regression are related with a

matrix named Variance-Covariance matrix
178 /207



Hypothesis Tests for a Single Coefficient

¢ the t-statistic in Simple OLS Regression

tact /81 /81 C

- (51> ~ N(0,1)

* the t-statistic in Multiple OLS Regression

_ Bj = Bie

£(5)

t ~ N(0,1)
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Hypothesis testing for single coefficient

* Hy:Bj=BjcHi:B1# PBje

¢ Stepl: Estimate Bj, by run a multiple OLS regression

Y= Bo+ 1 X + ... + B Xji + oo 4 B X +

Step2: Compute the standard error of Bj (requires matrix algebra)

* Step3: Compute the t-statistic

jact _ 5J Bie
se (5;)

* Step4: Reject the null hypothesis if

o |t |> critical value
e orif p — value < significance level
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Confidence Intervals for a single coefficient

* Also the same as in a simple OLS Regression.

« (; will be in the confidence set if | t** |< critical value = 1.96 at the 95%

confidence level.

* Thus the 95% confidence interval for 3; are within £1.96 standard errors of B]-

B;+1.96- SE (B)
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Test Scores and Class Size

. regress test_score class_size el_pct,robust

Linear regression Number of obs = 420
F(2, 417) = 223.82
Prob > F = 0.0000
R-squared = 0.4264
Root MSE = 14.464

Robust
test_score Coef. Std. Err. t P>|t| [95% Conf. Intervall
class_size -1.101296 .4328472 -2.54 0.011 =1.95213 -.2504616
el_pct -.6497768 .0310318 -20.94 0.000 -.710775 -.5887786
_cons 686.0322 8.728224 78.60 0.000 668.8754 763.189
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Case: Class Size and Test scores

* Does changing class size, while holding the percentage of English learners
constant, have a statistically significant effect on test scores? (using a 5%
significance level)

* Ho : Bciasssize = 0 Hi : BciassSize 7 0

* Stepl: Estimate 31 =—1.10

« Step2: Compute the standard error: SE(f;) = 0.43

* Step3: Compute the t-statistic

jact _ Bi—Bie —1.10-0

“le = 254
SE (51) 0.43
* Step4: Reject the null hypothesis if
o |t |=| —2.54 |> critical value.1.96

* p—wvalue = 0.011 < significance level = 0.05
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Tests of Joint Hypotheses: on 2 or more coefficients

* Question: Can we just test more than one individual coefficient at a time?

* Suppose the angry taxpayer hypothesizes that neither the student—teacher ratio
nor expenditures per pupil have an effect on test scores, once we control for the

percentage of English learners.
¢ Therefore, we have to test a joint null hypothesis that both the coefficient on
student-teacher ratio and the coefficient on expenditures per pupil are zero?

Hy: Bstr =0& Be.tpn =0,
Hy : Bor # 0 and/or Begpn # 0
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Testing 1 hypothesis on 2 or more coefficients

* Suppose we want to test
Hg:ﬁlzo&ﬂzzo H1 :ﬂlyéOand/orﬂg;éO
e Then the F-statistic can also combine the two t-statisticst; and t5 as follows

Pl (tf + 13— 2ﬁt1t2t1t2>
2 - ﬁ%ltz

where f;,, is an estimator of the correlation between the two t-statistics.
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Testing 1 hypothesis on 2 or more coefficients

* In general, a joint hypothesis is a hypothesis that imposes two or more

restrictions on the regression coefficients.

Hy : Bj = Bjc, Br = Br,c,--., for atotal of q restrictions

Hi : one or more of q restrictions under Hy does not hold

* where 3;, O, ... refer to different regression coefficients.

* When the regressors are highly correlated, single t-statistics can be
misleading.Instead, we use the F-statistic for testing joint hypotheses.
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Unrestricted v.s Restricted model

* The unrestricted model: the model without any of the restrictions imposed. It
contains all the variables.

* The restricted model: the model on which the restrictions have been imposed.

¢ And we want to test that Hy : 51 = 0 and B2 = O,then H;y : 31 # 0 and/or 32 # 0
for the regression model

Y= Bo+ p1X1,i + PoXo; + B3X3; +ui=1,...,n

¢ Then restricted model is
Y = Bo + £3X3,; +u;
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The F-statistic with q restrictions

* The F-statistic is computed using a simple formula based on the sum of squared

residuals from two regressions.

(S S Rrestricted - 5S Runrestricted) / q

F =
SSRunrestricted/(n — k- 1)

o SSRyestricted is the sum of squared residuals from the restricted regression.
o SSRynrestricted is the sum of squared residuals from the full model.
¢ is the number of restrictions under the null.

* kis the number of regressors in the unrestricted regression.

188/207



The heteroskedasticity-robust F-statistic

¢ Using matrix to show the form of the heteroskedasticity-robust F-statistic which
is beyond the scope of our class.

* While,under the null hypothesis,regardless of whether the errors are
homoskedastic or heteroskedastic, the F-statistic with q has a sampling
distribution in large samples,

F — statistic ~ Fy

e where ¢ is the number of restrictions

* Then we can compute the F-statistic, the critical values from the table of the F,
and obtain the p-value.
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F-Distribution

TABLE 4 Critical Values for the F, ,, Distribution

Area = Significance Level

T
Critical Value

Significance Level

Degrees of Freedom 10% 5%
1 27 3.84 6.63
2 2.30 3.00 4.61
3 2.08 2.60 3.78
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Testing joint hypothesis with q restrictions

* Hoy:Bj = B0, Bm = Bm, for a total of q restrictions.
* Hj:atleast one of q restrictions under H, does not hold.

* Stepl: Estimate
Yi = Bo+ b1 Xui + . + B Xji + o+ BeXii + s

by OLS
* Step2: Compute the F-statistic

* Step3: Reject the null hypothesis if
F — Statistic > Fy%,

or
p —value = PrF, o > F* <= significant level
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Case: Class Size and Test Scores

* We want to test hypothesis that both the coefficient on student—teacher ratio and
the coefficient on expenditures per pupil are zero?

* Hy: Bstr =0 &Bempn =0
o Hy: Ber #0and/or Begpn # 0

¢ The null hypothesis consists of two restrictions g = 2

192/207



Case: Class Size and Test Scores

. regress test_score class_size expn_stu el_pct,robust

Linear regression Number of obs = 420
F(3, 416) = 147.20
Prob > F = 0.6000
R-squared = 0.4366
Root MSE = 14353

Robust
test_score Coef.  Std. Err. t Pt [95% Conf. Interval
Class_size | -.2863992 .4820728  -0.59 0.553  -1.234002 .661203
expn_stu .0038679  .0015807  2.45 0.015 .0007607  .0069751
elpct | -.6560227 .0317844 -20.64 0.000  -.7185008 -.5935446

_cons 649.5779  15.45834  42.62  0.000 619.1917  679.9641

. test class_size expn_stu

(1) class_size = 0
(2) expn_stu=0

F( 2, 416) = 5.43
Prob > F =  0.0047

* F-statistic with two restrictions has an approximate F . distribution in large
samples
Foet =5.43 > F5 oo = 4.61 at 1% signi ficant level

* This implies that we reject Hj ata 1% significance level.
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The “overall” regression F-statistic

* The “overall” F-statistic test the joint hypothesis that all the k slope coefficients
are zero

* Hy:B; =080, Bm = Bm,o for a total of ¢ = k restrictions.
e Hi: atleast one of ¢ = k restrictions under Hy does not hold.
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The “overall” regression F-statistic

. regress test_score class_size expn_stu el_pct,robust

Linear regression Number of obs = 420
F(3, 416) = 147.20
Prob > F = 0.0000
R-squared = 0.4366

Root MSE = 14.353

Robust

test_score Coef.  Std. Err. t P>|t| [95% Conf. Interval
class_size | =-.2863992 .4820728  -0.59 0.553  -1.234002 .661203
expn_stu 0038679  .0015807 2.45  0.015 0007607  .0069751
el_pct | =-.6560227 .0317844 -20.64 ©0.000  -.7185008 -.5935446
_cons 649.5779  15.45834  42.02  0.000 619.1917  679.9641

. test class_size expn_stu el_pct

(1) class_size = 0
(2) expn_stu
(3) elpct=60

F( 3, 416)
Prob > F

147.20
0.0000

e The overall ' — Statistics = 147.2 which indicates at least one coefficient can
not be ZERO.
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Introduction

* How to use multiple regression in order to alleviate omitted variable bias and
demonstrate how to report results.

* So far we have considered two variables that control for unobservable student
characteristics which correlate with the student-teacher ratio and are assumed to
have an impact on test scores:

» English, the percentage of English learning students

* [unch, the share of students that qualify for a subsidized or even a free lunch at
school

¢ calworks,the percentage of students that qualify for a income assistance program
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Five different model equations:

* We shall consider five different model equations:

(1) TestScore =Py + 1STR + u,

(2) TestScore =P+ P1STR + Paenglish + u,

(3) TestScore =y + 1STR + Baenglish + PBslunch + u,

(4) TestScore =Py + P1STR + Paenglish + Bycalworks + u,

(5) TestScore =Ly + P1STR + PBaenglish + Pslunch + Bycalworks + u
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Scatter Plot: English learners and Test Scores

English Learners and Test Scores
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Scatter Plot: Free lunch and Test Scores

Percentage qualifying for reduced price lunch
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Scatter Plot: Income assistant and Test Scores

Percentage qualifying for income assistance
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Correlations between Variables

e The correlation coefficients are as followed:

# estimate correlation between student characteristics and tes
cor (CASchools$Stestscr, CASchools$el pct)

#> [1] -0.6441237

cor (CASchoolsS$testscr, CASchoolsS$meal pct)

#> [1] -0.868772
cor (CASchoolsS$testscr, CASchools$calw pct)

#> [1] -0.6268534
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Table 8

Dependent Variable: Test Score

@ @
str —2.280%** —1.101**
(0.519) (0.433)
el_pct —0.650"""
(0.031)
Constant 698.933*** 686.032***
(10.364) (8.728)
Observations 420 420
R? 0.051 0.426
Adjusted R? 0.049 0.424
F Statistic 22.575*** 155.014***

Note:

Robust S.E. are shown in the parentheses

*p<0.1; **p<0.05; ***p<0.01
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Table 9

Dependent Variable: Test Score

@ Q) ) “
str —2.280""" —1101** —0.998"** —1308"*"
(0.519) (0.433) (0.270) (0.339)
el_pct —0.650""" —0.122"** —0.488"**
(0.031) (0.033) (0.030)
meal _pct —0.547""*
(0.024)
calw_pct —0.790"**
(0.068)
Constant 698.933""* 686.032""" 700.150"** 697.999"*
(10.364) (8.728) (5.568) (6.920)
Observations 420 420 420 420
R? 0.051 0.426 0.775 0.629

Adjusted R? 0.049 0.424 0.773 0.626 204/207



Table 10

Dependent Variable: Test Score

@ 2 &) “) ©)
str —2.280""" —1101** —0.998"** —1.308™** —1.014™**
(0.519) (0.433) (0.270) (0.339) (0.269)
el_pct —0.650""" —0.122™"* —0.488™*" —0.130"""
(0.031) (0.033) (0.030) (0.036)
meal _pct —0.547*"* —0.529"*"
(0.024) (0.038)
calw_pct —0.790"** —0.048
(0.068) (0.059)
Constant 698.933""* 686.032""" 700.150"** 697.999™"* 700.392"**
(10.364) (8.728) (5.568) (6.920) (5.537)
Observations 420 420 420 420 420
R? 0.051 0.426 0.775 0.629 0.775
Adjusted R? 0.773 0.773

0.049

0.424

0.626
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The “Star War” and Regression Table

Dependent variable: average test score in the district.

Regressor (1) (2) (3) (4) (5)
Student-teacher ratio (X) —2.28%* —1.10% —1.00%* —1.31* —1.01*
(0.52) (0.43) (0.27) (0.34) 0.27)
Percent English learners (X;) —0.650%* —0.122%* —0.488** —0.130%*
(0.031) (0.033) (0.030) (0.036)
Percent eligible for subsidized lunch (X3) —0.547* —0.529*
(0.024) (0.038)
Percent on public income assistance (X}) —0.790%* 0.048
(0.068) (0.059)
Intercept 698.9%* 686.0%+* 700.2%* 698.0%* 700.4%%*
(10.4) (8.7) (3.6) (6.9) (5.5)
Summary Statistics
SER 18.58 14.46 9.08 11.65 9.08
R? 0.049 0.424 0.773 0.626 0.773
420 420 420 420 420

These regressions were estimated using the data on K—8 school districts in California, described in Appendix (4.1). Heteroskedasticity-
robust standard errors are given in parentheses under coefficients. The individual coefficient is statistically significant at the
*5% level or *¥1% significance level using a two-sided test. 2067207




Warp Up

* OLS regression is the most fundamental and important tool in econometricians

toolbox.

* The OLS estimators is unbiased, consistent and approximated normal
distributions if four key assumptions are satisfied.

* Using the hypothesis testing and confidence interval in OLS regression, we
could make a more reliable judgment about the relationship between the

treatment and the outcomes.

* Under several reasonable but strong assumptions(CIA), OLS regression can be
seen as a continuous version of generalizing continuous version of RCT.

* The OLS regression can be used to estimate the causal effect of the treatment on
the outcomes, and the results can be interpreted as the average treatment effect

on the treated.
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