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OLS Regression and Hypothsis Testing

• Hypothesis Testing is a formal procedure in statistics for testing assumptions

regarding a population parameter.

• Hypothesis Testing in OLS regressions

• single coefficient: the t-statistic
• two or more coefficents: the F-statistic

• The key component in obtaining the t-statistic is the standard error(S.E.), which

is the estimation of Standard Deviation of estimated coefficients(β̂).
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OLS Regression and Hypothsis Testing

• Assumption 4: The error terms are homoskedastic

V ar(ui | Xi) = σ2
u

Then β̂OLS is the Best Linear Unbiased Estimator(BLUE).

• However,in most cases it isNOT a plausible assumption.

• Homoskedasticity is a special case of heteroskedasticity, these

heteroskedasticity robust formulas are also valid if the error terms are

homoskedastic.

• Using the hypothesis testing and confidence interval in OLS regression, we

could make amore reliable judgment about the relationship between the

treatment and the outcomes.
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Nonlinear Regression Functions:
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Introduction

• Recall the assumption of Linear RegressionModel

Linear RegressionModel

The observations, (Yi, Xi) come from a random sample(i.i.d) and satisfy the linear

regression equation,

Yi = β0 + β1X1,i + ... + βkXk,i + ui

• Everything what we have learned so far is under this assumption of linearity.

But this linear approximation is not always a good one.
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Introduction: Recall the whole picture

• A general formula for a population regressionmodel may be

Yi = f(X1,i, X2,i, ..., Xk,i) + ui

• Parametric methods: assume that the function form(families) is known, we just

need to assure(estimate) some unknown parameters in the function.

• Linear
• Nonlinear

• Nonparametric methods: assume that the function form is unknown or

unnecessary to known.
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Nonlinear Regression Functions

• How to extend linear OLSmodel to be nonlinear?

1. Nonlinear in Xs(the lecture now)
• Polynomials,Logarithms and Interactions
• Themultiple regression framework can be extended to handle regression
functions that are nonlinear in one or more X.

• the difference from a standardmultiple OLS regression is how to explain estimating
coefficients.

2. Nonlinear in β orNonlinear in Y(the next lecture)
• Discrete Dependent Variables or Limited Dependent Variables.
• Linear function in Xs is not a good prediciton function or Y.
• Need a function which parameters enter nonlinearly, such as logisitic or negative
exponential functions.

• Then the parameters can not obtained by OLS estimation anymore but Nonlinear
Least Squres or Maximum Likelyhood Estimation.
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Marginal Effect of X in Nonlinear Regression

• If our regressionmodel is linear: Yi = β0 + β1X1,i + ... + βkXk,i + ui

• Then themarginal effect of X, thus the effect of Y on a change in Xj by 1 (unit) is
constant and equals βj :

βj = ∂Yi

∂Xji

• But if a relation between Y and X is nonlinear, thus

Yi = f(X1,i, X2,i, ..., Xk,i) + ui

• Then themarginal effect of X is not constant, but depends on the value of
Xs(including Xi itself or/and other Xjs) because

∂Yi

∂Xji
= ∂f(X1,i, X2,i, ..., Xk,i)

∂Xji
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Nonlinear in Xs
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The TestScore – STR relation looks linear (maybe)

TestScore^ = c(698.9) − c(−2.28)*STR
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But the TestScore – Income relation looks nonlinear

TestScore^ = c(625.4) + c(1.88)*Avginc
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• overestimate the true relationship when income is very high or very low and

underestimates it for the middle income group.
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Three Complementary Approaches:

1. Polynomials in X

• The population regression function is approximated by a quadratic, cubic, or
higher-degree polynomial.

2. Logarithmic transformations

• Y and/or X is transformed by taking its logarithm
• this gives a percentages interpretation that makes sense inmany applications

3. Interactions

• the effect X on Y depends on the value of another independent variable
• very often used in the analysis of hetergenous effects, some time used as
analysis(channel).
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Population Regression Functions with Different Slopes
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The Effect of a Change in X in Nonlinear Functions
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Polynomials in X
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Example: the TestScore-Income relation

• If a straight line is NOT an adequate description of the relationship between

district income and test scores, what is?

• Two options

• Quadratic specification:

TestScorei = β0 + β1Incomei + β2(Incomei)2 + ui

• Cubic specification:

TestScorei = β0 + β1Incomei + β2(Incomei)2 + β3(Incomei)3 + ui

• How to estimate these models?

• We can see quadratic and cubic terms as two independent variables.
• Then themodel turns into a special form of a multiple OLS regressionmodel.
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Estimation of the quadratic specification in R

#>
#> Call:
#> felm(formula = testscr ~ avginc + I(avginc^2), data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -44.416 -9.048 0.440 8.348 31.639
#>
#> Coefficients:
#> Estimate Robust s.e t value Pr(>|t|)
#> (Intercept) 607.30174 2.90175 209.288 <2e-16 ***
#> avginc 3.85100 0.26809 14.364 <2e-16 ***
#> I(avginc^2) -0.04231 0.00478 -8.851 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 12.72 on 417 degrees of freedom
#> Multiple R-squared(full model): 0.5562 Adjusted R-squared: 0.554
#> Multiple R-squared(proj model): 0.5562 Adjusted R-squared: 0.554
#> F-statistic(full model, *iid*):261.3 on 2 and 417 DF, p-value: < 2.2e-16
#> F-statistic(proj model): 428.5 on 2 and 417 DF, p-value: < 2.2e-16
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Estimation of the cubic specification in R

#>
#> Call:
#> felm(formula = testscr ~ avginc + I(avginc^2) + I(avginc3), data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -44.28 -9.21 0.20 8.32 31.16
#>
#> Coefficients:
#> Estimate Robust s.e t value Pr(>|t|)
#> (Intercept) 6.001e+02 5.102e+00 117.615 < 2e-16 ***
#> avginc 5.019e+00 7.074e-01 7.095 5.61e-12 ***
#> I(avginc^2) -9.581e-02 2.895e-02 -3.309 0.00102 **
#> I(avginc3) 6.855e-04 3.471e-04 1.975 0.04892 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 12.71 on 416 degrees of freedom
#> Multiple R-squared(full model): 0.5584 Adjusted R-squared: 0.5552
#> Multiple R-squared(proj model): 0.5584 Adjusted R-squared: 0.5552
#> F-statistic(full model, *iid*):175.4 on 3 and 416 DF, p-value: < 2.2e-16
#> F-statistic(proj model): 270.2 on 3 and 416 DF, p-value: < 2.2e-16
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TestScore and Income: OLS Regression Results

Table 1

Dependent Variable: Test Score

(1) (2) (3)

avginc 1.879∗∗∗ 3.851∗∗∗ 5.019∗∗∗

(0.113) (0.267) (0.704)
I(avginĉ 2) −0.042∗∗∗ −0.096∗∗∗

(0.005) (0.029)
I(avginĉ 3) 0.001∗∗

(0.0003)
Constant 625.384∗∗∗ 607.302∗∗∗ 600.079∗∗∗

(1.863) (2.891) (5.078)

Observations 420 420 420
Adjusted R2 0.506 0.554 0.555
Residual Std. Error 13.387 12.724 12.707
F Statistic 430.830∗∗∗ 261.278∗∗∗ 175.352∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust S.E. are shown in the parentheses
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Figure: Linear and Quadratic Regression
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Quadratic vs Linear

• Question: Is the quadratic model better than the linear model?

• We can test the null hypothesis that the regression function is linear against the

alternative hypothesis that it is quadratic:

H0 : β2 = 0 and H1 : β2 ̸= 0

• the t-statistic

t = (β̂2 − 0)
SE(β̂2)

= −0.0423
0.0048

= −8.81

• Since 8.81 > 2.58, we reject the null hypothesis (the linear model) at a 1%

significance level.

• Based on the F-test, we can also reject the null hypothesis

F − statisticq=2,d=417 = 261.3, p − value ∼= 0.00
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Interpreting the estimated quadratic regression

• What is themarginal effect of X on Y in a quadratic regression function.

• The regressionmodel now is

Yi = β0 + β1Xi + β2X2
i + ui

• Themarginal effect of X on Y

∂Yi

∂Xi
= β1 + 2β2Xi

• It means that themarginal effect of X on Y depends on the specific value of Xi
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Interpreting the estimated quadratic regression

• The estimated regression function with a quadratic term of income is

̂TestScorei = 607.3
(2.90)

+ 3.85
(0.27)

× incomei − 0.0423
(0.0048)

× income2
i .

• Suppose the effect of an $1000 increase on average income on test scores

• A group: from $10,000 per capita to $11,000 per capita:

∆TestScore = 607.3 + 3.85 × 11 − 0.0423 × (11)2

− [607.3 + 3.85 × 10 − 0.0423 × (10)2]
= 2.96

• B group: from $40,000 per capita to $41,000 per capita:

∆TestScore = 607.3 + 3.85 × 41 − 0.0423 × (41)2

− [607.3 + 3.85 × 40 − 0.0423 × (40)2]
= 0.42
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Figure: Cubic and Quadratic Regression
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Quadratic vs Cubic

• Question: Is the cubic model better than the quadratic model?

• Answer: testing the null hypothesis that the regression function is quadratic

against the alternative hypothesis that it is cubic:

H0 : β3 = 0 and H1 : β3 ̸= 0

• the t-statistic

t = (β̂3 − 0)
SE(β̂3)

= −0.001
0.0003

= −3.33

• Since 3.33 > 2.58, we reject the null hypothesis (the linear model) at a 1%

significance level.

• the F-test also reject

F − statisticq=3,d=416 = 175.35, p − value ∼= 0.00
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Interpreting the estimated cubic regression function

• The regressionmodel now is

Yi = β0 + β1Xi + β2X2
i + β3X3

i + ui

• Themarginal effect of X on Y

∂Yi

∂Xi
= β1 + 2β2Xi + 3β3X2

i
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Interpreting the estimated regression function

• The estimated cubic model is

̂TestScorei = 600.1
(5.83)

+ 5.02
(0.86)

× income − 0.96
(0.03)

× income2 − 0.00069
(0.00047)

× income3.

• A group: from $10,000 per capita to $11,000 per capita:

∆TestScore = 600.079 + 5.019 × 11 − 0.96 × (11)2 + 0.001 × (11)3

− [600.079 + 5.019 × 10 − 0.96 × (10)2 + 0.001 × (10)3]

• B group: from $40,000 per capita to $41,000 per capita:

∆TestScore = 600.079 + 5.019 × 41 − 0.96 × (41)2 + 0.001 × (41)3

− [600.079 + 5.019 × 40 − 0.96 × (40)2 + 0.001 × (40)3]
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Polynomials in X Regression Function

• Approximate the population regression function by a polynomial:

Yi = β0 + β1Xi + β2X2... + βrXr
i + ui

• This is just the multiple linear regressionmodel – except that the regressors are

powers of X!

• Estimation, hypothesis testing, etc. proceeds as in themultiple regressionmodel

using OLS.

• Although, the coefficients are difficult to interpret, the regression function itself

is interpretable.
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Testing the population regression function is linear

• If the population regression function is linear, then the higher-degree terms

should not enter the population regression function.

• To perform hypothesis test

H0 : β2 = 0, β3 = 0, ..., βr = 0 and H1 : at least one βj ̸= 0

• Because H0 is a joint null hypothesiswith q = r − 1 restrictions on the

coefficients, it can be tested using the F-statistic.
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Which degree polynomial should I use?

• Howmany powers of X should be included in a polynomial regression?

• The answer balances a trade-off between flexibility and statistical precision.

(manyML or non-parametric or semi-parametric methods work on this)

• Increasing the degree r introduces more flexibility into the regression function
and allows it to matchmore shapes; a polynomial of degree r can have up to r - 1
bends (that is, inflection points) in its graph.

• But increasing r means addingmore regressors, which can reduce the precision of
the estimated coefficients.
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Which degree polynomial should I use?

• A practical way: asking whether the coefficients in the regression associated

with the largest values of r are zero. If so, then these terms can be dropped from

the regression.

• This procedure, which is called sequential hypothesis testing

1. Pick a maximum value of r and estimate the polynomial regression for that r.
2. Use the t-statistic to test whether the coefficient on Xr ,βr is ZERO.
3. If reject, then the degree is r; if not then test the whether the coefficient on

Xr−1,βr−1 is ZERO.
4. �continue this procedure until the coefficient on the highest power in your

polynomial is statistically significant.
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Which degree polynomial should I use?

• The initial degree r of the polynomial is still missing.

• In many applications involving economic data, the nonlinear functions are

smooth, that is, they do not have sharp jumps, or “spikes.”

• If so, then it is appropriate to choose a small maximum degree for the

polynomial, such as 2, 3, or 4.
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Which degree polynomial should I use?

• There are also several formal testing to determine the degree.

• The F-statistic approach
• The Akaike Information Criterion(AIC)
• The Bayes Information Criterion(BIC)

• We will introduce them later on.
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Wrap Up

• The nonlinear functions in Polynomials in Xs are just a special form ofMultiple

OLS Regression.

• If the true relationship between X and Y is nonlinear in polynomials in Xs, then

a fully linear regression is misspecified – the functional form is wrong.

• The estimator of the effect on Y of X is biased(a special case of OVB).

• Estimation, hypothesis testing, etc. proceeds as in themultiple regressionmodel

using OLS, which can also help us to tell the degrees of polynomial functions.

• The big difference is how to explained the estimate coefficients andmake the

predicted change in Y with a change in Xs.
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Logarithms
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Logarithmic functions of Y and/or X

• Another way to specify a nonlinear regressionmodel is to use the natural

logarithm of Y and/or X.

• Ln(x) = the natural logarithm of x is the inverse function of the exponential

function ex, here e = 2.71828.
x = ln(ex)
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Review of the Basic Logarithmic functions

• If X and a are variables, then we have

ln(1/x) = −ln(x)
ln(ax) = ln(a) + ln(x)

ln(x/a) = ln(x) − ln(a)
ln(xa) = aln(x)
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Logarithms and percentages

• Because

ln(x + ∆x) − ln(x) = ln

(
x + ∆x

x

)
∼=

∆x

x
(when

∆x

x
is very small)

• For example:

ln(1 + 0.01) = ln(101) − ln(100) = 0.00995 ∼= 0.01

• Thus,logarithmic transforms permit modeling relations in percentage terms

(like elasticities), rather than linearly.
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The three log regression specifications:

Case Population regression function

I.linear-log Yi = β0 + β1ln(Xi) + ui

II.log-linear ln(Yi) = β0 + β1Xi + ui

III.log-log ln(Yi) = β0 + β1ln(Xi) + ui

• The interpretation of the slope coefficient differs in each case.

• The interpretation is found by applying the general “before and after” rule:

“figure out the change in Y for a given change in X.”(Key Concept 8.1 in

S.W.pp301)
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I. Linear-log population regression function

• RegressionModel:
Yi = β0 + β1ln(Xi) + ui

• Change X ∆X :

∆Y = [β0 + β1ln(X + ∆X)] − [β0 + β1ln(X)]
= β1[ln(X + ∆X) − ln(X)]

∼= β1
∆X

X

• Note 100 × ∆X
X = percentage change in X , and

β1 ∼=
∆Y
∆X
X

• Interpretation of β1: a 1 percent increase in X (multiplying X by 1.01 or 100 × ∆X
X ) is

associated with a 0.01β1 or β1
100 change in Y.
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Example: the TestScore – log(Income) relation

• The OLS regression of ln(Income) on Testscore yields

̂TestScore =557.8 + 36.42 × ln(Income)
(3.8) (1.4)

• Interpretation of β1: a 1% increase in Income is associated with an increase in

TestScore of 0.3642 points on the test.
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Test scores: linear-log function

linear−log
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Case II. Log-linear population regression function

• Regressionmodel:

ln(Yi) = β0 + β1Xi + ui

• Change X:

ln(∆Y + Y ) − ln(Y ) = [β0 + β1(X + ∆X)] − [β0 + β1X]

ln(1 + ∆Y

Y
) = β1∆X

⇒ ∆Y

Y
∼= β1∆X

• So 100∆Y
Y = percentage change in Y and

β1 =
∆Y
Y

∆X
• Then a change in X by one unit is associated with a β1 × 100 percent change in Y.
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Mincer Earning Function: log-linear functions

• Example: Age(working experience) and Earnings

• The OLS regression of age on earnings yields

̂ln(Earnings) =2.811 + 0.0096Age

(0.018) (0.0004)

• According to this regression, when onemore year old, earnings are predicted to

increase by 100 × 0.0096 = 0.96%
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Case III. Log-log population regression function

• the regressionmodel is

ln(Yi) = β0 + β1ln(Xi) + ui

• Change X:

ln(∆Y + Y ) − ln(Y ) = [β0 + β1ln(X + ∆X)] − [β0 + β1ln(X)]

ln(1 + ∆Y

Y
) = β1ln(1 + ∆X

X
)

⇒ ∆Y

Y
∼= β1

∆X

X

• Now 100∆Y
Y = percentage change in Y and 100∆X

X = percentage change in X

• Therefore a 1% change in X by one unit is associated with a β1% change in Y,thus β1

has the interpretation of an elasticity.
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Test scores and income: log-log specifications

̂ln(TestScore) =6.336 + 0.055 × ln(Income)
(0.006) (0.002)

• A 1% increase in Income is associated with an increase of 0.055% in TestScore.
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Test scores: The log-linear and log-log functions
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Test scores: The linear-log and cubic functions
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Logarithmic and cubic functions

Table 3

Dependent Variable: Test Score

testscr log.testscr testscr

(1) (2) (3)

loginc 36.420∗∗∗ 0.055∗∗∗

(0.002)
avginc 5.019∗∗∗

(0.704)
I(avginĉ 2) −0.096∗∗∗

(0.029)
I(avginĉ 3) 0.001∗∗

(0.0003)
Constant 557.832∗∗∗ 6.336∗∗∗ 600.079∗∗∗

(5.078) (0.006) (5.078)

Observations 420 420 420
Adjusted R2 0.561 0.557 0.555
Residual Std. Error 12.618 0.019 12.707
F Statistic 537.444∗∗∗ 527.238∗∗∗ 175.352∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust S.E. are shown in the parentheses
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Choice of specification should be guided

• The two estimated regression functions are quite similar. So how to choose?

• The general rules:

• By economic logic or theories(which interpretationmakes the most sense in your
application?).

• There are several formal tests, while seldom used in reality. Actually t-test and
F-test are enough.

• Plotting predicted values and use R2 or SER can help to make further judgment.
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Summary

• We can add polynomial terms of any significant variables to a model and to

perform a single and joint test of significance. If the additional quadratics are

significant, they can be added to the model.

• We can also change the variables values into logarithms to capture the nonlinear

relationships.

• In reality, it can be difficult to pinpoint the precise reason for functional form

misspecification.

• Fortunately, using logarithms of certain variables and adding quadratic or

cubic functions are sufficient for detectingmany(almost) important nonlinear

relationships in Xs in economics.

53 / 188



Interactions Between Independent Variables
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Introduction

• The product of two variables is called an interaction term.

• Try to answer how the effect on Y of a change in an independent variable depends on

the value of another independent variable.

• Consider three cases:

1. Interactions between two binary variables.
2. Interactions between a binary and a continuous variable.
3. Interactions between two continuous variables.
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Interactions Between Two Binary Variables

• Assume we would like to study the earnings of worker in the labor market

• The population linear regression of Yi is

Yi = β0 + β1D1i + β2D2i + ui

• Dependent Variable: log earnings(Yi,where Yi = ln(Earnings))
• Independent Variables: two binary variables

• D1i = 1 if the person graduate from college
• D2i = 1 if the worker’s gender is female

• So β1 is the effect on log earnings of having a college degree, holding gender

constant, and β2 is the effect of being female, holding schooling constant.
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Interactions Between Two Binary Variables

• The effect of having a college degree in this specification, holding constant

gender, is the same for men and women. No reason that this must be so.

• the effect on Yi of D1i, holding D2i constant, could depend on the value of D2i

• there could be an interaction between having a college degree and gender so

that the value in the job market of a degree is different for men and women.

• The new regressionmodel of Yi is

Yi = β0 + β1D1i + β2D2i + β3(D1i × D2i) + ui

• The new regressor, the product D1i × D2i, is called an interaction term or an

interacted regressor,
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Interactions Between Two Binary Variables:

• The regressionmodel of Yi now is

Yi = β0 + β1D1i + β2D2i + β3(D1i × D2i) + ui

• Then the conditional expectation of Y i for D1i = 0, given a certain value of D2i,d2

E(Yi|D1i = 0, D2i = d2) = β0 + β1 × 0 + β2d2 + β3(0 × d2) = β0 + β2d2

• Then the conditional expectation of Y i for D1i = 1, given a certain value of D2i,d2

E(Yi|D1i = 1, D2i = d2) = β0 + β1 × 1 + β2d2 + β3(1 × d2)
= β0 + β1 + β2d2 + β3d2
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Interactions Between Two Binary Variables:

• The effect of this change is the difference of expected values,which is

E(Yi|D1i = 1, D2i = d2) − E(Yi|D1i = 0, D2i = d2) = β1 + β3d2

• In the binary variable interaction specification, the effect of acquiring a college

degree (a unit change in D1i) depends on the person’s gender.

• If the person is male,thus D2i = d2 = 0,then the effect is β1

• If the person is female,thus D2i = d2 = 1,then the effect is β1 + β3

• So the coefficient β3 is the difference in the effect of acquiring a college degree

for women versusmen.
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Application: the STR and the English learners

• Let HiSTRi be a binary variable for STR

• HiSTRi = 1 if the STR > 20
• HiSTRi = 0 otherwise

• Let HiELi be a binary variable for the share of English learners

• HiELi = 1 if the elpct > 10percent

• HiELi = 0 otherwise
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Application: the STR and the English learners

• the OLS regression result is

̂TestScore =664.1 − 1.9HiSTR − 18.2HiEL − 3.5(HiSTR × HiEL)
(1.4) (1.9) (2.3) (3.1)

• The value of β3 here(3.5) means that performance gap in test scores between

large class(STR > 20) and small class(STR ≤ 20) varies between the

“higher-share-immigrant” class and the “lower-share immigrants” class.

• More precisely,the gap of test scores is positively related with the

“higher-share-immigrant” class though insignificantly.
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Interactions: a Continuous and a Binary Variable

• Binary Variable: eg, whether the worker has a college degree (Di)

• Continuous Variable: eg, the individual’s years of work experience (Xi)

• In this case, we can have three specifications:

1. No interaction
Yi = β0 + β1Xi + β2Di + ui

2. a interaction and only one independent variable

Yi = β0 + β1Xi + β2(Di × Xi) + ui

3. Interaction and two independent variables

Yi = β0 + β1Xi + β2Di + β3(Di × Xi) + ui
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A Continuous and a Binary Variable: Three Cases
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A Continuous and a Binary Variable: Specifications

• All three specifications are just different versions of the multiple regression

model.

• Different specifications are based on different assumptions of the relationships

of X on Y depending on D.

• TheModel 3 is preferred, because it allows for both different intercepts and

different slops.
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Application: the STR and the English learners

• HiELi is still a binary variable for English learner

• The estimated interaction regression

̂TestScore = 682.2 − 0.97STR + 5.6HiEL − 1.28(STR × HiEL)
(11.9) (0.59) (19.5) (0.97)

R2 = 0.305

• For districts with a low fraction of English learners,the estimated regression line

is 682.2 − 0.97STRi

• For districts with a high fraction of English learners,the estimated regression

line is 682.2 + 5.6 − 0.97STRi − 1.28STRi = 687.8 − 2.25STRi

• The difference between these two effects, 1.28 points, is the coefficient on the

interaction term.
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Application: the STR and the English learners

• The value of β3 here(-1.28) means that the effect of class size on test scores varies

between the “higher-share-immigrant” class and the “lower-share immigrants or more

native” class.

• More precisely,negatively related with the “higher-share-immigrant” class

though insignificantly.
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Hypotheses Testing

1. High fraction is the same as low fraction, thus the two line are in fact the same

• computing the F-statistic testing the joint hypothesis

β2 = β3 = 0

• This F-statistic is 89.9, which is significant at the 1% level.

2. The effects between two groups is the same,thus two lines have the same slope

• testing whether the coefficient on the interaction term is zero, which can be

tested by using a t-statistic

• This t-statistic is -1.32, which is insignificant at the 10% level.
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Hypotheses Testing

3. the lines have the same intercept

• Testing that the population coefficient on HiEL is zero,which can be tested by

using a t-statistic.

• This t-statistic is 0.29, which is insignificant even at the 10% level.

• The reason is that the regressors, HiEL and STR ∗ HiEL, are highly correlated.

Then large standard errors on the individual coefficients.

• Even though it is impossible to tell which of the coefficients is nonzero, there is

strong evidence against the hypothesis that both are zero.
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Interactions Between Two Continuous Variables

• Now suppose that both independent variables (X1i and X2i) are continuous.

• X1i is his or her years of work experience
• X2i is the number of years he or she went to school.

• there might be an interaction between these two variables so that the effect on

wages of an additional year of experience depends on the number of years of

education.

• the population regressionmodel

Yi = β0 + β1X1i + β2X2i + β3(X1i × X2i) + ui
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Interactions Between Two Continuous Variables

• Thus the effect on Y of a change in X1, holding X2 constant, is

∆Y

∆X1
= β1 + β3X2

• A similar calculation shows that the effect on Y of a change ∆X1 in X2, holding

X1 constant, is
∆Y

∆X2
= β2 + β3X1

• That is, if X1 changes by ∆X1 and X2 changes by ∆X2, then the expected

change in Y

∆Y = (β1 + β3X2)∆X1 + (β2 + β3X1)∆X2 + β3∆X1∆X2
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Application: the STR and the English learners

• The estimated interaction regression

̂ln(TestScore) =686.3 − 1.12STR − 0.67PctEL + 0.0012(STR × PctEL)
(11.8) (0.059) (0.037) (0.019)

• The value of β3 here means how the effect of class size on test scores varies along

with the share of English learners in the class.

• More precisely, increase 1 unit of the share of English learnersmake the effect of

class size on test scores increase extra 0.0012 scores.
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Application: the STR and the English learners

• when the percentage of English learners is at themedian(PctEL = 8.85), the
slope of the line relating test scores and the STR is

∆Y

∆X1
= β1 + β3X2 = −1.12 + 0.0012 × 8.85 = −1.11

• when the percentage of English learners is at the 75th percentile(PctEL = 23.0),
the slope of the line relating test scores and the STR is

∆Y

∆X1
= β1 + β3X2 = −1.12 + 0.0012 × 23.0 = −1.09

• The difference between these estimated effects is not statistically

significant.Because?
• The t-statistic testing whether the coefficient on the interaction term is zero

t = 0.0012/0/019 = 0.06
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Application: STR and Test Scores in a Summary

• Although these nonlinear specifications extend our knowledge about the

relationship between STR and Testscore, it must be augmented with control

variables such as economic background to avoid OVB bias.

• Twomeasures of the economic background of the students:

1. the percentage of students eligible for a subsidized lunch
2. the logarithm of average district income.
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Application: STR and Test Scores in a Summary

• Then three specific questions about test scores and the student–teacher ratio.

1. After controlling for differences in economic characteristics, does the effect on test
scores of STR depend on the fraction of English learners?

2. Does this effect depend on the value of the student–teacher ratio(STR)?
3. Most important, after taking economic factors and nonlinearities into

account,what is the estimated effect on test scores of reducing the student–teacher
ratio by 2 students per teacher?
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score
(1) (2) (3) (4) (5) (6) (7)

str −1.00∗∗∗ −0.73∗∗ −0.97 −0.53 64.34∗∗ 83.70∗∗ 65.29∗∗

(0.27) (0.26) (0.59) (0.34) (24.86) (28.50) (25.26)
I(str̂ 2) −3.42∗∗ −4.38∗∗ −3.47∗∗

(1.25) (1.44) (1.27)
I(str̂ 3) 0.06∗∗ 0.07∗∗ 0.06∗∗

(0.02) (0.02) (0.02)
str:HiEL −1.28 −0.58 −123.28∗

(0.97) (0.50) (50.21)
I(str̂ 2):HiEL 6.12∗

(2.54)
I(str̂ 3):HiEL −0.10∗

(0.04)
english −0.12∗∗∗ −0.18∗∗∗ −0.17∗∗∗

(0.03) (0.03) (0.03)
HiEL 5.64 5.50 −5.47∗∗∗ 816.08∗

(19.51) (9.80) (1.03) (327.67)
lunch −0.55∗∗∗ −0.40∗∗∗ −0.41∗∗∗ −0.42∗∗∗ −0.42∗∗∗ −0.40∗∗∗

(0.02) (0.03) (0.03) (0.03) (0.03) (0.03)
log(income) 11.57∗∗∗ 12.12∗∗∗ 11.75∗∗∗ 11.80∗∗∗ 11.51∗∗∗

(1.82) (1.80) (1.77) (1.78) (1.81)
Constant 700.15∗∗∗ 658.55∗∗∗ 682.25∗∗∗ 653.67∗∗∗ 252.05 122.35 244.81

(5.57) (8.64) (11.87) (9.87) (163.63) (185.52) (165.72)
N 420 420 420 420 420 420 420
Adjusted R2 0.77 0.79 0.31 0.79 0.80 0.80 0.80

∗p < .05; ∗∗p < .01; ∗∗∗p < .001
Robust S.E. are shown in the parentheses
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Three Regressions on graph
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Interaction on graph
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A Lastest and Smart Application: Jia and Ku(2019)
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Jia and Ku(2019)

• Ruixue Jia and Hyejin Ku, “Is China’s Pollution the Culprit for the Choking of

South Korea?Evidence from the Asian Dust”,The Economic Journal.

• Main Question: Whether the air pollution spillover from China to South Korea

and affect the health of South Koreans?
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Empirical Strategy

• A naive strategy:

• Dependent variable: Deaths in South Korea(respiratory and cardiovascular
mortality)

• Independt variable: Chinese pollution(Air Quality Index)

• Because the observed or measured air quality (i.e., pollution concentration) in

Seoul or Tokyo increases in periods when China is more polluted does not mean

that the pollutionmust have originated from China.
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Jia and Ku(2019): Asian Dust as a carrier of pollutants

• Asian Dust (also yellow dust, yellow sand, yellow wind or China dust storms) is a

meteorological phenomenonwhich affects much of East Asia year round but

especially during the springmonths.

• The dust originates in China, the deserts of Mongolia, and Kazakhstan where
high-speed surface winds and intense dust storms kick up dense clouds of fine, dry
soil particles.

• These clouds are then carried eastward by prevailing winds and pass over China,
North and South Korea, and Japan, as well as parts of the Russian Far East.

• In recent decades,Asian dust brings with it China’s man-made pollution as well as
its by-products.
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Jia and Ku(2019): Asian Dust
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Jia and Ku(2019): Asian Dust

1. A clear directional aspect in that the wind which transport Chinese pollutants to

Korea but not vice versa.

2. Exogenous to South Korea’s local activities. And wind patterns and topography

generate rich spatial and temporal variation in the incidence.

3. The occurrence of Asian dust is monitored and recorded station by station in

South Korea.(because of its visual salience)
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Econometric Method: OLS with an interaction term

• Dependent variable: Deaths in South Korea(respiratory and cardiovascular

mortality of South Koreans)

• Treatment variable: Chinese pollution(Air Quality Index in China)

• Interaction Variable: Asian dust(the number of Asian dust days in South Korea)

• Control Variables: Time, Regions, Weather,Local Economic Conditions�
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Jia and Ku(2019)：Estimation Strategy

• The impact of Chinese pollution on district-levelmortality that operates via Asian

dust

Mortalityijk = β0 + β1AsianDustijk + β2ChinesePollutionjk

+ β3AsianDustijk × ChinesePollutionjk

+ δ1Xijk + uijk

• Main coefficient of interest is β3, whichmeasures the effect of Chinese pollution

in year j andmonth k onmortality in district i of South Korea.
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Jia and Ku(2019): the result of interaction terms
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Jia and Ku(2019): the result of interaction terms
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Jia and Ku(2019): the result of interaction terms
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Jia and Ku(2019): the result of interaction terms

95 / 188



Jia and Ku(2019): Placebo Test
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Summary
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Wrap up

• We extend our multiple ols model form linear to nonlinear in Xs(the

independent variables)

• Polynomials,Logarithms and Interactions
• Themultiple regression framework can be extended to handle regression
functions that are nonlinear in one or more X.

• the difference between a standardmultiple OLS regression and a nonlinear OLS
regressionmodel in Xs is how to explain estimating coefficients.

• All are very useful and common tools with OLS regressions. You had better

understand it very clear.
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Review of the last lecture

99 / 188



Nonlinear Regression Functions

• How to extend linear OLSmodel to be nonlinear? Two categories based on

which is nonlinear?

1. Nonlinear in Xs(the previous lecture)
• Polynomials,Logarithms and Interactions
• Themultiple regression framework can be extended to handle regression
functions that are nonlinear in one or more X.

• the difference from a standardmultiple OLS regression is how to explain estimating
coefficients.

• So far the dependent variable (Y) has been continuous:
• testscore
• average hourly earnings
• GDP growth rate

• What if the outcome variables(Y) is discrete or limited.
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Nonlinear Regression Functions

2. Nonlinear in β orNonlinear in Y

• Discrete(or Categorical) dependent variables

• employment status: full-time,part-time,or none
• ways to commute to work:by bus, car or walking
• occupation(or sector) choices�

• Linear function is not a good prediction function. Need a certain function which

parameters enter nonlinearly, such as logistic function.

• OLS is not our first choice to estimate the model but theMaximum Likelihood

Estimation(MLE)with the cost of pre-assumption about the known distribution

families.

• Interpreting the results more difficult for the nonlinearity.
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Discrete Dependent Variables

• Discrete Models:

• Binary outcomes: (LPM,logit and probit)
• Multinomial outcomes: Multiple responses or choices without orders (multi-logit
andmulti-probit)

• Ordered outcomes: Ordered ResponseModels(ordered probit and logit)
• Count outcomes: The outcomes is a nonnegative integer or a count (possionmodel)
• Duration data(spell lengths or transitions): Durationmodel or hazardmodel

• Binary outcomesmodels is covered here.
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Binary OutcomeModels
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Binary OutcomeModels

• Binary outcomes

• Y= get into college, or not; X = parental income.
• Y= person smokes, or not; X = cigarette tax rate, income.
• Y=mortgage application is accepted, or not; X = race, income, house characteristics,
marital status �

• Binary outcomesmodels:

• Logit ProbabilityModel(LPM)
• Logit model
• Probit model
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The Linear Probability Model(LPM)
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The Conditional Expectation

• If a outcome variable Y is binary, thus

Y =
{

1 if D = 1
0 if D = 0

• The expectation of Y is

E[Y ] = 1 × Pr(Y = 1) + 0 × Pr(Y = 0) = Pr(Y = 1)

which is the probability of Y = 1.
• Then we can extend it to the conditional expectation of Y equals to the the

probability of Y = 1 conditional on Xs,thus

E[Y |X1i, ..., Xki] = Pr(Y = 1|X1i, ..., Xki)
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Multiple OLS Regression

• Suppose our regressionmodel is

Yi = β0 + β1X1i + β2X2i + ... + βkXki + ui

• Based on Assumption 1, thus

E[ui|X1i, ..., Xki] = 0

• Then

E[Y |X1i, ..., Xki] = β0 + β1X1i + β2X2i + ... + βkXki
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The Linear Probability Model

• The conditional expectation equals the probability that Yi = 1 conditional on
X1i, ..., Xki

E[Y |X1i, ..., Xki] = Pr(Y = 1|X1i, ..., Xki)
= β0 + β1X1i + β2X2i + ... + βkXki

• Now a Linear ProbabilityModel can be defined as following

Pr(Y = 1|X1i, ..., Xki) = β0 + β1X1i + β2X2i + ... + βkXki
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The Linear Probability Model

• Themodel does not change essentially.

Yi = β0 + β1X1i + β2X2i + ... + βkXki + ui

• The different part is the interpretation the coefficient.Now the population

coefficient βj

∂Pr(Yi = 1|X1i, ..., Xki)
∂Xj

= βj

• βj can be explained as the change in the probability that Y = 1 associated with
a unit change in Xj
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LPM andMultiple OLS

• Almost all of the tools of Multiple OLS regression can carry over to the LPM

model.

• Assumptions are the same as for general multiple regressionmodel.
• The coefficients can be also estimated byOLS.
• Both t-statistic and F-statistic can be constructed as before.
• The errors of the LPM are always heteroskedastic, so it is essential that
heteroskedasticity-robust s.e. be used for inference.

• One difference is that both original R2 and adjusted-R2 are not meaningful
statistics now.
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An Example: Mortgage Applications

• Most individuals who want to buy a house apply for a mortgage at a bank. Not

all mortgage applications are approved.

• Question: What determines whether an application is approved or denied?

• Boston HMDA data: a data set onmortgage applications collected by the Federal

Reserve Bank in Boston.

Variable Description Mean SD

deny = 1 if application is denied 0.120 0.325

pi_ratio monthly loan payments / monthly income 0.331 0.107

black = 1 if applicant is black 0.142 0.350

• Our linear probability model is

Pr(Y = 1|X1i, X2i) = β0 + β1X1i + β2X2i
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An Example: Mortgage Applications

• Does the payment to income ratio affect whether or not a mortgage application is

denied?

d̂eny = −0.080 + 0.604 P/I ratio

(0.032)(0.098)

• The estimated OLS coefficient on the payment to income ratio

β̂1 = 0.604

• The estimated coefficient is significantly different from 0 at a 1% significance

level.(the t-statistic is over 6)
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An Example: Mortgage Applications

• How should we interpret β̂1 ?

• An original one: payments/monthly income ratio increase 1,then probability being
deniedwill also increase 0.6

• Another more reasonable one: payments/monthly income ratio increase 10%(0.1),then
probability being denied will also increase 6%(0.06).

• Question: Does the effect matter? Or themagnitude of the effect is large enough.

• Answer: An option is comparing with the mean value of dependent variable.

• Here deny rate = 0.12 means that the deny ratio will increase
0.06/0.12 × 100% = 50% if PI Ratio increases 10%.
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An Example: Mortgage Applications

• What is the effect of race on the probability of denial, holding constant the P/I

ratio?

• the differences between black applicants andwhite applicants.

d̂eny = −0.091 + 0.559 P/I ratio + 0.177black

(0.029) (0.089) (0.025)

• The coefficient on black, 0.177, indicates that an African American applicant has

a 17.7% higher probability of having amortgage application denied than a white

applicant, holding constant their payment-to-income ratio.

• This coefficient is significant at the 1% level (the t-statistic is 7.11).
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LPM: Similar to an OLS Regression

• Assumptions are the same as for general multiple regressionmodel:

1.
2.
3.
4.

• Advantages of the linear probability model:

• Easy to estimate and inference
• Coefficient estimates are easy to interpret
• Very useful under some circumstances like using IV.
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LPM: Heteroskedasticity

• Then conditional variance of the error term ui is always heteroskedasticity.

Var (ui | X1i, · · · , Xki) ̸= σ2
u

• Always use heteroskedasticity robust standard errorswhen estimating a linear

probability model!
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LPM: Predicted values

• More serious problem: the predicted probability can be below 0 or above 1!
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Nonlinear Probability Models

118 / 188



Introduction

• Intuition: Probabilities should not be less than 0 or greater than 1

• To address this problem,consider a nonlinear probability models

Pr(Yi = 1|X1, ...Xk) = G(Z)
= G(β0 + β1X1,i + β2X2,i + ... + βkXk,i)

where Z = β0 + β1X1,i + β2X2,i + ... + βkXk,i

• And the function have to satisfy the conditions:

• 0 ≤ G(Z) ≤ 1
• monotonicity and continuity

• The key is whether we could find a proper function G(x) which can limit the

prediction value less than 1 and greater than 0.

• The cumulative distribution function(c.d.f)
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Math Review: The cumulative distribution function

• The cumulative distribution function (c.d.f) of a random variable X at a given

value x is defined as the probability that X is smaller than x

FX(x) = Pr(X ≤ x)

• Assume that the probability mass function or probability distribution function

is fX(x), then the c.d.f is

FX(x) =


∑

t∈X
t≤x

fX(t) if X is discrete∫ x
−∞ fX(t)dt if X is continuous

• More importantly,the c.d.f satisfies

• 0 ≤ FX(x) ≤ 1
• monotonicity and continuity
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Logit and Probit functions

• Two common nonlinear functions
1. Probit Model

G(Z) = Φ(Z) =
∫ Z

−∞
ϕ(Z)dZ = 1√

2π

∫ Z

−∞
e− t2

2 dt

which is the standard normal cumulative distribution function
2. Logit Model

G(Z) = 1
1 + e−Z

= eZ

1 + eZ

which is the logistic cumulative distribution function.

• where

Z = β0 + β1X1i + β2X2i + ... + βkXki

• Several reasons why these two are chosen:
• good shapes, thus the predictions makemore senses.
• relatively easy to use and interprete them.
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Probit Model

• Probit regressionmodels the probability that Y = 1

Pr(Yi = 1|X1, ...Xk) = Φ(β0 + β1X1,i + β2X2,i + ... + βkXk,i)

• where Φ(Z) is the standard normal c.d.f, then we have

0 ≤ Φ(Z) ≤ 1

• Then it make sure that the predicted probabilities of the probit model are

between 0 and 1.
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Probit Model: Shape and Prediction Value
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Probit Model: Explaination to the Coefficient

• How should we interpret β̂1 ?

• Recall Z = β0 + β1X1,i + β2X2,i + ... + βkXk,i

• The coefficient βj is the change in the Z-value rather than the probability arising
from a unit change in Xj , holding constant other Xis.

• The effect on the predicted probability of a change in a regressor should be

computed by the general formula in the nonlinear regressionmodel(Key

concept 8.3)

1. computing the predicted probability for the initial value of the regressors,
2. computing the predicted probability for the new or changed value of the

regressors,
3. taking their difference.
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Probit Model: Explaination to the Coefficient
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The Predicted Probability: one regressor

• Suppose the probit population regressionmodel with only one regressors, X1

Pr(Y = 1|X1) = Φ(Z) = Φ(β0 + β1X1)

• Suppose the estimate result is β̂0 = −2 and β̂1 = 3,whichmeans

Z = −2 + 3X1

• How to compute the probability change of X1 with a change from 0.4 to 0.5?
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The Predicted Probability: one regressor

• The probability that Y = 1 when X1 = 0.4, then z = −2 + 3 × 0.4 = −0.8, then
the predicted probability is

Pr(Y = 1|X1 = 0.4) = Pr(z ≤ −0.8) = Φ(−0.8)

• Likewise the probability that Y = 1 when X1 = 0.5, then
z = −2 + 3 × 0.5 = −0.5,the predicted probability is

Pr(Y = 1|X1 = 0.5) = Pr(z ≤ −0.5) = Φ(−0.5)

• Then the difference is

Pr(Y = 1|X1 = 0.5) − Pr(Y = 1|X1 = 0.4) =
Φ(−.5) − Φ(−.8) = 0.3085 − 0.2119 = 0.097
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The Predicted Probability: one regressor
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Example: Mortgage Applications

• The probit model:

Pr(Y = 1|X1) = Φ(Z) = Φ(β0 + β1X1)

• Does the payment to income ratio affect whether or not a mortgage application is

denied?

̂Pr(deny = 1|P/I ratio) = Φ(−2.19 + 2.97P/I ratio)
(0.16) (0.47)
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Example: Mortgage Applications

• What is the change in the predicted probability that an application will be denied if

P/I ratio increases from 0.3 to 0.4?

• The probability of denial when P/I ratio = 0.3

Φ(−2.19 + 2.97 × 0.3) = Φ(−1.3) = 0.097

• The probability of denial when P/I ratio = 0.4

Φ(−2.19 + 2.97 × 0.4) = Φ(−1.0) = 0.159

• The estimated change in the probability of denial is 0.159 − 0.097 = 0.062,
whichmeans that the P/I ratio increase from from 0.3 to 0.4, the denial

probability increase 6.2%.
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Effect of a Change in X: When X is continuous

• the P/I ratio increase from

• 0.3 to 0.4, denial probability increase 6.2%.
• 0.4 to 0.5, denial probability increase 9.7%.

• Marginal Effects for Xj

∂Pr(Y = 1|X1, ...Xk)
∂Xj

= ϕ(β0 + β1X1,i + β2X2,i + ... + βkXk,i) × βj

• Where ϕ(·) is the probability distribution function(p.d.f) of the standard

normal c.d.f.

• Hence, the effect of a change in X depends on the starting value of X and other

Xs like other nonlinear functions.
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Effect of a Change in X: Marginal Effects

• Then theMarginal Effects varies with the point of evaluation

• Marginal Effect at a Representative Value (MER):ME at X = X∗ (at representative
values of the regressors)

• Marginal Effect at Mean (MEM): ME at X = X̄(at the sample mean of the
regressors)

• AverageMarginal Effect (AME): average of ME at each X = Xi (at sample values
and then average)

• Themost common one is MEMwhile the other two are not meaningless.
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Example: Mortgage Applications

• TheMarginal Effect

∂Pr(deny = 1|P/I ratio)
∂P/I ratio

= ϕ(−2.19 + 2.97P/I ratio) × 2.97

• ThenMarginal Effect at Mean (MEM):(at the sample mean of the regressors:

P/I ratiomean = 0.331

∂Pr(deny = 1|P/I ratio)
∂P/I ratio at mean

= ϕ(−2.19 + 2.97 × 0.331) × 2.97

= ϕ(−1.21) × 2.97

• The the effect of P/I ratio change 10%(0.1) on the probability of deny is

3.36%(0.0336)
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Discrete Explanatory Variable

• If Xj is a discrete variable, then we should not rely on calculus in evaluating the

effect on the response probability.

• Assume X2 is a dummy variable, then partial effect of X2 changing from 0 to 1:

G(β0 + β1X1,i + β2 × 1 + ... + βkXk,i) − G(β0 + β1X1,i + β2 × 0 + ... + βkXk,i)
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Example: Race inMortgage Applications

• Mortgage denial (deny) and the payment-income ratio (P/I ratio) and race

̂Pr(deny = 1|P/I ratio) = Φ(−2.26 + 2.74P/I ratio + 0.71black)
(0.16) (0.44) (0.083)

• The probability of denial when black = 0,thus whites(non-blacks) is

Φ(−2.26 + 2.74 × 0.3 + 0.71 × 0) = Φ(−1.43) = 0.075

• The probability of denial when black = 1,thus blacks is

Φ(−2.26 + 2.74 × 0.3 + 0.71 × 1) = Φ(−0.73) = 0.233

• so the difference between whites and blacks at P/Iratio = 0.3 is
0.233 − 0.075 = 0.158, whichmeans probability of denial for blacks is 15.8%
higher than that for whites.
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Logit Model
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Logistic Function

• Using the standard logistic cumulative distribution function

Pr(Yi = 1|Z) = 1
1 + e−Z

= eZ

1 + eZ

• As in the Probit model

Z = β0 + β1X1,i + β2X2,i + ... + βkXk,i

• Since F (z) = Pr(Z ≤ z) we have that the predicted probabilities of the logit
model are also between 0 and 1.
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Logit Model: Predicted Probabilities

• Suppose we have only one regressor X and Z = −2 + 3X1

• We want to know the probability that Y = 1 when X1 = 0.4
• Then

Z = −2 + 3 × 0.4 = −0.8

• So the probability

Pr(Y = 1|X1 = 0.4) =Pr(Z ≤ −0.8)
=F (−0.8)

= 1
1 + e−0.8

=0.31
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Logit Model: Predicted Probabilities

• Pr(Y = 1) = Pr(Z ≤ −0.8) = 1
1+e−0.8 = 0.31
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Logit Model: Explaination to the Coefficient

• How should we interpret β̂1 ?

• Similar to the Probit model,Z = β0 + β1X1,i + β2X2,i + ... + βkXk,i

• The coefficient βj can not be explained directly.
• the change in theZ-value rather than the probability arising from a unit change in

Xj , holding constant other Xi.

• Different from the Probit model

• The odds ratio
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Logit Model: the Odds Ratio

• Let p is the conditional probability of Y = 1,then

p = Pr(Yi = 1|Z) = eZ

1 + eZ

• Then 1 − p is the probability of Y = 0

1 − p = Pr(Yi = 0|Z) = 1 − eZ

1 + eZ
= 1

1 + eZ

• Then the ratio of probability of Y = 1 to the probability of Y = 0 is

p

1 − p
= Pr(Yi = 1|Z)

Pr(Yi = 0|Z)
= ez

• the p
1−p is called asOdds Ratio.
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Logit Model: the Odds Ratio

• Then

ln
( p

1 − p

)
= Z = β0 + β1X1,i + β2X2,i + ... + βkXk,i

• Therefore β̂j can be expressed that the percentage change in odds ratio arising

from a unit change in Xj .
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Example: Mortgage Applications

• Logit Model: Mortgage denial (deny) and the payment-to-income ratio (P/I ratio)

̂Pr(deny = 1|P/I ratio) = F (−4.03 + 5.88P/I ratio)
(0.359) (1.000)

• If P/I ratio increases 10%(0.1), then odds ratio of deny to acceptwill be

increased 58.8%.
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Marginal Effect in logit model

• ThenMarginal Effect at Mean (MEM):(at the sample mean of the regressors:

P/I ratiomean = 0.331

∂Pr(deny = 1|P/I ratio)
∂P/I ratio at mean

= f(−2.19 + 2.97 × 0.331) × 2.97

= f(−1.21) × 2.97
= 0.526

• The the effect of P/I ratio change 10%(0.1) on the probability of deny is

5.26%(0.0526)
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Example: Mortgage Applications on Race

• Logit Model: Mortgage denial (deny) and the payment-to-income ratio (P/I ratio)

and race

̂Pr(deny = 1|P/I ratio) = F (−4.13 + 5.37P/I ratio + 1.27black)
(0.35) (0.96) (0.15)
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Example: Mortgage Applications on Race

• The predicted denial probability of awhite applicant with P/I ratio = 0.3 is

1
1 + e−(−4.13+5.37×0.3+1.27×0) = 0.074

• The predicted denial probability of a black applicant with P/I ratio = 0.3 is

1
1 + e−(−4.13+5.37×0.3+1.27×1) = 0.222

• the difference is

0.222 − 0.074 = 0.148 = 14.8%

which indicates that the probability of denial for blacks is 14.8% higher than

that for whites when P/Iratio = 0.3.
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Estimation and Inference in Probit and Logit Model
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Estimation and Inference in Probit and Logit Model

• How to estimate β0, β1, ..., βk?

• What is the sampling distribution of the estimators?

• Logit and Probit models are nonlinear in the coefficients β0, β1, ..., βk

• These models can NOT be estimated directly by OLS, but by Nonlinear Least
Squares(NLS).

• In practice,the most commonmethod used to estimate logit and probit models is
Maximum Likelihood Estimation (MLE).
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Review: Maximum Likelihood Estimation

• The likelihood function is a joint probability distribution of the data, treated as a

function of the unknown coefficients.

• Themaximum likelihood estimator (MLE) are the estimate values of the

coefficients that maximize the likelihood function.

• MLE’s logic: the most likely function is the function to have produce the data we

observed.
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Review: Maximum Likelihood Estimation

• Random Variables Y1, Y2, Y3, ...Yn have a joint density function denoted

fθ(Y1, Y2, ..., Yn) = f(Y1, Y2, ..., Yn|θ)

• where θ is an unknown parameter.

• Given observed values Y1 = y1, Y2 = y2, ..., Yn = yn,the likelihood of θ is the

function

likelihood(θ) = f(Y1 = y1, Y2 = y2, ..., Yn = yn|θ) = f(θ; y1, ..., yn)

• which can be considered as a function of θ.

• Then theMaximum Likelihood Estimation to θ is a solution to the question

arg max
θ̂

f(θ; Y1 = y1, ..., Yn = yn))
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Maximum Likelihood Estimation of a Binary Variable

• Suppose we flip a coin which is yields heads (Y = 1) and tails (Y = 0). We want

to estimate the probability p of heads.

• Therefore, let Yi = 1(heads) be a binary variable that indicates whether or not a
heads is observed.

Yi =
{

1 with probability p

0 with probability 1 − p

• Then the probability mass function for a single observation is a Bernoulli

distribution

Pr(Yi) =

p when Yi = 1

1 − p when Yi = 0

• which can be transform into

Pr(Yi = y) = Pr(Yi = 1)y(1 − Pr(Yi = 1))1−y = py(1 − p)1−y
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Maximum Likelihood Estimation of a Binary Variable

MLE Step 1: write down the likelihood function, the joint probability distribution of the

data

• Since Y1, ..., Yn are i.i.d,the joint probability distribution of the observations,

thus the Likelihood function is the product of the individual distributions

fbernouilli(p; Y1 = y1, ..., Yn = yn) = Pr(Y1 = y1, ..., Yn = yn)

= Pr(Y1 = y1) × ... × Pr(Yn = yn)
= py1(1 − p)1−y1 × ... × pyn(1 − p)1−yn

= p(y1+y2+...+yn)(1 − p)n−(y1+y2+...+yn)

= p
∑

yi(1 − p)n−
∑

yi
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Maximum Likelihood Estimation

MLE Step 2: Write down the maximization problem

• More easier to maximize the logarithm of the likelihood function

ln(fbernouilli(p; Y1 = y1, ..., Yn = yn)) =
( ∑

yi

)
ln(p) +

(
n −

∑
yi

)
ln(1 − p)

• Since the logarithm is a strictly increasing function, maximizing the likelihood

or the log likelihood will give the same estimator.

• Then themaximization problem is

arg max
p̂

ln(fbernouilli(p; Y1 = y1, ..., Yn = yn))
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Maximum Likelihood Estimation

MLE Step 3: Maximize the likelihood function

• F.O.C: taking the derivative and setting it to zero.

d

dp
ln(fbernouilli(p; Y1 = y1, ..., Yn = yn)) = 0

⇒ d

dp

[( ∑
yi

)
ln(p) +

(
n −

∑
yi

)
ln(1 − p)

]
= 0

⇒
∑

yi

p
− n −

∑
yi

1 − p
= 0

⇒(n −
∑

yi) =
∑

yi(1 − p)

• Solving the equation for p yields theMLE estimator; that is, p̂MLE satisfies

p̂MLE = 1
n

∑
yi = Y
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• Solving the equation for p yields theMLE estimator; that is, p̂MLE satisfies

p̂MLE = 1
n

∑
yi = Y
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MLE of the Probit Model

• Assume our probit model is

P (Yi = 1|Xi) = Φ(β0 + β1X1i + ... + βkXki) = pi

• Step 1: write down the likelihood function

fprobit(β0, ..., βk; Y1, ..., Yn|X1i, ..., Xki, i = 1, ..., n) = P r(Y1 = y1, .., Yn = yn)

= P r(Y1 = y1) × ... × P r(Yn = yn)

= py1 (1 − p)1−y1 × ... × pyn (1 − p)1−yn

=
[

Φ(β0 + β1X11+... + βkXk1)y1 (1 − Φ(β0 + β1X11 + ... + βkXk1))1−y1

]
×

... ×
[

Φ(β0 + β1X1n+... + βkXkn)yn (1 − Φ(β0 + β1X1n + ... + βkXkn))1−yn

]
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MLE of the Probit Model

• Step 2: Maximize the log likelihood function

ln(fprobit(β0, ..., βk; Y1, ..., Yn|X1i, ..., Xki, i = 1, ..., n))

=
n∑
i

yi × ln[Φ(β0 + β1X1i + ... + βkXki)]

+
n∑
i

(1 − yi) × ln[1 − Φ(β0 + β1X1i + ... + βkXki)]

• Then the maximization problem is

arg max
β̂0,β̂1,..,β̂k

ln(fprobit(β0, β1, ..., βk; Y1 = y1, ..., Yn = yn|X1i, ..., Xki, i = 1, ..., n))
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MLE of the Logit Model

• Step 1write down the likelihood function

Pr(Y1 = y1, ..., Yn = yn) = py1(1 − p)1−y1 × ... × pyn(1 − p)1−yn

• Similar to the Probit model but with a different function for pi

pi = 1
1 + e−(β0+β1X1i+...+βkXki)
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MLE of the Logit Model

• Step 2: Maximize the log likelihood function

ln(flogit(β0, ..., βk; Y1, ..., Yn|X1i, ..., Xki, i = 1, ..., n))

=
∑

yi × ln

( 1
1 + e−(β0+β1X1i+...+βkXki)

)
+

∑
(1 − yi) × ln

( 1
1 + e−(β0+β1X1i+...+βkXki)

)

• Then the maximization problem is

arg max
β̂0,β̂1,..,β̂k

ln(flogit(β0, ..., βk; Y1 = y1, ..., Yn = yn|X1i, ..., Xki, i = 1, ..., n))

158 / 188



MLE of the Logit Model

• Step 2: Maximize the log likelihood function

ln(flogit(β0, ..., βk; Y1, ..., Yn|X1i, ..., Xki, i = 1, ..., n))

=
∑

yi × ln

( 1
1 + e−(β0+β1X1i+...+βkXki)

)
+

∑
(1 − yi) × ln

( 1
1 + e−(β0+β1X1i+...+βkXki)

)

• Then the maximization problem is

arg max
β̂0,β̂1,..,β̂k

ln(flogit(β0, ..., βk; Y1 = y1, ..., Yn = yn|X1i, ..., Xki, i = 1, ..., n))

158 / 188



Computation of MLE Estimators

• In most cases the computation of maximum likelihood estimators is not easy to

obtain since the first order conditions do not have closed form solutions

necessarily.

• We can still obtain the values of estimators using numerical algorithmwith

iterative methods.

• One of commonmethods is GradientMethod based on low order Taylor series

expansions.
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Math Review: Taylor Expressions

• Recall Taylor series of a function f(x) at a certain value of x,thus x0

f(x) = f(x0) + f ′(x0)
1!

(x − x0) + f ′′(x0)
2!

(x − x0)2 + ...
∞∑

n=0

f (n)(x0)
n!

(x − x0)n

• Then we can have the Taylor expression of f(x) at first and second orders

f(x) ≃ f(x0) + f ′(x0)(x − x0)

f(x) ≃ f(x0) + f ′(x0)(x − x0) + f ′′(x0)
2

(x − x0)2
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Newton-RaphsonMethod

• Our objective: find the solution of x to a equation: f(x) = 0
• An alternative way: find some x make

f(x0) + f ′(x0)(x − x0) = 0

• here the x0 is some initial value x0 we guess, which is close to the desired

solution. And then we obtain a better approximation x1, based on

x1 = x0 − f(x0)
f ′(x0)

• We do not stop repeating this procedure until

f(xj) = 0

, here the xj is the solution to the function.
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Newton-RaphsonMethod

• Our objective: find the solution of x to a equation: f ′(x) = 0
• Then we need the Taylor expression of f(x) at second order

f(x) ≃ f(x0) + f ′(x0)(x − x0) + f ′′(x0)
2

(x − x0)2

• F.O.C for f ′(x) = 0

d

d(x − x0)

[
f (x0) + f ′ (x0) (x − x0) + 1

2
f ′′ (x0) (x − x0)2

]
= 0

⇒f ′ (x0) + f ′′ (x0) (x − x0) = 0

⇒x = x0 − f ′ (x0)
f ′′ (x0)

• repeating this procedure until

f ′(xj) = 0

, here the xj is the solution to the function.
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Computation of MLE estimators

• For simplicity, assume only one parameter θ, the maximum likelihood function

is L(θMLE)
• Then the F.O.C for the problem of maximization is as following

∂L(θMLE)
∂θ

= 0

• A initial guess of the parameter value, which denotes as θ0. Then theMLE

estimator can be calculated by

θMLE,1 ≃ θ0 −
[

∂2L(θ0)
∂θ2

]−1 ∂L(θ0)
∂θ

• We do not stop repeating this procedure until

∂L(θ̂MLE,j)
∂θ

= 0

, here the θ̂MLE,j is the solution to the function.
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Measures of Fit

• R2 is a poor measure of fit for the linear probability model. This is also true for

probit and logit regression.

• Twomeasures of fit for models with binary dependent variables

1. fraction correctly predicted

• If Yi = 1 and the predicted probability exceeds 50% or if Yi = 0 and the predicted
probability is less than 50%, then Yi is said to be correctly predicted.
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Measures of Fit

2. The pseudo-R2

• The pseudo − R2 compares the value of the likelihood of the estimatedmodel to
the value of the likelihood when none of the Xs are included as regressors.

pseudo − R2 = 1 −
ln(fmax

probit)
ln(fmax

bernoulli)

• fmax
probit is the value of the maximized probit likelihood (which includes the X’s)

• fmax
bernoulli is the value of the maximized Bernoulli likelihood (the probit model
excluding all the X’s).
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Statistical inference based on theMLE

• It can be prove that under very general conditions,theMLE estimator is

unbiased,consistent, asymptotic normally distributed in large samples.

• Because theMLE is normally distributed in large samples, statistical inference

about the probit and logit coefficients based on theMLE proceeds in the same

way as inference about the linear regression function coefficients based on the

OLS estimator.

• That is, hypothesis tests are performed using the t-statistic and 95% confidence

intervals are formed as 1.96 standard errors.

167 / 188



Statistical inference based on theMLE

• Testing of joint hypotheses onmultiple coefficients are very similar to the

F-statisticwhich is discussed inmultiple OLSmodel.

• The likelihood ratio test, it is based on comparing the log likelihood values of

the unrestricted and the restricted model. The test statistic is

LR = 2(logLur − LogLr) ∼ χ2
q

• where q is the number of restrictions being tested.
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Comparing the LPM,Probit and Logit

• All threemodels: linear probability, probit, and logit are just approximations to the

unknown population regression function E(Y |X) = Pr(Y = 1|X).
• LPM is easiest to use and to interpret, but it cannot capture the nonlinear nature of
the true population regression function.

• Probit and logit regressions model this nonlinearity in the probabilities, but their
regression coefficients are more difficult to interpret.

• So which should you use in practice?

• There is no one right answer, and different researchers use different models.
• Probit and logit regressions frequently produce similar results.
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Logit v.s. Probit
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Comparing the LPM,Probit and Logit

• Themarginal effects and predicted probabilities are muchmore similar across

models.

• Coefficients can be compared across models, using the following rough

conversion factors (Amemiya 1981)

β̂logit ≃ 4β̂ols

β̂probit ≃ 2.5β̂ols

β̂logit ≃ 1.6β̂probit
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Example: Mortgage Applications(short regression)
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A Lastest Application: Jia,Lan andMiquel(2021)
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Jia,Lan andMiquel(2021)

• Ruixue Jia(贾瑞雪), Xiaohuan Lan(兰小欢) and Gerard Padrói Miquel, “Doing

Business in China: Parental background and government intervention

determine who owns business”,The Journal of Development Economics,Volume

151, June 2021.

• Main Question:

1. the parental determinants of entrepreneurship in China.
2. how the parental determinants of entrepreneurship vary with government

intervention in the economy.
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Jia,Lan andMiquel(2021): Data

1. Individual-level data:

• China General Social Survey (GCSS) 2006,2008,2010,2012,2013
• 31 provinces, 22801 urban respondents

2. Province-level data:

• China Statistic Yearbooks.
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Jia,Lan andMiquel(2021) Main Variables

• Independent Variables: cadre parents and entrepreneur parents

• cadre parents: “does a parent work in government or in a public organization
affiliated with the government?”

• entrepreneur parents: business owner + self-employed

• Dependent Variables: whether the respondent is

• business owner: all owners of incorporated businesses, whomust pay corporation
tax and follow corporation law.

• self-employment: owners of non-incorporated small businesses.
• goverment employee: work in government or in a public organization affiliated
with the government.

• Interaction:

• Provincial Government Expenditure on Business-related activities(PGEB) as a
measure of the role of government on the private business environment.
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Parental Background and Doing Business

• Goal: examine the difference in the probability of being in different occupations

between those with entrepreneur parents, cadre parents and others.

• Linear Probability Model:

P r(Y = 1|X) = β1CardreParenti + β2EntreParenti + γXi + P rovp × Y eart + uipt

• Yi is a dummy indicating the respondent’s occupation,all the other occupations
grouped together in the reference group.

• Xi are individual-level characteristics such as gender,age, marital status, college
education or not, andminority status.

• Provp × Y eart are the province-by-year fixed effects.
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Empirical Results: LPM

• Cadre Parents increase the probability of being government workers(11.5%).

• Entrepreneur Parents do not.
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Empirical Results: LPM

• Entrepreneur Parents increase the probability of being business owner(1.6%).

• Cadre Parents also increase the probability of being business owner(0.6%).

However, the effect will go away when controlling individual characteristics.
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Empirical Results: LPM

• Entrepreneur Parents increase the probability of being business owner(6%).

• Cadre Parents decrease the probability of self-employment(1.1%).
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Descriptive patterns: Cross-provinces
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Descriptive patterns
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Descriptive patterns

183 / 188



Parental Background and Local Economic Context

• Question: Whether the association between parental occupation and business

ownership varies with the level of government intervention in the business

environment.

• Linear ProbabilityModel: Interacted with PGEB

Pr(Y = 1|X) = β1CardreParenti + β2CardreParenti × PGEBpt

+β3EntreParentsi + β4EntreParentsi × PGEBpt

+γXi + γXi × PGEBpt + Provp × Y eart + uipt
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Empirical Results: LPM+Interactions
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Empirical Results: LPM+Interactions
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Empirical Results: LPM+Interactions
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Jia,Lan andMiquel(2021): Main Findings

1. Is there intergenerational transmission of entrepreneurship in China?

• Yes, and the magnitude is similar to findings elsewhere.

2. Do children of government officials have a higher likelihood of becoming

entrepreneurs?

• Yes, in particular they have a high likelihood of owning incorporated businesses.

3. Do parental determinants depend on the role of government?

• the larger is government involvement in business-related spending, the larger the
business-ownership propensity of children of government officials, and the
smaller the propensity of children of entrepreneurs.
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