大数据时代的管理决策（2024 年春）

Lecture 3：OLS Regression（II）：Nonlinear Model

Zhaopeng Qu

Nanjing University Business School
March 152024

1 Review of previous lecture

2 Nonlinear Regression Functions:

3 Nonlinear in Xs

4 Polynomials in X

5 Logarithms

6 Interactions Between Independent Variables

7 A Lastest and Smart Application: Jia and Ku (2019)

8 Summary

Review of previous lecture

OLS Regression and Hypothsis Testing

- Hypothesis Testing is a formal procedure in statistics for testing assumptions regarding a population parameter.
- Hypothesis Testing in OLS regressions
- single coefficient: the t-statistic
- two or more coefficents: the F-statistic
- The key component in obtaining the t-statistic is the standard error(S.E.), which is the estimation of Standard Deviation of estimated coefficients $(\hat{\beta})$.

OLS Regression and Hypothsis Testing

- Assumption 4: The error terms are homoskedastic

$$
\operatorname{Var}\left(u_{i} \mid X_{i}\right)=\sigma_{u}^{2}
$$

Then $\hat{\beta}^{O L S}$ is the Best Linear Unbiased Estimator(BLUE).

- However, in most cases it is NOT a plausible assumption.
- Homoskedasticity is a special case of heteroskedasticity, these heteroskedasticity robust formulas are also valid if the error terms are homoskedastic.
- Using the hypothesis testing and confidence interval in OLS regression, we could make a more reliable judgment about the relationship between the treatment and the outcomes.

Nonlinear Regression Functions:

Introduction

- Recall the assumption of Linear Regression Model

Linear Regression Model

The observations, (Y_{i}, X_{i}) come from a random sample(i.i.d) and satisfy the linear regression equation,

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1, i}+\ldots+\beta_{k} X_{k, i}+u_{i}
$$

- Everything what we have learned so far is under this assumption of linearity. But this linear approximation is not always a good one.

Introduction: Recall the whole picture

- A general formula for a population regression model may be

$$
Y_{i}=f\left(X_{1, i}, X_{2, i}, \ldots, X_{k, i}\right)+u_{i}
$$

- Parametric methods: assume that the function form(families) is known, we just need to assure(estimate) some unknown parameters in the function.
- Linear
- Nonlinear
- Nonparametric methods: assume that the function form is unknown or unnecessary to known.

Nonlinear Regression Functions

- How to extend linear OLS model to be nonlinear?

1. Nonlinear in Xs (the lecture now)

- Polynomials,Logarithms and Interactions
- The multiple regression framework can be extended to handle regression functions that are nonlinear in one or more X .
- the difference from a standard multiple OLS regression is how to explain estimating coefficients.

2. Nonlinear in β or Nonlinear in \mathbf{Y} (the next lecture)

- Discrete Dependent Variables or Limited Dependent Variables.
- Linear function in Xs is not a good prediciton function or Y.
- Need a function which parameters enter nonlinearly, such as logisitic or negative exponential functions.
- Then the parameters can not obtained by OLS estimation any more but Nonlinear Least Squres or Maximum Likelyhood Estimation.

Marginal Effect of X in Nonlinear Regression

- If our regression model is linear: $Y_{i}=\beta_{0}+\beta_{1} X_{1, i}+\ldots+\beta_{k} X_{k, i}+u_{i}$
- Then the marginal effect of X, thus the effect of Y on a change in X_{j} by 1 (unit) is constant and equals β_{j} :

$$
\beta_{j}=\frac{\partial Y_{i}}{\partial X_{j i}}
$$

- But if a relation between Y and X is nonlinear, thus

$$
Y_{i}=f\left(X_{1, i}, X_{2, i}, \ldots, X_{k, i}\right)+u_{i}
$$

- Then the marginal effect of X is not constant, but depends on the value of $\mathrm{Xs}\left(\right.$ including X_{i} itself or/and other $X_{j} \mathrm{~s}$) because

$$
\frac{\partial Y_{i}}{\partial X_{j i}}=\frac{\partial f\left(X_{1, i}, X_{2, i}, \ldots, X_{k, i}\right)}{\partial X_{j i}}
$$

Nonlinear in Xs

The TestScore - STR relation looks linear (maybe)

But the TestScore - Income relation looks nonlinear

Three Complementary Approaches:

1. Polynomials in X

- The population regression function is approximated by a quadratic, cubic, or higher-degree polynomial.

2. Logarithmic transformations

- Y and/or X is transformed by taking its logarithm
- this gives a percentages interpretation that makes sense in many applications

3. Interactions

- the effect X on Y depends on the value of another independent variable
- very often used in the analysis of hetergenous effects, some time used as analysis(channel).

Population Regression Functions with Different Slopes

FIGURE 8.1 Population Regression Functions with Different Slopes

(a) Constant slope

(c) Slope depends on the value of X_{2}

The Effect of a Change in X in Nonlinear Functions

The Expected Change on Y of a Change in X_{1} in the Nonlinear Regression Model (8.3)

KEY CONCEPT

The expected change in $Y, \Delta Y$, associated with the change in $X_{1}, \Delta X_{1}$, holding X_{2}, \ldots, X_{k} constant, is the difference between the value of the population regression function before and after changing X_{1}, holding X_{2}, \ldots, X_{k} constant. That is, the expected change in Y is the difference:

$$
\begin{equation*}
\Delta Y=f\left(X_{1}+\Delta X_{1}, X_{2}, \ldots, X_{k}\right)-f\left(X_{1}, X_{2}, \ldots, X_{k}\right) . \tag{8.4}
\end{equation*}
$$

The estimator of this unknown population difference is the difference between the predicted values for these two cases. Let $\hat{f}\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ be the predicted value of Y based on the estimator \hat{f} of the population regression function. Then the predicted change in Y is

$$
\begin{equation*}
\Delta \hat{Y}=\hat{f}\left(X_{1}+\Delta X_{1}, X_{2}, \ldots, X_{k}\right)-\hat{f}\left(X_{1}, X_{2}, \ldots, X_{k}\right) \tag{8.5}
\end{equation*}
$$

Polynomials in X

Example: the TestScore-Income relation

- If a straight line is NOT an adequate description of the relationship between district income and test scores, what is?
- Two options
- Quadratic specification:

$$
\text { TestScore }_{i}=\beta_{0}+\beta_{1} \text { Income }_{i}+\beta_{2}\left(\text { Income }_{i}\right)^{2}+u_{i}
$$

- Cubic specification:

$$
\text { TestScore }_{i}=\beta_{0}+\beta_{1} \text { Income }_{i}+\beta_{2}\left(\text { Income }_{i}\right)^{2}+\beta_{3}\left(\text { Income }_{i}\right)^{3}+u_{i}
$$

- How to estimate these models?
- We can see quadratic and cubic terms as two independent variables.
- Then the model turns into a special form of a multiple OLS regression model.

Estimation of the quadratic specification in R

```
#>
#> Call:
#> felm(formula = testscr ~ avginc + I(avginc^2), data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -44.416 -9.048 0.440 8.348 31.639
#>
#> Coefficients:
#> Estimate Robust s.e t value Pr(>|t|)
#> (Intercept) 607.30174 2.90175 209.288 <2e-16 ***
#> avginc 3.85100 0.26809 14.364 <2e-16 ***
#> I(avginc^2) -0.04231 0.00478 -8.851 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '** 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 12.72 on 417 degrees of freedom
#> Multiple R-squared(full model): 0.5562 Adjusted R-squared: 0.554
#> Multiple R-squared(proj model): 0.5562 Adjusted R-squared: 0.554
#> F-statistic(f11]l model *ijid*).261.3 0n 2 and 417 DF, n-valupe < 2, 20-16

\section*{Estimation of the cubic specification in R}
```

\#>
\#> Call:
\#> felm(formula = testscr ~ avginc + I(avginc^2) + I(avginc3), data = ca)
\#>
\#> Residuals:
\#> Min 1Q Median 3Q Max
\#> -44.28 -9.21 0.20 8.32
\#>
\#> Coefficients:
\#> Estimate Robust s.e t value Pr(>|t|)
\#> (Intercept) 6.001e+02 5.102e+00 117.615 < 2e-16***
\#> avginc 5.019e+00 7.074e-01 7.095 5.61e-12 ***
\#> I(avginc^2) -9.581e-02 2.895e-02 -3.309 0.00102 **
\#> I(avginc3) 6.855e-04 3.471e-04 1.975 0.04892 *
\#> ---
\#> Signif. codes: 0 '***' 0.001 '**' 0.01 '** 0.05 '.' 0.1 ' ' 1
\#>
\#> Residual standard error: 12.71 on 416 degrees of freedom
\#> Multiple R-squared(full model): 0.5584 Adjusted R-squared: 0.5552
\#> Mmltinle R-sgmared(nroi model) . 0. 5584 Adilusted R-sgmared. 0. 5552

```

\section*{TestScore and Income: OLS Regression Results}

Table 1
\begin{tabular}{lccc}
\hline \hline & \multicolumn{3}{c}{ Dependent Variable: Test Score } \\
\cline { 2 - 4 } & \((1)\) & \((2)\) & \((3)\) \\
\hline avginc & \(1.879^{* * *}\) & \(3.851^{* * *}\) & \(5.019^{* * *}\) \\
& \((0.113)\) & \((0.267)\) & \((0.704)\) \\
I (avginc^2) & & \(-0.042^{* * *}\) & \(-0.096^{* * *}\) \\
& & \((0.005)\) & \((0.029)\) \\
I (avginc^3) & & & \(0.001^{* *}\) \\
& & & \((0.0003)\) \\
Constant & \(625.384^{* * *}\) & \(607.302^{* * *}\) & \(600.079^{* * *}\) \\
& \((1.863)\) & \((2.891)\) & \((5.078)\) \\
\hline Observations & 420 & 420 & 420 \\
Adjusted \(\mathrm{R}^{2}\) & 0.506 & 0.554 & 0.555 \\
Residual Std. Error & 13.387 & 12.724 & 12.707 \\
F Statistic & \(430.830^{* * *}\) & \(261.278^{* * *}\) & \(175.352^{* * *}\) \\
\hline \hline
\end{tabular}

\section*{Figure: Linear and Quadratic Regression}


\section*{Quadratic vs Linear}
- Question: Is the quadratic model better than the linear model?
- We can test the null hypothesis that the regression function is linear against the alternative hypothesis that it is quadratic:
\[
H_{0}: \beta_{2}=0 \text { and } H_{1}: \beta_{2} \neq 0
\]
- the t-statistic
\[
t=\frac{\left(\hat{\beta}_{2}-0\right)}{S E\left(\hat{\beta}_{2}\right)}=\frac{-0.0423}{0.0048}=-8.81
\]
- Since \(8.81>2.58\), we reject the null hypothesis (the linear model) at a \(1 \%\) significance level.
- Based on the F-test, we can also reject the null hypothesis
\[
F-\text { statistic }_{q=2, d=417}=261.3, p-\text { value } \cong 0.00
\]

\section*{Interpreting the estimated quadratic regression}
- What is the marginal effect of \(X\) on \(Y\) in a quadratic regression function.
- The regression model now is
\[
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X_{i}^{2}+u_{i}
\]
- The marginal effect of \(X\) on \(Y\)
\[
\frac{\partial Y_{i}}{\partial X_{i}}=\beta_{1}+2 \beta_{2} X_{i}
\]
- It means that the marginal effect of X on Y depends on the specific value of \(X_{i}\)

\section*{Interpreting the estimated quadratic regression}
- The estimated regression function with a quadratic term of income is
\[
\text { TestScore }_{i}=\underset{(2.90)}{607.3}+\underset{(0.27)}{3.85} \times \text { income }_{i}-\underset{(0.0048)}{0.0423} \times \text { income }_{i}^{2}
\]
- Suppose the effect of an \(\$ 1000\) increase on average income on test scores
- A group: from \(\$ 10,000\) per capita to \(\$ 11,000\) per capita:
\[
\begin{aligned}
\Delta \text { TestScore } & =607.3+3.85 \times 11-0.0423 \times(11)^{2} \\
& -\left[607.3+3.85 \times 10-0.0423 \times(10)^{2}\right] \\
& =2.96
\end{aligned}
\]
- B group: from \(\$ 40,000\) per capita to \(\$ 41,000\) per capita:
\[
\begin{aligned}
\Delta \text { TestScore } & =607.3+3.85 \times 41-0.0423 \times(41)^{2} \\
& -\left[607.3+3.85 \times 40-0.0423 \times(40)^{2}\right] \\
& =0.42
\end{aligned}
\]

\section*{Figure: Cubic and Quadratic Regression}


\section*{Quadratic vs Cubic}
- Question: Is the cubic model better than the quadratic model?
- Answer: testing the null hypothesis that the regression function is quadratic against the alternative hypothesis that it is cubic:
\[
H_{0}: \beta_{3}=0 \text { and } H_{1}: \beta_{3} \neq 0
\]
- the t-statistic
\[
t=\frac{\left(\hat{\beta}_{3}-0\right)}{S E\left(\hat{\beta}_{3}\right)}=\frac{-0.001}{0.0003}=-3.33
\]
- Since \(3.33>2.58\), we reject the null hypothesis (the linear model) at a \(1 \%\) significance level.
- the F-test also reject
\[
F-\text { statistic }_{q=3, d=416}=175.35, p-\text { value } \cong 0.00
\]

\section*{Interpreting the estimated cubic regression function}
- The regression model now is
\[
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X_{i}^{2}+\beta_{3} X_{i}^{3}+u_{i}
\]
- The marginal effect of \(X\) on \(Y\)
\[
\frac{\partial Y_{i}}{\partial X_{i}}=\beta_{1}+2 \beta_{2} X_{i}+3 \beta_{3} X_{i}^{2}
\]

\section*{Interpreting the estimated regression function}
- The estimated cubic model is
\[
\text { TestScore }{ }_{i}=\underset{(5.83)}{600.1}+\underset{(0.86)}{5.02} \times i n c o m e-\underset{(0.03)}{0.96} \times \text { income }^{2}-\underset{(0.00047)}{0.00069} \times \text { income }^{3} .
\]
- A group: from \(\$ 10,000\) per capita to \(\$ 11,000\) per capita:
\[
\begin{aligned}
\Delta \text { TestScore } & =600.079+5.019 \times 11-0.96 \times(11)^{2}+0.001 \times(11)^{3} \\
& -\left[600.079+5.019 \times 10-0.96 \times(10)^{2}+0.001 \times(10)^{3}\right]
\end{aligned}
\]
- B group: from \(\$ 40,000\) per capita to \(\$ 41,000\) per capita:
\[
\begin{aligned}
\Delta \text { TestScore } & =600.079+5.019 \times 41-0.96 \times(41)^{2}+0.001 \times(41)^{3} \\
& -\left[600.079+5.019 \times 40-0.96 \times(40)^{2}+0.001 \times(40)^{3}\right]
\end{aligned}
\]

\section*{Polynomials in X Regression Function}
- Approximate the population regression function by a polynomial:
\[
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X^{2} \ldots+\beta_{r} X_{i}^{r}+u_{i}
\]
- This is just the multiple linear regression model - except that the regressors are powers of \(X\) !
- Estimation, hypothesis testing, etc. proceeds as in the multiple regression model using OLS.
- Although, the coefficients are difficult to interpret, the regression function itself is interpretable.

\section*{Testing the population regression function is linear}
- If the population regression function is linear, then the higher-degree terms should not enter the population regression function.
- To perform hypothesis test
\[
H_{0}: \beta_{2}=0, \beta_{3}=0, \ldots, \beta_{r}=0 \text { and } H_{1}: \text { at least one } \beta_{j} \neq 0
\]
- Because \(H_{0}\) is a joint null hypothesis with \(q=r-1\) restrictions on the coefficients, it can be tested using the F-statistic.

\section*{Which degree polynomial should I use?}
- How many powers of X should be included in a polynomial regression?
- The answer balances a trade-off between flexibility and statistical precision. (many ML or non-parametric or semi-parametric methods work on this)
- Increasing the degree \(r\) introduces more flexibility into the regression function and allows it to match more shapes; a polynomial of degree r can have up to r-1 bends (that is, inflection points) in its graph.
- But increasing \(r\) means adding more regressors, which can reduce the precision of the estimated coefficients.

\section*{Which degree polynomial should I use?}
- A practical way: asking whether the coefficients in the regression associated with the largest values of \(r\) are zero. If so, then these terms can be dropped from the regression.
- This procedure, which is called sequential hypothesis testing
1. Pick a maximum value of \(r\) and estimate the polynomial regression for that \(r\).
2. Use the \(t\)-statistic to test whether the coefficient on \(X^{r}, \beta_{r}\) is ZERO.
3. If reject, then the degree is \(r\); if not then test the whether the coefficient on \(X^{r-1}, \beta_{r-1}\) is ZERO.
4. continue this procedure until the coefficient on the highest power in your polynomial is statistically significant.

\section*{Which degree polynomial should I use?}
- The initial degree \(r\) of the polynomial is still missing.
- In many applications involving economic data, the nonlinear functions are smooth, that is, they do not have sharp jumps, or "spikes."
- If so, then it is appropriate to choose a small maximum degree for the polynomial, such as 2,3 , or 4 .

\section*{Which degree polynomial should I use?}
- There are also several formal testing to determine the degree.
- The F-statistic approach
- The Akaike Information Criterion(AIC)
- The Bayes Information Criterion(BIC)
- We will introduce them later on.

\section*{Wrap Up}
- The nonlinear functions in Polynomials in Xs are just a special form of Multiple OLS Regression.
- If the true relationship between \(X\) and \(Y\) is nonlinear in polynomials in Xs , then a fully linear regression is misspecified - the functional form is wrong.
- The estimator of the effect on \(Y\) of \(X\) is biased(a special case of OVB).
- Estimation, hypothesis testing, etc. proceeds as in the multiple regression model using OLS, which can also help us to tell the degrees of polynomial functions.
- The big difference is how to explained the estimate coefficients and make the predicted change in \(Y\) with a change in Xs.

\section*{Logarithms}

\section*{Logarithmic functions of Y and/or X}
- Another way to specify a nonlinear regression model is to use the natural logarithm of Y and/or X .
- \(L n(x)=\) the natural logarithm of \(\mathbf{x}\) is the inverse function of the exponential function \(e^{x}\), here \(e=2.71828\).
\[
x=\ln \left(e^{x}\right)
\]

\section*{Review of the Basic Logarithmic functions}
- If \(X\) and a are variables, then we have
\[
\begin{aligned}
\ln (1 / x) & =-\ln (x) \\
\ln (a x) & =\ln (a)+\ln (x) \\
\ln (x / a) & =\ln (x)-\ln (a) \\
\ln \left(x^{a}\right) & =\operatorname{aln}(x)
\end{aligned}
\]

\section*{Logarithms and percentages}
- Because
\[
\begin{aligned}
\ln (x+\Delta x)-\ln (x) & =\ln \left(\frac{x+\Delta x}{x}\right) \\
& \cong \frac{\Delta x}{x}\left(\text { when } \frac{\Delta x}{x} \text { is very small }\right)
\end{aligned}
\]
- For example:
\[
\ln (1+0.01)=\ln (101)-\ln (100)=0.00995 \cong 0.01
\]
- Thus,logarithmic transforms permit modeling relations in percentage terms (like elasticities), rather than linearly.

\section*{The three log regression specifications:}

Case
Population regression function
I.linear-log
II.log-linear
III.log-log
\(Y_{i}=\beta_{0}+\beta_{1} \ln \left(X_{i}\right)+u_{i}\)
\(\ln \left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i}+u_{i}\)
\(\ln \left(Y_{i}\right)=\beta_{0}+\beta_{1} \ln \left(X_{i}\right)+u_{i}\)
- The interpretation of the slope coefficient differs in each case.
- The interpretation is found by applying the general "before and after" rule: "figure out the change in \(Y\) for a given change in X ."(Key Concept 8.1 in S.W.pp301)

\section*{I. Linear-log population regression function}
- Regression Model:
\[
Y_{i}=\beta_{0}+\beta_{1} \ln \left(X_{i}\right)+u_{i}
\]
- Change \(\mathrm{X} \Delta X\) :
\[
\begin{aligned}
\Delta Y & =\left[\beta_{0}+\beta_{1} \ln (X+\Delta X)\right]-\left[\beta_{0}+\beta_{1} \ln (X)\right] \\
& =\beta_{1}[\ln (X+\Delta X)-\ln (X)] \\
& \cong \beta_{1} \frac{\Delta X}{X}
\end{aligned}
\]
- Note \(100 \times \frac{\Delta X}{X}=\) percentage change in \(X\), and
\[
\beta_{1} \cong \frac{\Delta Y}{\frac{\Delta X}{X}}
\]
- Interpretation of \(\beta_{1}\) : a 1 percent increase in \(X\) (multiplying \(X\) by 1.01 or \(100 \times \frac{\Delta X}{X}\) ) is associated with a \(0.01 \beta_{1}\) or \(\frac{\beta_{1}}{100}\) change in \(Y\).

\section*{Example: the TestScore - \(\log\) (Income) relation}
- The OLS regression of \(\ln\) (Income) on Testscore yields
\[
\begin{gathered}
\text { TêtScore }=557.8+36.42 \times \ln (\text { Income }) \\
\\
(3.8)
\end{gathered}
\]
- Interpretation of \(\beta_{1}\) : a \(\mathbf{1 \%}\) increase in Income is associated with an increase in TestScore of \(\mathbf{0 . 3 6 4 2}\) points on the test.

\section*{Test scores: linear-log function}


\section*{Case II. Log-linear population regression function}
- Regression model:
\[
\ln \left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i}+u_{i}
\]
- Change X:
\[
\begin{aligned}
& \ln (\Delta Y+Y)-\ln (Y)=\left[\beta_{0}+\beta_{1}(X+\Delta X)\right]-\left[\beta_{0}+\beta_{1} X\right] \\
& \quad \ln \left(1+\frac{\Delta Y}{Y}\right)=\beta_{1} \Delta X \\
& \Rightarrow \frac{\Delta Y}{Y} \cong \beta_{1} \Delta X
\end{aligned}
\]
- So \(100 \frac{\Delta Y}{Y}=\) percentage change in \(Y\) and
\[
\beta_{1}=\frac{\frac{\Delta Y}{Y}}{\Delta X}
\]
- Then a change in \(X\) by one unit is associated with a \(\beta_{1} \times 100\) percent change in \(Y\).

\section*{Mincer Earning Function: log-linear functions}
- Example: Age(working experience) and Earnings
- The OLS regression of age on earnings yields
\[
\begin{aligned}
\ln (\widehat{\text { Earnings })=} & 2.811+0.0096 \text { Age } \\
& (0.018)
\end{aligned}
\]
- According to this regression, when one more year old, earnings are predicted to increase by \(100 \times 0.0096=0.96 \%\)

\section*{Case III. Log-log population regression function}
- the regression model is
\[
\ln \left(Y_{i}\right)=\beta_{0}+\beta_{1} \ln \left(X_{i}\right)+u_{i}
\]
- Change X:
\[
\begin{aligned}
\ln (\Delta Y+Y)-\ln (Y) & =\left[\beta_{0}+\beta_{1} \ln (X+\Delta X)\right]-\left[\beta_{0}+\beta_{1} \ln (X)\right] \\
\ln \left(1+\frac{\Delta Y}{Y}\right) & =\beta_{1} \ln \left(1+\frac{\Delta X}{X}\right) \\
\Rightarrow \frac{\Delta Y}{Y} & \cong \beta_{1} \frac{\Delta X}{X}
\end{aligned}
\]
- Now \(100 \frac{\Delta Y}{Y}=\) percentage change in \(Y\) and \(100 \frac{\Delta X}{X}=\) percentage change in \(X\)
- Therefore a \(1 \%\) change in \(X\) by one unit is associated with a \(\beta_{1} \%\) change in \(Y\),thus \(\beta_{1}\) has the interpretation of an elasticity.

\section*{Test scores and income: log-log specifications}
\[
\begin{aligned}
\ln (\widehat{\text { TestScore })}= & 6.336+0.055 \times \ln (\text { Income }) \\
& (0.006)(0.002)
\end{aligned}
\]
- A \(1 \%\) increase in Income is associated with an increase of \(0.055 \%\) in TestScore.

\section*{Test scores: The log-linear and log-log functions}


\section*{Test scores: The linear-log and cubic functions}


\section*{Logarithmic and cubic functions}

Table 3
\begin{tabular}{lccc}
\hline \hline & \multicolumn{3}{c}{ Dependent Variable: Test Score } \\
\cline { 2 - 4 } & testscr & log.testscr & testscr \\
& \((1)\) & \((2)\) & \((3)\) \\
\hline loginc & \(36.420^{* * *}\) & \(0.055^{* * *}\) \\
& & \((0.002)\) & \\
avginc & & & \(5.019^{* * *}\) \\
& & & \((0.704)\) \\
I(avginc^2) & & & \(-0.096^{* * *}\) \\
& & & \((0.029)\) \\
I(avginc^3) & & & \(0.001^{* *}\) \\
& & & \((0.0003)\) \\
Constant & \(557.832^{* * *}\) & \(6.336^{* * *}\) & \(600.079^{* * *}\) \\
& \((5.078)\) & \((0.006)\) & \((5.078)\) \\
\hline Observations & 420 & 420 & 420 \\
\hline
\end{tabular}

\section*{Choice of specification should be guided}
- The two estimated regression functions are quite similar. So how to choose?
- The general rules:
- By economic logic or theories(which interpretation makes the most sense in your application?).
- There are several formal tests, while seldom used in reality. Actually t-test and F-test are enough.
- Plotting predicted values and use \(\overline{R^{2}}\) or \(S E R\) can help to make further judgment.

\section*{Summary}
- We can add polynomial terms of any significant variables to a model and to perform a single and joint test of significance. If the additional quadratics are significant, they can be added to the model.
- We can also change the variables values into logarithms to capture the nonlinear relationships.
- In reality, it can be difficult to pinpoint the precise reason for functional form misspecification.
- Fortunately, using logarithms of certain variables and adding quadratic or cubic functions are sufficient for detecting many(almost) important nonlinear relationships in Xs in economics.

\section*{Interactions Between Independent Variables}

\section*{Introduction}
- The product of two variables is called an interaction term.
- Try to answer how the effect on Yof a change in an independent variable depends on the value of another independent variable.
- Consider three cases:
1. Interactions between two binary variables.
2. Interactions between a binary and a continuous variable.
3. Interactions between two continuous variables.

\section*{Interactions Between Two Binary Variables}
- Assume we would like to study the earnings of worker in the labor market
- The population linear regression of \(Y_{i}\) is
\[
Y_{i}=\beta_{0}+\beta_{1} D_{1 i}+\beta_{2} D_{2 i}+u_{i}
\]
- Dependent Variable: log earnings \(\left(Y_{i}\right.\), where \(Y_{i}=\ln (\) Earnings \(\left.)\right)\)
- Independent Variables: two binary variables
- \(D_{1 i}=1\) if the person graduate from college
- \(D_{2 i}=1\) if the worker's gender is female
- So \(\beta_{1}\) is the effect on log earnings of having a college degree, holding gender constant, and \(\beta_{2}\) is the effect of being female, holding schooling constant.

\section*{Interactions Between Two Binary Variables}
- The effect of having a college degree in this specification, holding constant gender, is the same for men and women. No reason that this must be so.
- the effect on \(Y_{i}\) of \(D_{1 i}\), holding \(D_{2 i}\) constant, could depend on the value of \(D_{2 i}\)
- there could be an interaction between having a college degree and gender so that the value in the job market of a degree is different for men and women.
- The new regression model of \(Y_{i}\) is
\[
Y_{i}=\beta_{0}+\beta_{1} D_{1 i}+\beta_{2} D_{2 i}+\beta_{3}\left(D_{1 i} \times D_{2 i}\right)+u_{i}
\]
- The new regressor, the product \(D_{1 i} \times D_{2 i}\), is called an interaction term or an interacted regressor,

\section*{Interactions Between Two Binary Variables:}
- The regression model of \(Y_{i}\) now is
\[
Y_{i}=\beta_{0}+\beta_{1} D_{1 i}+\beta_{2} D_{2 i}+\beta_{3}\left(D_{1 i} \times D_{2 i}\right)+u_{i}
\]
- Then the conditional expectation of Yifor \(D_{1 i}=0\), given a certain value of \(D_{2 i}, d_{2}\)
\[
E\left(Y_{i} \mid D_{1 i}=0, D_{2 i}=d_{2}\right)=\beta_{0}+\beta_{1} \times 0+\beta_{2} d_{2}+\beta_{3}\left(0 \times d_{2}\right)=\beta_{0}+\beta_{2} d_{2}
\]
- Then the conditional expectation of \(Y\) ifor \(D_{1 i}=1\), given a certain value of \(D_{2 i}, d_{2}\)
\[
\begin{array}{r}
E\left(Y_{i} \mid D_{1 i}=1, D_{2 i}=d_{2}\right)=\beta_{0}+\beta_{1} \times 1+\beta_{2} d_{2}+\beta_{3}\left(1 \times d_{2}\right) \\
=\beta_{0}+\beta_{1}+\beta_{2} d_{2}+\beta_{3} d_{2}
\end{array}
\]

\section*{Interactions Between Two Binary Variables:}
- The effect of this change is the difference of expected values,which is
\[
E\left(Y_{i} \mid D_{1 i}=1, D_{2 i}=d_{2}\right)-E\left(Y_{i} \mid D_{1 i}=0, D_{2 i}=d_{2}\right)=\beta_{1}+\beta_{3} d_{2}
\]
- In the binary variable interaction specification, the effect of acquiring a college degree (a unit change in \(D_{1 i}\) ) depends on the person's gender.
- If the person is male,thus \(D_{2 i}=d_{2}=0\),then the effect is \(\beta_{1}\)
- If the person is female,thus \(D_{2 i}=d_{2}=1\),then the effect is \(\beta_{1}+\beta_{3}\)
- So the coefficient \(\beta_{3}\) is the difference in the effect of acquiring a college degree for women versus men.

\section*{Application: the STR and the English learners}
- Let \(H i S T R_{i}\) be a binary variable for STR
- \(\operatorname{HiSTR}_{i}=1\) if the \(S T R>20\)
- \(\operatorname{HiSTR}_{i}=0\) otherwise
- Let \(H i E L_{i}\) be a binary variable for the share of English learners
- \(H i E L_{i}=1\) if the \(e l_{p c t}>10\) percent
- \(H i E L_{i}=0\) otherwise

\section*{Application: the STR and the English learners}
- the OLS regression result is
\[
\begin{align*}
\text { TestScore }= & 664.1-1.9 H i S T R-18.2 H i E L-3.5(H i S T R \times H i E L) \\
& (1.4) \tag{3.1}
\end{align*}
\]
- The value of \(\beta_{3}\) here(3.5) means that performance gap in test scores between large class \((S T R>20)\) and small class \((S T R \leq 20)\) varies between the "higher-share-immigrant" class and the "lower-share immigrants" class.
- More precisely,the gap of test scores is positively related with the "higher-share-immigrant" class though insignificantly.

\section*{Interactions: a Continuous and a Binary Variable}
- Binary Variable: eg, whether the worker has a college degree \(\left(D_{i}\right)\)
- Continuous Variable: eg, the individual's years of work experience ( \(X_{i}\) )
- In this case, we can have three specifications:
1. No interaction
\[
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} D_{i}+u_{i}
\]
2. a interaction and only one independent variable
\[
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2}\left(D_{i} \times X_{i}\right)+u_{i}
\]
3. Interaction and two independent variables
\[
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} D_{i}+\beta_{3}\left(D_{i} \times X_{i}\right)+u_{i}
\]

\section*{A Continuous and a Binary Variable: Three Cases}

\section*{FIGURE 8.8 Regression Functions Using Binary and Continuous Variables}


Interactions of binary variables and continuous variables can produce three different population regression functions:
(a) \(\beta_{0}+\beta_{1} X+\beta_{2} D\) allows for different intercepts but has the same slope, (b) \(\beta_{0}+\beta_{1} X+\beta_{2} D+\beta_{3}(X \times D)\) allows

\section*{A Continuous and a Binary Variable: Specifications}
- All three specifications are just different versions of the multiple regression model.
- Different specifications are based on different assumptions of the relationships of \(X\) on \(Y\) depending on \(D\).
- The Model 3 is preferred, because it allows for both different intercepts and different slops.

\section*{Application: the STR and the English learners}
- \(H i E L_{i}\) is still a binary variable for English learner
- The estimated interaction regression
\[
\begin{gathered}
\text { TestScore }=682.2-0.97 S T R+5.6 H i E L-1.28(S T R \times H i E L) \\
\begin{array}{c}
(11.9) \quad(0.59) \quad(19.5) \\
\overline{R^{2}}=0.305
\end{array}
\end{gathered}
\]
- For districts with a low fraction of English learners, the estimated regression line is \(682.2-0.97 S T R_{i}\)
- For districts with a high fraction of English learners,the estimated regression line is \(682.2+5.6-0.97 S T R_{i}-1.28 S T R_{i}=687.8-2.25 S T R_{i}\)
- The difference between these two effects, 1.28 points, is the coefficient on the interaction term.

\section*{Application: the STR and the English learners}
- The value of \(\beta_{3}\) here(-1.28) means that the effect of class size on test scores varies between the "higher-share-immigrant" class and the "lower-share immigrants or more native" class.
- More precisely,negatively related with the "higher-share-immigrant" class though insignificantly.

\section*{Hypotheses Testing}
1. High fraction is the same as low fraction, thus the two line are in fact the same
- computing the F-statistic testing the joint hypothesis
\[
\beta_{2}=\beta_{3}=0
\]
- This F-statistic is 89.9 , which is significant at the \(1 \%\) level.
2. The effects between two groups is the same, thus two lines have the same slope
- testing whether the coefficient on the interaction term is zero, which can be tested by using a t-statistic
- This \(t\)-statistic is -1.32 , which is insignificant at the \(10 \%\) level.

\section*{Hypotheses Testing}
3. the lines have the same intercept
- Testing that the population coefficient on \(H i E L\) is zero,which can be tested by using a t -statistic.
- This t-statistic is 0.29 , which is insignificant even at the \(10 \%\) level.
- The reason is that the regressors, \(H i E L\) and \(S T R * H i E L\), are highly correlated. Then large standard errors on the individual coefficients.
- Even though it is impossible to tell which of the coefficients is nonzero, there is strong evidence against the hypothesis that both are zero.

\section*{Interactions Between Two Continuous Variables}
- Now suppose that both independent variables ( \(X_{1 i}\) and \(X_{2 i}\) ) are continuous.
- \(X_{1 i}\) is his or her years of work experience
- \(X_{2 i}\) is the number of years he or she went to school.
- there might be an interaction between these two variables so that the effect on wages of an additional year of experience depends on the number of years of education.
- the population regression model
\[
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3}\left(X_{1 i} \times X_{2 i}\right)+u_{i}
\]

\section*{Interactions Between Two Continuous Variables}
- Thus the effect on Y of a change in \(X_{1}\), holding \(X_{2}\) constant, is
\[
\frac{\Delta Y}{\Delta X_{1}}=\beta_{1}+\beta_{3} X_{2}
\]
- A similar calculation shows that the effect on \(Y\) of a change \(\Delta X_{1}\) in \(X_{2}\), holding \(X_{1}\) constant, is
\[
\frac{\Delta Y}{\Delta X_{2}}=\beta_{2}+\beta_{3} X_{1}
\]
- That is, if \(X_{1}\) changes by \(\Delta X_{1}\) and \(X_{2}\) changes by \(\Delta X_{2}\), then the expected change in Y
\[
\Delta Y=\left(\beta_{1}+\beta_{3} X_{2}\right) \Delta X_{1}+\left(\beta_{2}+\beta_{3} X_{1}\right) \Delta X_{2}+\beta_{3} \Delta X_{1} \Delta X_{2}
\]

\section*{Application: the STR and the English learners}
- The estimated interaction regression
\[
\begin{aligned}
\ln (\widehat{\text { TestScore })}= & 686.3-1.12 S T R-0.67 P c t E L+0.0012(S T R \times P c t E L) \\
& (11.8) \quad(0.059)(0.037)
\end{aligned}
\]
- The value of \(\beta_{3}\) here means how the effect of class size on test scores varies along with the share of English learners in the class.
- More precisely, increase 1 unit of the share of English learners make the effect of class size on test scores increase extra 0.0012 scores.

\section*{Application: the STR and the English learners}
- when the percentage of English learners is at the median( \(P c t E L=8.85\) ), the slope of the line relating test scores and the STR is
\[
\frac{\Delta Y}{\Delta X_{1}}=\beta_{1}+\beta_{3} X_{2}=-1.12+0.0012 \times 8.85=-1.11
\]
- when the percentage of English learners is at the 75th percentile \((P c t E L=23.0)\), the slope of the line relating test scores and the STR is
\[
\frac{\Delta Y}{\Delta X_{1}}=\beta_{1}+\beta_{3} X_{2}=-1.12+0.0012 \times 23.0=-1.09
\]
- The difference between these estimated effects is not statistically significant.Because?
- The \(t\)-statistic testing whether the coefficient on the interaction term is zero
\[
t=0.0012 / 0 / 019=0.06
\]

\section*{Application: STR and Test Scores in a Summary}
- Although these nonlinear specifications extend our knowledge about the relationship between STR and Testscore, it must be augmented with control variables such as economic background to avoid OVB bias.
- Two measures of the economic background of the students:
1. the percentage of students eligible for a subsidized lunch
2. the logarithm of average district income.

\section*{Application: STR and Test Scores in a Summary}
- Then three specific questions about test scores and the student-teacher ratio.
1. After controlling for differences in economic characteristics, does the effect on test scores of STR depend on the fraction of English learners?
2. Does this effect depend on the value of the student-teacher ratio(STR)?
3. Most important, after taking economic factors and nonlinearities into account,what is the estimated effect on test scores of reducing the student-teacher ratio by 2 students per teacher?
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{7}{|c|}{score} \\
\hline & (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline str & \[
\begin{gathered}
-1.00^{* * *} \\
(0.27)
\end{gathered}
\] & \[
\begin{gathered}
-0.73^{* *} \\
(0.26)
\end{gathered}
\] & \[
\begin{gathered}
-0.97 \\
(0.59)
\end{gathered}
\] & \[
\begin{gathered}
-0.53 \\
(0.34)
\end{gathered}
\] & \begin{tabular}{l}
\(64.34^{* *}\) \\
(24.86)
\end{tabular} & \[
\begin{gathered}
83.70^{* *} \\
(28.50)
\end{gathered}
\] & \[
\begin{gathered}
65.29^{* *} \\
(25.26)
\end{gathered}
\] \\
\hline \(\mathrm{I}\left(\operatorname{str}^{\wedge} 2\right)\) & & & & & \[
\begin{gathered}
-3.42^{* *} \\
(1.25)
\end{gathered}
\] & \[
\begin{gathered}
-4.38^{* *} \\
(1.44)
\end{gathered}
\] & \[
\begin{gathered}
-3.47^{* *} \\
(1.27)
\end{gathered}
\] \\
\hline \(\mathrm{I}\left(\mathrm{str}^{\wedge} 3\right)\) & & & & & \[
\begin{gathered}
0.06^{* *} \\
(0.02)
\end{gathered}
\] & \[
\begin{gathered}
0.07^{* *} \\
(0.02)
\end{gathered}
\] & \[
\begin{gathered}
0.06^{* *} \\
(0.02)
\end{gathered}
\] \\
\hline str:HiEL & & & \[
\begin{gathered}
-1.28 \\
(0.97)
\end{gathered}
\] & \[
\begin{gathered}
-0.58 \\
(0.50)
\end{gathered}
\] & & \[
\begin{gathered}
-123.28^{*} \\
(50.21)
\end{gathered}
\] & \\
\hline I(str^ 2\():\) HiEL & & & & & & \[
\begin{aligned}
& 6.12^{*} \\
& (2.54)
\end{aligned}
\] & \\
\hline I(str^3): HiEL & & & & & & \[
\begin{gathered}
-0.10^{*} \\
(0.04)
\end{gathered}
\] & \\
\hline english & \[
\begin{gathered}
-0.12^{* * *} \\
(0.03)
\end{gathered}
\] & \[
\begin{gathered}
-0.18^{* * *} \\
(0.03)
\end{gathered}
\] & & & & & \[
\begin{gathered}
-0.17^{* * *} \\
(0.03)
\end{gathered}
\] \\
\hline HiEL & & & \[
\begin{gathered}
5.64 \\
(19.51)
\end{gathered}
\] & \[
\begin{gathered}
5.50 \\
(9.80)
\end{gathered}
\] & \[
\begin{gathered}
-5.47^{* * *} \\
(1.03)
\end{gathered}
\] & \[
\begin{aligned}
& 816.08^{*} \\
& (327.67)
\end{aligned}
\] & \\
\hline lunch & \[
\begin{gathered}
-0.55^{* * *} \\
(0.02)
\end{gathered}
\] & \[
\begin{gathered}
-0.40^{* * *} \\
(0.03)
\end{gathered}
\] & & \[
\begin{gathered}
-0.41^{* * *} \\
(0.03)
\end{gathered}
\] & \[
\begin{gathered}
-0.42^{* * *} \\
(0.03)
\end{gathered}
\] & \[
\begin{gathered}
-0.42^{* * *} \\
(0.03)
\end{gathered}
\] & \[
\begin{gathered}
-0.40^{* * *} \\
(0.03)
\end{gathered}
\] \\
\hline \(\log\) (income) & & \[
\begin{gathered}
11.57^{* * *} \\
(1.82)
\end{gathered}
\] & & \[
\begin{gathered}
12.12^{* * *} \\
(1.80)
\end{gathered}
\] & \[
\begin{gathered}
11.75^{* * *} \\
(1.77)
\end{gathered}
\] & \[
\begin{gathered}
11.80^{* * *} \\
(1.78)
\end{gathered}
\] & \[
\begin{gathered}
11.51^{* * *} \\
(1.81)
\end{gathered}
\] \\
\hline Constant & \[
\begin{gathered}
700.15^{* * *} \\
(5.57)
\end{gathered}
\] & \[
\begin{gathered}
658.55^{* * *} \\
(8.64)
\end{gathered}
\] & \[
\begin{gathered}
682.25^{* * *} \\
(11.87)
\end{gathered}
\] & \[
\begin{gathered}
653.67^{* * *} \\
(9.87)
\end{gathered}
\] & \[
\begin{gathered}
252.05 \\
(163.63)
\end{gathered}
\] & \[
\begin{gathered}
122.35 \\
(185.52)
\end{gathered}
\] & \[
\begin{gathered}
244.81 \\
(165.72)
\end{gathered}
\] \\
\hline \(N\) & 420 & 420 & 420 & 420 & 420 & 420 & 420 \\
\hline Adjusted \(\mathrm{R}^{2}\) & 0.77 & 0.79 & 0.31 & 0.79 & 0.80 & 0.80 & 0.80 \\
\hline
\end{tabular}
\({ }^{*} \mathrm{p}<.05 ;^{* *} \mathrm{p}<.01\); \(^{* * *} \mathrm{p}<.001\)
Robust S.E. are shown in the parentheses
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & (1) & (2) & (3) & \begin{tabular}{l}
score \\
(4)
\end{tabular} & (5) & (6) & (7) \\
\hline str & \[
\begin{gathered}
-1.00^{* * *} \\
(0.27)
\end{gathered}
\] & \[
\begin{gathered}
-0.73^{* *} \\
(0.26)
\end{gathered}
\] & \[
\begin{gathered}
-0.97 \\
(0.59)
\end{gathered}
\] & \[
\begin{gathered}
-0.53 \\
(0.34)
\end{gathered}
\] & \[
\begin{gathered}
64.34^{* *} \\
(24.86)
\end{gathered}
\] & \[
\begin{gathered}
83.70^{* *} \\
(28.50)
\end{gathered}
\] & \[
\begin{gathered}
65.29^{* *} \\
(25.26)
\end{gathered}
\] \\
\hline \(\mathrm{I}\left(\operatorname{str}^{\wedge} 2\right)\) & & & & & \[
\begin{gathered}
-3.42^{* *} \\
(1.25)
\end{gathered}
\] & \[
\begin{gathered}
-4.38^{* *} \\
(1.44)
\end{gathered}
\] & \[
\begin{gathered}
-3.47^{* *} \\
(1.27)
\end{gathered}
\] \\
\hline \(\mathrm{I}\left(\operatorname{str}^{\wedge} 3\right)\) & & & & & \[
\begin{gathered}
0.06^{* *} \\
(0.02)
\end{gathered}
\] & \[
\begin{gathered}
0.07^{* *} \\
(0.02)
\end{gathered}
\] & \[
\begin{gathered}
0.06^{* *} \\
(0.02)
\end{gathered}
\] \\
\hline str:HiEL & & & \[
\begin{aligned}
& -1.28 \\
& (0.97)
\end{aligned}
\] & \[
\begin{gathered}
-0.58 \\
(0.50)
\end{gathered}
\] & & \[
\begin{gathered}
-123.28^{*} \\
(50.21)
\end{gathered}
\] & \\
\hline I( str\(\left.^{\wedge} 2\right)\) : HiEL & & & & & & \[
\begin{aligned}
& 6.12^{*} \\
& (2.54)
\end{aligned}
\] & \\
\hline I(str^3): HiEL & & & & & & \[
\begin{gathered}
-0.10^{*} \\
(0.04)
\end{gathered}
\] & \\
\hline english & \[
\begin{gathered}
-0.12^{* * *} \\
(0.03)
\end{gathered}
\] & \[
\begin{gathered}
-0.18^{* * *} \\
(0.03)
\end{gathered}
\] & & & & & \[
\begin{gathered}
-0.17^{* * *} \\
(0.03)
\end{gathered}
\] \\
\hline HiEL & & & \[
\begin{gathered}
5.64 \\
(19.51)
\end{gathered}
\] & \[
\begin{gathered}
5.50 \\
(9.80)
\end{gathered}
\] & \[
\begin{gathered}
-5.47^{* * *} \\
(1.03)
\end{gathered}
\] & \[
\begin{aligned}
& 816.08^{*} \\
& (327.67)
\end{aligned}
\] & \\
\hline lunch & \[
\begin{gathered}
-0.55^{* * *} \\
(0.02)
\end{gathered}
\] & \[
\begin{gathered}
-0.40^{* * *} \\
(0.03)
\end{gathered}
\] & & \[
\begin{gathered}
-0.41^{* * *} \\
(0.03)
\end{gathered}
\] & \[
\begin{gathered}
-0.42^{* * *} \\
(0.03)
\end{gathered}
\] & \[
\begin{gathered}
-0.42^{* * *} \\
(0.03)
\end{gathered}
\] & \[
\begin{gathered}
-0.40^{* * *} \\
(0.03)
\end{gathered}
\] \\
\hline \(\log\) (income) & & \[
\begin{gathered}
11.57^{* * *} \\
(1.82) \\
\hline
\end{gathered}
\] & & \[
\begin{gathered}
12.12^{* * *} \\
(1.80)
\end{gathered}
\] & \[
\begin{gathered}
11.75^{* * *} \\
(1.77)
\end{gathered}
\] & \[
\begin{gathered}
11.80^{* * *} \\
(1.78)
\end{gathered}
\] & \[
\begin{gathered}
11.51^{* * *} \\
(1.81)
\end{gathered}
\] \\
\hline Constant & \[
\begin{gathered}
700.15^{* * *} \\
(5.57)
\end{gathered}
\] & \[
\begin{gathered}
658.55^{* * *} \\
(8.64)
\end{gathered}
\] & \[
\begin{gathered}
682.25^{* * *} \\
(11.87)
\end{gathered}
\] & \[
\begin{gathered}
653.67^{* * *} \\
(9.87)
\end{gathered}
\] & \[
\begin{gathered}
252.05 \\
(163.63)
\end{gathered}
\] & \[
\begin{gathered}
122.35 \\
(185.52)
\end{gathered}
\] & \[
\begin{gathered}
244.81 \\
(165.72)
\end{gathered}
\] \\
\hline \(N\) & 420 & 420 & 420 & 420 & 420 & 420 & 420 \\
\hline Adjusted \(\mathrm{R}^{2}\) & 0.77 & 0.79 & 0.31 & 0.79 & 0.80 & 0.80 & 0.80 \\
\hline
\end{tabular}
\({ }^{*} \mathrm{p}<.05 ;{ }^{* *} \mathrm{p}<.01 ;{ }^{* * *} \mathrm{p}<.001\)
Robust S.E. are shown in the parentheses
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & (1) & (2) & (3) & \begin{tabular}{l}
score \\
(4)
\end{tabular} & (5) & (6) & (7) \\
\hline str & \[
\begin{gathered}
-1.00^{* * *} \\
(0.27)
\end{gathered}
\] & \[
\begin{gathered}
-0.73^{* *} \\
(0.26)
\end{gathered}
\] & \[
\begin{array}{r}
-0.97 \\
(0.59)
\end{array}
\] & \[
\begin{aligned}
& -0.53 \\
& (0.34)
\end{aligned}
\] & \[
\begin{gathered}
64.34^{* *} \\
(24.86)
\end{gathered}
\] & \begin{tabular}{l}
83.70** \\
(28.50)
\end{tabular} & \[
\begin{gathered}
65.29^{* *} \\
(25.26)
\end{gathered}
\] \\
\hline \(\mathrm{I}\left(\operatorname{str}^{\wedge} 2\right)\) & & & & & \[
\begin{gathered}
-3.42^{* *} \\
(1.25)
\end{gathered}
\] & \[
\begin{gathered}
-4.38^{* *} \\
(1.44)
\end{gathered}
\] & \[
\begin{gathered}
-3.47^{* *} \\
(1.27)
\end{gathered}
\] \\
\hline \(\mathrm{I}\left(\operatorname{str}^{\wedge} 3\right)\) & & & & & \[
\begin{gathered}
0.06^{* *} \\
(0.02)
\end{gathered}
\] & \[
\begin{gathered}
0.07^{* *} \\
(0.02)
\end{gathered}
\] & \[
\begin{gathered}
0.06^{* *} \\
(0.02)
\end{gathered}
\] \\
\hline str:HiEL & & & \[
\begin{gathered}
-1.28 \\
(0.97)
\end{gathered}
\] & \[
\begin{gathered}
-0.58 \\
(0.50)
\end{gathered}
\] & & \[
\begin{gathered}
-123.28^{*} \\
(50.21)
\end{gathered}
\] & \\
\hline I(str^2):HiEL & & & & & & \[
\begin{aligned}
& 6.12^{*} \\
& (2.54)
\end{aligned}
\] & \\
\hline I(str^3):HiEL & & & & & & \[
\begin{gathered}
-0.10^{*} \\
(0.04)
\end{gathered}
\] & \\
\hline english & \[
\begin{gathered}
-0.12^{* * *} \\
(0.03)
\end{gathered}
\] & \[
\begin{gathered}
-0.18^{* * *} \\
(0.03)
\end{gathered}
\] & & & & & \[
\begin{gathered}
-0.17^{* * *} \\
(0.03)
\end{gathered}
\] \\
\hline HiEL & & & \[
\begin{gathered}
5.64 \\
(19.51)
\end{gathered}
\] & \[
\begin{gathered}
5.50 \\
(9.80)
\end{gathered}
\] & \[
\begin{gathered}
-5.47^{* * *} \\
(1.03)
\end{gathered}
\] & \[
\begin{aligned}
& 816.08^{*} \\
& (327.67)
\end{aligned}
\] & \\
\hline lunch & \[
\begin{gathered}
-0.55^{* * *} \\
(0.02)
\end{gathered}
\] & \[
\begin{gathered}
-0.40^{* * *} \\
(0.03)
\end{gathered}
\] & & \[
\begin{gathered}
-0.41^{* * *} \\
(0.03)
\end{gathered}
\] & \[
\begin{gathered}
-0.42^{* * *} \\
(0.03)
\end{gathered}
\] & \[
\begin{gathered}
-0.42^{* * *} \\
(0.03)
\end{gathered}
\] & \[
\begin{gathered}
-0.40^{* * *} \\
(0.03)
\end{gathered}
\] \\
\hline \(\log\) (income) & & \[
\begin{gathered}
11.57^{* * *} \\
(1.82)
\end{gathered}
\] & & \[
\begin{gathered}
12.12^{* * *} \\
(1.80)
\end{gathered}
\] & \begin{tabular}{l}
\[
11.75^{* * *}
\] \\
(1.77)
\end{tabular} & \[
\begin{gathered}
11.80^{* * *} \\
(1.78)
\end{gathered}
\] & \[
\begin{gathered}
11.51^{* * *} \\
(1.81)
\end{gathered}
\] \\
\hline Constant & \[
\begin{gathered}
700.15^{* * *} \\
(5.57)
\end{gathered}
\] & \[
\begin{gathered}
658.55^{* * *} \\
(8.64)
\end{gathered}
\] & \[
\begin{gathered}
682.25^{* * *} \\
(11.87)
\end{gathered}
\] & \[
\begin{gathered}
653.67^{* * *} \\
(9.87)
\end{gathered}
\] & \[
\begin{gathered}
252.05 \\
(163.63)
\end{gathered}
\] & \[
\begin{gathered}
122.35 \\
(185.52)
\end{gathered}
\] & \[
\begin{gathered}
244.81 \\
(165.72)
\end{gathered}
\] \\
\hline \(N\) & 420 & 420 & 420 & 420 & 420 & 420 & 420 \\
\hline Adjusted \(\mathrm{R}^{2}\) & 0.77 & 0.79 & 0.31 & 0.79 & 0.80 & 0.80 & 0.80 \\
\hline
\end{tabular}
\({ }^{*} \mathrm{p}<.05 ;{ }^{* *} \mathrm{p}<.01 ;{ }^{* * *} \mathrm{p}<.001\)
Robust S.E. are shown in the parentheses
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & (1) & (2) & (3) & \begin{tabular}{l}
score \\
(4)
\end{tabular} & (5) & (6) & (7) \\
\hline str & \[
\begin{gathered}
-1.00^{* * *} \\
(0.27)
\end{gathered}
\] & \[
\begin{gathered}
-0.73^{* *} \\
(0.26)
\end{gathered}
\] & \[
\begin{gathered}
-0.97 \\
(0.59)
\end{gathered}
\] & \[
\begin{gathered}
-0.53 \\
(0.34)
\end{gathered}
\] & \begin{tabular}{l}
\(64.34^{* *}\) \\
(24.86)
\end{tabular} & \begin{tabular}{l}
83.70** \\
(28.50)
\end{tabular} & \[
\begin{gathered}
65.29^{* *} \\
(25.26)
\end{gathered}
\] \\
\hline \(\mathrm{I}\left(\operatorname{str}^{\wedge} 2\right)\) & & & & & \[
\begin{gathered}
-3.42^{* *} \\
(1.25)
\end{gathered}
\] & \[
-4.38^{* *}
\] & \[
\begin{gathered}
-3.47^{* *} \\
(1.27)
\end{gathered}
\] \\
\hline I( \(\operatorname{str}^{\wedge} 3\) ) & & & & & \[
\begin{gathered}
0.06^{* *} \\
(0.02)
\end{gathered}
\] & \[
\begin{gathered}
0.07^{* *} \\
(0.02)
\end{gathered}
\] & \[
\begin{gathered}
0.06^{* *} \\
(0.02)
\end{gathered}
\] \\
\hline str:HiEL & & & \[
\begin{gathered}
-1.28 \\
(0.97)
\end{gathered}
\] & \[
\begin{gathered}
-0.58 \\
(0.50)
\end{gathered}
\] & & \[
\begin{gathered}
-123.28^{*} \\
(50.21)
\end{gathered}
\] & \\
\hline I(str \({ }^{\wedge}\) ) \(:\) HiEL & & & & & & \[
\begin{aligned}
& 6.12^{*} \\
& (2.54)
\end{aligned}
\] & \\
\hline I(str^3):HiEL & & & & & & \[
\begin{gathered}
-0.10^{*} \\
(0.04)
\end{gathered}
\] & \\
\hline english & \[
\begin{gathered}
-0.12^{* * *} \\
(0.03)
\end{gathered}
\] & \[
\begin{gathered}
-0.18^{* * *} \\
(0.03)
\end{gathered}
\] & & & & & \[
\begin{gathered}
-0.17^{* * *} \\
(0.03)
\end{gathered}
\] \\
\hline HiEL & & & \[
\begin{gathered}
5.64 \\
(19.51)
\end{gathered}
\] & \[
\begin{gathered}
5.50 \\
(9.80)
\end{gathered}
\] & \[
\begin{gathered}
-5.47^{* * *} \\
(1.03)
\end{gathered}
\] & \[
\begin{gathered}
816.08^{*} \\
(327.67)
\end{gathered}
\] & \\
\hline lunch & \[
\begin{gathered}
-0.55^{* * *} \\
(0.02)
\end{gathered}
\] & \[
\begin{gathered}
-0.40^{* * *} \\
(0.03)
\end{gathered}
\] & & \[
\begin{gathered}
-0.41^{* * *} \\
(0.03)
\end{gathered}
\] & \[
\begin{gathered}
-0.42^{* * *} \\
(0.03)
\end{gathered}
\] & \[
\begin{gathered}
-0.42^{* * *} \\
(0.03)
\end{gathered}
\] & \[
\begin{gathered}
-0.40^{* * *} \\
(0.03)
\end{gathered}
\] \\
\hline \(\log\) (income) & & \[
\begin{gathered}
11.57^{* * *} \\
(1.82)
\end{gathered}
\] & & \[
\begin{gathered}
12.12^{* * *} \\
(1.80)
\end{gathered}
\] & \[
\begin{gathered}
11.75^{* * *} \\
(1.77)
\end{gathered}
\] & \[
\begin{gathered}
11.80^{* * *} \\
(1.78)
\end{gathered}
\] & \[
\begin{gathered}
11.51^{* * *} \\
(1.81)
\end{gathered}
\] \\
\hline Constant & \[
\begin{gathered}
700.15^{* * *} \\
(5.57)
\end{gathered}
\] & \[
\begin{gathered}
658.55^{* * *} \\
(8.64)
\end{gathered}
\] & \[
\begin{gathered}
682.25^{* * *} \\
(11.87)
\end{gathered}
\] & \[
\begin{gathered}
653.67^{* * *} \\
(9.87)
\end{gathered}
\] & \[
\begin{gathered}
252.05 \\
(163.63)
\end{gathered}
\] & \[
\begin{gathered}
122.35 \\
(185.52)
\end{gathered}
\] & \[
\begin{gathered}
244.81 \\
(165.72)
\end{gathered}
\] \\
\hline \(N\) & 420 & 420 & 420 & 420 & 420 & 420 & 420 \\
\hline Adjusted \(\mathrm{R}^{2}\) & 0.77 & 0.79 & 0.31 & 0.79 & 0.80 & 0.80 & 0.80 \\
\hline
\end{tabular}
\({ }^{*} \mathrm{p}<.05 ;^{* *} \mathrm{p}<.01\); \(^{* * *} \mathrm{p}<.001\)
Robust S.E. are shown in the parentheses
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & (1) & (2) & (3) & \begin{tabular}{l}
score \\
(4)
\end{tabular} & (5) & (6) & (7) \\
\hline str & \[
\begin{gathered}
-1.00^{* * *} \\
(0.27)
\end{gathered}
\] & \[
\begin{gathered}
-0.73^{* *} \\
(0.26)
\end{gathered}
\] & \[
\begin{gathered}
-0.97 \\
(0.59)
\end{gathered}
\] & \[
\begin{aligned}
& -0.53 \\
& (0.34)
\end{aligned}
\] & \[
\begin{gathered}
64.34^{* *} \\
(24.86)
\end{gathered}
\] & \[
\begin{gathered}
83.70^{* *} \\
(28.50)
\end{gathered}
\] & \[
\begin{gathered}
65.29^{* *} \\
(25.26)
\end{gathered}
\] \\
\hline \(\mathrm{I}\left(\mathrm{str}^{\wedge} 2\right)\) & & & & & \[
\begin{gathered}
-3.42^{* *} \\
(1.25)
\end{gathered}
\] & \[
\begin{gathered}
-4.38^{* *} \\
(1.44)
\end{gathered}
\] & \[
\begin{gathered}
-3.47^{* *} \\
(1.27)
\end{gathered}
\] \\
\hline \(\mathrm{I}\left(\mathrm{str}{ }^{\wedge} 3\right)\) & & & & & \[
\begin{gathered}
0.06^{* *} \\
(0.02) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.07^{* *} \\
(0.02)
\end{gathered}
\] & \[
\begin{gathered}
0.06^{* *} \\
(0.02)
\end{gathered}
\] \\
\hline str:HiEL & & & \[
\begin{gathered}
-1.28 \\
(0.97)
\end{gathered}
\] & \[
\begin{aligned}
& -0.58 \\
& (0.50)
\end{aligned}
\] & & \[
\begin{gathered}
-123.28^{*} \\
(50.21)
\end{gathered}
\] & \\
\hline I(str^2): HiEL & & & & & & \[
\begin{aligned}
& 6.12^{*} \\
& (2.54)
\end{aligned}
\] & \\
\hline I(str^3):HiEL & & & & & & \[
\begin{gathered}
-0.10^{*} \\
(0.04)
\end{gathered}
\] & \\
\hline english & \[
\begin{gathered}
-0.12^{* * *} \\
(0.03)
\end{gathered}
\] & \[
\begin{gathered}
-0.18^{* * *} \\
(0.03)
\end{gathered}
\] & & & & & \[
\begin{gathered}
-0.17^{* * *} \\
(0.03)
\end{gathered}
\] \\
\hline HiEL & & & \[
\begin{gathered}
5.64 \\
(19.51)
\end{gathered}
\] & \[
\begin{gathered}
5.50 \\
(9.80)
\end{gathered}
\] & \[
\begin{gathered}
-5.47^{* * *} \\
(1.03)
\end{gathered}
\] & \[
\begin{aligned}
& 816.08^{*} \\
& (327.67)
\end{aligned}
\] & \\
\hline lunch & \[
\begin{gathered}
-0.55^{* * *} \\
(0.02)
\end{gathered}
\] & \[
\begin{gathered}
-0.40^{* * *} \\
(0.03)
\end{gathered}
\] & & \[
\begin{gathered}
-0.41^{* * *} \\
(0.03)
\end{gathered}
\] & \[
\begin{gathered}
-0.42^{* * *} \\
(0.03)
\end{gathered}
\] & \[
\begin{gathered}
-0.42^{* * *} \\
(0.03)
\end{gathered}
\] & \[
\begin{gathered}
-0.40^{* * *} \\
(0.03)
\end{gathered}
\] \\
\hline \(\log\) (income) & & \[
\begin{gathered}
11.57^{* * *} \\
(1.82)
\end{gathered}
\] & & \[
\begin{gathered}
12.12^{* * *} \\
(1.80)
\end{gathered}
\] & \begin{tabular}{l}
\[
11.75^{* * *}
\] \\
(1.77)
\end{tabular} & \[
\begin{gathered}
11.80^{* * *} \\
(1.78)
\end{gathered}
\] & \[
\begin{gathered}
11.51^{* * *} \\
(1.81)
\end{gathered}
\] \\
\hline Constant & \[
\begin{gathered}
700.15^{* * *} \\
(5.57)
\end{gathered}
\] & \[
\begin{gathered}
658.55^{* * *} \\
(8.64)
\end{gathered}
\] & \[
\begin{gathered}
682.25^{* * *} \\
(11.87)
\end{gathered}
\] & \[
\begin{gathered}
653.67^{* * *} \\
(9.87)
\end{gathered}
\] & \[
\begin{gathered}
252.05 \\
(163.63)
\end{gathered}
\] & \[
\begin{gathered}
122.35 \\
(185.52)
\end{gathered}
\] & \[
\begin{gathered}
244.81 \\
(165.72)
\end{gathered}
\] \\
\hline \(N\) & 420 & 420 & 420 & 420 & 420 & 420 & 420 \\
\hline \(\underline{\text { Adjusted } \mathrm{R}^{2}}\) & 0.77 & 0.79 & 0.31 & 0.79 & 0.80 & 0.80 & 0.80 \\
\hline
\end{tabular}
\({ }^{*} \mathrm{p}<.05 ;^{* *} \mathrm{p}<.01\); \(^{* * *} \mathrm{p}<.001\)
Robust S.E. are shown in the parentheses
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{7}{|c|}{score} \\
\hline & (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline str & \[
\begin{gathered}
-1.00^{* * *} \\
(0.27)
\end{gathered}
\] & \[
\begin{gathered}
-0.73^{* *} \\
(0.26)
\end{gathered}
\] & \[
\begin{gathered}
-0.97 \\
(0.59)
\end{gathered}
\] & \[
\begin{aligned}
& -0.53 \\
& (0.34)
\end{aligned}
\] & \[
\begin{gathered}
64.34^{* *} \\
(24.86)
\end{gathered}
\] & \begin{tabular}{l}
83.70** \\
(28.50)
\end{tabular} & \[
\begin{gathered}
65.29^{* *} \\
(25.26)
\end{gathered}
\] \\
\hline \(\mathrm{I}\left(\operatorname{str}^{\wedge} 2\right)\) & & & & & \[
\begin{gathered}
-3.42^{* *} \\
(1.25)
\end{gathered}
\] & \[
-4.38^{* *}
\] & \[
\begin{gathered}
-3.47^{* *} \\
(1.27)
\end{gathered}
\] \\
\hline \(\mathrm{I}\left(\mathrm{str}^{\wedge} 3\right)\) & & & & & \[
\begin{gathered}
0.06^{* *} \\
(0.02)
\end{gathered}
\] & \[
\begin{gathered}
0.07^{* *} \\
(0.02)
\end{gathered}
\] & \[
\begin{gathered}
0.06^{* *} \\
(0.02)
\end{gathered}
\] \\
\hline str:HiEL & & & \[
\begin{gathered}
-1.28 \\
(0.97)
\end{gathered}
\] & \[
\begin{gathered}
-0.58 \\
(0.50)
\end{gathered}
\] & & \[
\begin{gathered}
-123.28^{*} \\
(50.21)
\end{gathered}
\] & \\
\hline I(str^2): HiEL & & & & & & \[
\begin{aligned}
& 6.12^{*} \\
& (2.54)
\end{aligned}
\] & \\
\hline I(str^3): HiEL & & & & & & \[
\begin{array}{r}
-0.10^{*} \\
(0.04)
\end{array}
\] & \\
\hline english & \[
\begin{gathered}
-0.12^{* * *} \\
(0.03)
\end{gathered}
\] & \[
\begin{gathered}
-0.18^{* * *} \\
(0.03)
\end{gathered}
\] & & & & & \[
\begin{gathered}
-0.17^{* * *} \\
(0.03)
\end{gathered}
\] \\
\hline HiEL & & & \[
\begin{gathered}
5.64 \\
(19.51)
\end{gathered}
\] & \[
\begin{gathered}
5.50 \\
(9.80)
\end{gathered}
\] & \[
\begin{gathered}
-5.47^{* * *} \\
(1.03)
\end{gathered}
\] & \[
\begin{aligned}
& 816.08^{*} \\
& (327.67)
\end{aligned}
\] & \\
\hline lunch & \[
\begin{gathered}
-0.55^{* * *} \\
(0.02)
\end{gathered}
\] & \[
\begin{gathered}
-0.40^{* * *} \\
(0.03)
\end{gathered}
\] & & \[
\begin{gathered}
-0.41^{* * *} \\
(0.03)
\end{gathered}
\] & \[
\begin{gathered}
-0.42^{* * *} \\
(0.03)
\end{gathered}
\] & \[
\begin{gathered}
-0.42^{* * *} \\
(0.03)
\end{gathered}
\] & \[
\begin{gathered}
-0.40^{* * *} \\
(0.03)
\end{gathered}
\] \\
\hline \(\log\) (income) & & \[
\begin{gathered}
11.57^{* * *} \\
(1.82)
\end{gathered}
\] & & \[
\begin{gathered}
12.12^{* * *} \\
(1.80)
\end{gathered}
\] & \[
\begin{gathered}
11.75^{* * *} \\
(1.77)
\end{gathered}
\] & \[
\begin{gathered}
11.80^{* * *} \\
(1.78)
\end{gathered}
\] & \[
\begin{gathered}
11.51^{* * *} \\
(1.81)
\end{gathered}
\] \\
\hline Constant & \[
\begin{gathered}
700.15^{* * *} \\
(5.57)
\end{gathered}
\] & \[
\begin{gathered}
658.55^{* * *} \\
(8.64)
\end{gathered}
\] & \[
\begin{gathered}
682.25^{* * *} \\
(11.87)
\end{gathered}
\] & \[
\begin{gathered}
653.67^{* * *} \\
(9.87)
\end{gathered}
\] & \[
\begin{gathered}
252.05 \\
(163.63)
\end{gathered}
\] & \[
\begin{gathered}
122.35 \\
(185.52)
\end{gathered}
\] & \[
\begin{gathered}
244.81 \\
(165.72)
\end{gathered}
\] \\
\hline \(N\) & 420 & 420 & 420 & 420 & 420 & 420 & 420 \\
\hline Adjusted \(\mathrm{R}^{2}\) & 0.77 & 0.79 & 0.31 & 0.79 & 0.80 & 0.80 & 0.80 \\
\hline
\end{tabular}
\({ }^{*} \mathrm{p}<.05 ;^{* *} \mathrm{p}<.01\); \(^{* * *} \mathrm{p}<.001\)
Robust S.E. are shown in the parentheses
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{7}{|c|}{score} \\
\hline & (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline \multirow[t]{2}{*}{str} & \(-1.00{ }^{* * *}\) & \[
-0.73^{* *}
\] & -0.97 & -0.53 & \[
64.34^{* *}
\] & \[
83.70^{* *}
\] & \[
65.29^{* *}
\] \\
\hline & (0.27) & (0.26) & (0.59) & (0.34) & (24.86) & (28.50) & (25.26) \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}\left(\mathrm{str}^{\wedge} 2\right)\)} & & & & & \(-3.42^{* *}\) & \(-4.38^{* *}\) & -3.47 ** \\
\hline & & & & & (1.25) & (1.44) & (1.27) \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}\left(\mathrm{str}^{\wedge} 3\right)\)} & & & & & 0.06** & 0.07** & 0.06** \\
\hline & & & & & (0.02) & (0.02) & (0.02) \\
\hline \multirow[t]{2}{*}{str:HiEL} & & & -1.28 & -0.58 & & -123.28* & \\
\hline & & & (0.97) & (0.50) & & (50.21) & \\
\hline \multirow[t]{2}{*}{I(str \({ }^{\wedge}\) ) \(:\) HiEL} & & & & & & 6.12* & \\
\hline & & & & & & (2.54) & \\
\hline \multirow[t]{2}{*}{I(str^3):HiEL} & & & & & & -0.10* & \\
\hline & & & & & & (0.04) & \\
\hline english & \[
\begin{gathered}
-0.12^{* * *} \\
(0.03)
\end{gathered}
\] & \[
\begin{gathered}
-0.18^{* * *} \\
(0.03)
\end{gathered}
\] & & & & & \[
\begin{gathered}
-0.17^{* * *} \\
(0.03)
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{HiEL} & & & 5.64 & 5.50 & \(-5.47{ }^{* * *}\) & 816.08* & \\
\hline & & & (19.51) & (9.80) & (1.03) & (327.67) & \\
\hline \multirow[t]{2}{*}{lunch} & \(-0.55^{* * *}\) & \(-0.40^{* * *}\) & & \(-0.41^{* * *}\) & \(-0.42^{* * *}\) & \(-0.42^{* * *}\) & \(-0.40^{* * *}\) \\
\hline & (0.02) & (0.03) & & (0.03) & (0.03) & (0.03) & (0.03) \\
\hline \multirow[t]{2}{*}{\(\log\) (income)} & & \(11.57^{* * *}\) & & \(12.12{ }^{* * *}\) & 11.75*** & 11.80 *** & \(11.51^{* * *}\) \\
\hline & & (1.82) & & (1.80) & (1.77) & (1.78) & (1.81) \\
\hline \multirow[t]{2}{*}{Constant} & 700.15*** & \(658.55^{* * *}\) & 682.25*** & 653.67*** & 252.05 & 122.35 & 244.81 \\
\hline & (5.57) & (8.64) & (11.87) & (9.87) & (163.63) & (185.52) & (165.72) \\
\hline \(N\) & 420 & 420 & 420 & 420 & 420 & 420 & 420 \\
\hline Adjusted \(\mathrm{R}^{2}\) & 0.77 & 0.79 & 0.31 & 0.79 & 0.80 & 0.80 & 0.80 \\
\hline
\end{tabular}
\({ }^{*} \mathrm{p}<.05 ;^{* *} \mathrm{p}<.01\); \(^{* * *} \mathrm{p}<.001\)
Robust S.E. are shown in the parentheses

\section*{Three Regressions on graph}


\section*{Interaction on graph}


\title{
A Lastest and Smart Application: Jia and \(\mathrm{Ku}(2019)\)
}

\section*{Jia and \(\mathrm{Ku}(2019)\)}
- Ruixue Jia and Hyejin Ku, "Is China’s Pollution the Culprit for the Choking of South Korea?Evidence from the Asian Dust",The Economic Journal.
- Main Question: Whether the air pollution spillover from China to South Korea and affect the health of South Koreans?

\section*{Empirical Strategy}
- A naive strategy:
- Dependent variable: Deaths in South Korea(respiratory and cardiovascular mortality)
- Independt variable: Chinese pollution(Air Quality Index)
- Because the observed or measured air quality (i.e., pollution concentration) in Seoul or Tokyo increases in periods when China is more polluted does not mean that the pollution must have originated from China.

\section*{Jia and \(\mathrm{Ku}(2019)\) : Asian Dust as a carrier of pollutants}
- Asian Dust (also yellow dust, yellow sand, yellow wind or China dust storms) is a meteorological phenomenon which affects much of East Asia year round but especially during the spring months.
- The dust originates in China, the deserts of Mongolia, and Kazakhstan where high-speed surface winds and intense dust storms kick up dense clouds of fine, dry soil particles.
- These clouds are then carried eastward by prevailing winds and pass over China, North and South Korea, and Japan, as well as parts of the Russian Far East.
- In recent decades,Asian dust brings with it China's man-made pollution as well as its by-products.

\section*{Jia and \(\mathrm{Ku}(2019)\) : Asian Dust}


\section*{Jia and \(\mathrm{Ku}(2019)\) : Asian Dust}
1. A clear directional aspect in that the wind which transport Chinese pollutants to Korea but not vice versa.
2. Exogenous to South Korea's local activities. And wind patterns and topography generate rich spatial and temporal variation in the incidence.
3. The occurrence of Asian dust is monitored and recorded station by station in South Korea.(because of its visual salience)

\section*{Econometric Method: OLS with an interaction term}
- Dependent variable: Deaths in South Korea(respiratory and cardiovascular mortality of South Koreans)
- Treatment variable: Chinese pollution(Air Quality Index in China)
- Interaction Variable: Asian dust(the number of Asian dust days in South Korea)
- Control Variables: Time, Regions, Weather,Local Economic Conditions

\section*{Jia and \(\mathrm{Ku}(2019)\) : Estimation Strategy}
- The impact of Chinese pollution on district-level mortality that operates via Asian dust
\[
\begin{aligned}
\text { Mortality }_{i j k} & =\beta_{0}+\beta_{1} \text { AsianDust }_{i j k}+\beta_{2} \text { ChinesePollution }_{j k} \\
& +\beta_{3} \text { AsianDust }_{i j k} \times \text { ChinesePollution }_{j k} \\
& +\delta_{1} X_{i j k}+u_{i j k}
\end{aligned}
\]
- Main coefficient of interest is \(\beta_{3}\), which measures the effect of Chinese pollution in year \(j\) and month \(k\) on mortality in district \(i\) of South Korea.

\section*{Jia and \(\mathrm{Ku}(2019)\) : the result of interaction terms}

Table 2: The Impact of Dust*China's Pollution on Mortality Rates in South Korea
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{4}{*}{(1)} & (2) & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline & & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Baseline \\
Mortality rates: Respiratory and Cardiovascular
\end{tabular}}} & \multicolumn{2}{|l|}{Placebo Tests} \\
\hline & & & & & & & & Cancers & Accidents \\
\hline Mean Dependent Var. & & \multicolumn{6}{|c|}{12.23} & 16.30 & 4.21 \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\#Dust*China's Mean AQI}} & 0.038** & 0.033* & 0.043** & 0.040** & -0.008 & 0.007 \\
\hline & & & & (0.016) & (0.018) & (0.018) & (0.019) & (0.020) & (0.009) \\
\hline \multirow[t]{2}{*}{\#Dust} & 0.076*** & & 0.039 & -0.251* & -0.214 & -0.313** & 0.072 & 0.525* & -0.102 \\
\hline & (0.025) & & (0.032) & (0.131) & (0.142) & (0.149) & (0.240) & (0.275) & (0.119) \\
\hline \multirow[t]{2}{*}{China's Mean AQI} & & 0.265*** & 0.193* & 0.117 & 0.138 & 0.202* & 0.200* & -0.080 & 0.005 \\
\hline & & (0.081) & (0.104) & (0.105) & (0.107) & (0.110) & (0.111) & (0.121) & (0.060) \\
\hline District FE*Year FE & Y & Y & Y & Y & Y & Y & Y & Y & Y \\
\hline Province FE*Month FE & Y & Y & Y & Y & Y & Y & Y & Y & Y \\
\hline Weather (cubic polynomial) & & & & & Y & Y & Y & Y & Y \\
\hline Local Prod (export, energy) & & & & & & Y & Y & Y & Y \\
\hline Local Prod*Dust & & & & & & & Y & Y & Y \\
\hline Observations & 29,464 & 29,464 & 29,464 & 29,464 & 28,952 & 28,024 & 28,024 & 28,024 & 28,024 \\
\hline R-squared & 0.695 & 0.695 & 0.695 & 0.696 & 0.703 & 0.717 & 0.717 & 0.718 & 0.473 \\
\hline
\end{tabular}

\section*{Jia and \(\mathrm{Ku}(2019)\) : the result of interaction terms}

Table 2: The Impact of Dust*China's Pollution on Mortality Rates in South Korea


\section*{Jia and \(\mathrm{Ku}(2019)\) : the result of interaction terms}

Table 2: The Impact of Dust*China's Pollution on Mortality Rates in South Korea
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{4}{*}{(1)} & (2) & (3) & (4) & (5) & (6) & \multirow[t]{4}{*}{(7)} & (8) & (9) \\
\hline & & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Baseline \\
Mortality rates: Respiratory and Cardiovascular
\end{tabular}}} & & \multicolumn{2}{|l|}{Placebo Tests} \\
\hline & & & & & & & & Cancers & Accidents \\
\hline Mean Dependent Var. & & \multicolumn{5}{|c|}{12.23} & & 16.30 & 4.21 \\
\hline \multirow[t]{2}{*}{\#Dust*China's Mean AQI} & & & & 0.038** & 0.033* & 0.043** & 0.040** & -0.008 & 0.007 \\
\hline & & & & (0.016) & (0.018) & (0.018) & (0.019) & (0.020) & (0.009) \\
\hline \multirow[t]{2}{*}{\#Dust} & 0.076*** & & 0.039 & -0.251* & -0.214 & -0.313** & 0.072 & 0.525* & -0.102 \\
\hline & (0.025) & & (0.032) & (0.131) & (0.142) & (0.149) & (0.240) & (0.275) & (0.119) \\
\hline \multirow[t]{2}{*}{China's Mean AQI} & & 0.265*** & 0.193* & 0.117 & 0.138 & 0.202* & 0.200* & -0.080 & 0.005 \\
\hline & & (0.081) & (0.104) & (0.105) & (0.107) & (0.110) & (0.111) & (0.121) & (0.060) \\
\hline District FE*Year FE & Y & Y & Y & Y & Y & Y & Y & Y & Y \\
\hline Province FE*Month FE & Y & Y & Y & Y & Y & Y & Y & Y & Y \\
\hline Weather (cubic polynomial) & & & & & Y & Y & Y & Y & Y \\
\hline Local Prod (export, energy) & & & & & & Y & Y & Y & Y \\
\hline Local Prod*Dust & & & & & & & Y & Y & Y \\
\hline Observations & 29,464 & 29,464 & 29,464 & 29,464 & 28,952 & 28,024 & 28,024 & 28,024 & 28,024 \\
\hline R-squared & 0.695 & 0.695 & 0.695 & 0.696 & 0.703 & 0.717 & 0.717 & 0.718 & 0.473 \\
\hline
\end{tabular}

\section*{Jia and \(\mathrm{Ku}(2019)\) : the result of interaction terms}

Table 2: The Impact of Dust*China's Pollution on Mortality Rates in South Korea
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{(1)} & (2) & (3) & (4) & (5) & (6) & \multirow[t]{4}{*}{(7)} & (8) & (9) \\
\hline & & \multicolumn{5}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Baseline \\
Mortality rates: Respiratory and Cardiovascular
\[
12.23
\]
\end{tabular}}} & & \multicolumn{2}{|l|}{Placebo Tests} \\
\hline & & & & & & & & Cancers & Accidents \\
\hline Mean Dependent Var. & \[
12.23
\] & & & & & & & 16.30 & 4.21 \\
\hline \#Dust*China's Mean AQI & & & & \[
\begin{gathered}
0.038^{* *} \\
(0.016)
\end{gathered}
\] & \[
\begin{aligned}
& 0.033 * \\
& (0.018) \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\hline 0.043 * * \\
(0.018)
\end{gathered}
\] & \[
\begin{gathered}
\hline 0.040^{* *} \\
(0.019) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
-0.008 \\
(0.020)
\end{gathered}
\] & \[
\begin{gathered}
0.007 \\
(0.009)
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{\#Dust} & 0.076*** & & 0.039 & -0.251* & -0.214 & -0.313** & 0.072 & 0.525* & -0.102 \\
\hline & (0.025) & & (0.032) & (0.131) & (0.142) & (0.149) & (0.240) & (0.275) & (0.119) \\
\hline \multirow[t]{2}{*}{China's Mean AQI} & & 0.265*** & 0.193* & 0.117 & 0.138 & 0.202* & 0.200* & -0.080 & 0.005 \\
\hline & & (0.081) & (0.104) & (0.105) & (0.107) & (0.110) & (0.111) & (0.121) & (0.060) \\
\hline District FE*Year FE & Y & Y & Y & Y & Y & Y & Y & Y & Y \\
\hline Province FE*Month FE & Y & Y & Y & Y & Y & Y & Y & Y & Y \\
\hline Weather (cubic polynomial) & & & & & Y & Y & Y & Y & Y \\
\hline Local Prod (export, energy) & & & & & & Y & Y & Y & Y \\
\hline Local Prod*Dust & & & & & & & Y & Y & Y \\
\hline Observations & 29,464 & 29,464 & 29,464 & 29,464 & 28,952 & 28,024 & 28,024 & 28,024 & 28,024 \\
\hline R -squared & 0.695 & 0.695 & 0.695 & 0.696 & 0.703 & 0.717 & 0.717 & 0.718 & 0.473 \\
\hline
\end{tabular}

\section*{Jia and \(\mathrm{Ku}(2019)\) : Placebo Test}

Table 2: The Impact of Dust*China's Pollution on Mortality Rates in South Korea
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{4}{*}{(1)} & (2) & (3) & (4) & (5) & (6) & (7) & (8) & (9) \\
\hline & & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Baseline \\
Mortality rates: Respiratory and Cardiovascular
\end{tabular}}} & \multicolumn{2}{|l|}{Placebo Tests} \\
\hline & & & & & & & & Cancers & Accidents \\
\hline Mean Dependent Var. & & \multicolumn{6}{|c|}{12.23} & 16.30 & 4.21 \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\#Dust*China's Mean AQI}} & 0.038** & 0.033* & 0.043** & 0.040** & -0.008 & 0.007 \\
\hline & & & & (0.016) & (0.018) & (0.018) & (0.019) & (0.020) & (0.009) \\
\hline \multirow[t]{2}{*}{\#Dust} & 0.076*** & & 0.039 & -0.251* & -0.214 & -0.313** & 0.072 & 0.525* & -0.102 \\
\hline & (0.025) & & (0.032) & (0.131) & (0.142) & (0.149) & (0.240) & (0.275) & (0.119) \\
\hline \multirow[t]{2}{*}{China's Mean AQI} & & 0.265*** & 0.193* & 0.117 & 0.138 & 0.202* & 0.200* & -0.080 & 0.005 \\
\hline & & (0.081) & (0.104) & (0.105) & (0.107) & (0.110) & (0.111) & (0.121) & (0.060) \\
\hline District FE*Year FE & Y & Y & Y & Y & Y & Y & Y & Y & Y \\
\hline Province FE*Month FE & Y & Y & Y & Y & Y & Y & Y & Y & Y \\
\hline Weather (cubic polynomial) & & & & & Y & Y & Y & Y & Y \\
\hline Local Prod (export, energy) & & & & & & Y & Y & Y & Y \\
\hline Local Prod*Dust & & & & & & & Y & Y & Y \\
\hline Observations & 29,464 & 29,464 & 29,464 & 29,464 & 28,952 & 28,024 & 28,024 & 28,024 & 28,024 \\
\hline R-squared & 0.695 & 0.695 & 0.695 & 0.696 & 0.703 & 0.717 & 0.717 & 0.718 & 0.473 \\
\hline
\end{tabular}

\section*{Summary}

\section*{Wrap up}
- We extend our multiple ols model form linear to nonlinear in Xs (the independent variables)
- Polynomials,Logarithms and Interactions
- The multiple regression framework can be extended to handle regression functions that are nonlinear in one or more X .
- the difference between a standard multiple OLS regression and a nonlinear OLS regression model in Xs is how to explain estimating coefficients.
- All are very useful and common tools with OLS regressions. You had better understand it very clear.

\section*{Review of the last lecture}

\section*{Nonlinear Regression Functions}
- How to extend linear OLS model to be nonlinear? Two categories based on which is nonlinear?
1. Nonlinear in Xs (the previous lecture)
- Polynomials,Logarithms and Interactions
- The multiple regression framework can be extended to handle regression functions that are nonlinear in one or more X .
- the difference from a standard multiple OLS regression is how to explain estimating coefficients.
- So far the dependent variable \((\mathrm{Y})\) has been continuous:
- testscore
- average hourly earnings
- GDP growth rate
- What if the outcome variables \((\mathrm{Y})\) is discrete or limited.

\section*{Nonlinear Regression Functions}
2. Nonlinear in \(\beta\) or Nonlinear in \(\mathbf{Y}\)
- Discrete(or Categorical) dependent variables
- employment status: full-time,part-time,or none
- ways to commute to work:by bus, car or walking
- occupation(or sector) choices
- Linear function is not a good prediction function. Need a certain function which parameters enter nonlinearly, such as logistic function.
- OLS is not our first choice to estimate the model but the Maximum Likelihood Estimation(MLE) with the cost of pre-assumption about the known distribution families.
- Interpreting the results more difficult for the nonlinearity.

\section*{Discrete Dependent Variables}
- Discrete Models:
- Binary outcomes: (LPM,logit and probit)
- Multinomial outcomes: Multiple responses or choices without orders (multi-logit and multi-probit)
- Ordered outcomes: Ordered Response Models(ordered probit and logit)
- Count outcomes: The outcomes is a nonnegative integer or a count (possion model)
- Duration data(spell lengths or transitions): Duration model or hazard model
- Binary outcomes models is covered here.

\title{
Binary Outcome Models
}

\section*{Binary Outcome Models}
- Binary outcomes
- \(Y=\) get into college, or not; \(X=\) parental income.
- \(\mathrm{Y}=\) person smokes, or not; \(\mathrm{X}=\) cigarette tax rate, income.
- \(\mathrm{Y}=\) mortgage application is accepted, or not; \(\mathrm{X}=\) race, income, house characteristics, marital status
- Binary outcomes models:
- Logit Probability Model(LPM)
- Logit model
- Probit model

\title{
The Linear Probability Model(LPM)
}

\section*{The Conditional Expectation}
- If a outcome variable \(Y\) is binary, thus
\[
Y=\left\{\begin{array}{l}
1 \text { if } D=1 \\
0 \text { if } D=0
\end{array}\right.
\]
- The expectation of \(Y\) is
\[
E[Y]=1 \times \operatorname{Pr}(Y=1)+0 \times \operatorname{Pr}(Y=0)=\operatorname{Pr}(Y=1)
\]
which is the probability of \(Y=1\).
- Then we can extend it to the conditional expectation of \(Y\) equals to the the probability of \(Y=1\) conditional on Xs, thus
\[
E\left[Y \mid X_{1 i}, \ldots, X_{k i}\right]=\operatorname{Pr}\left(Y=1 \mid X_{1 i}, \ldots, X_{k i}\right)
\]

\section*{Multiple OLS Regression}
- Suppose our regression model is
\[
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\ldots+\beta_{k} X_{k i}+u_{i}
\]
- Based on Assumption 1, thus
\[
E\left[u_{i} \mid X_{1 i}, \ldots, X_{k i}\right]=0
\]
- Then
\[
E\left[Y \mid X_{1 i}, \ldots, X_{k i}\right]=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\ldots+\beta_{k} X_{k i}
\]

\section*{The Linear Probability Model}
- The conditional expectation equals the probability that \(Y_{i}=1\) conditional on \(X_{1 i}, \ldots, X_{k i}\)
\[
\begin{aligned}
E\left[Y \mid X_{1 i}, \ldots, X_{k i}\right] & =\operatorname{Pr}\left(Y=1 \mid X_{1 i}, \ldots, X_{k i}\right) \\
& =\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\ldots+\beta_{k} X_{k i}
\end{aligned}
\]
- Now a Linear Probability Model can be defined as following
\[
\operatorname{Pr}\left(Y=1 \mid X_{1 i}, \ldots, X_{k i}\right)=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\ldots+\beta_{k} X_{k i}
\]

\section*{The Linear Probability Model}
- The model does not change essentially.
\[
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\ldots+\beta_{k} X_{k i}+u_{i}
\]
- The different part is the interpretation the coefficient.Now the population coefficient \(\beta_{j}\)
\[
\frac{\partial \operatorname{Pr}\left(Y_{i}=1 \mid X_{1 i}, \ldots, X_{k i}\right)}{\partial X_{j}}=\beta_{j}
\]
- \(\beta_{j}\) can be explained as the change in the probability that \(Y=1\) associated with a unit change in \(X_{j}\)

\section*{LPM and Multiple OLS}
- Almost all of the tools of Multiple OLS regression can carry over to the LPM model.
- Assumptions are the same as for general multiple regression model.
- The coefficients can be also estimated by OLS.
- Both t-statistic and F-statistic can be constructed as before.
- The errors of the LPM are always heteroskedastic, so it is essential that heteroskedasticity-robust s.e. be used for inference.
- One difference is that both original \(R^{2}\) and adjusted- \(R^{2}\) are not meaningful statistics now.

\section*{An Example: Mortgage Applications}
- Most individuals who want to buy a house apply for a mortgage at a bank. Not all mortgage applications are approved.
- Question: What determines whether an application is approved or denied?
- Boston HMDA data: a data set on mortgage applications collected by the Federal Reserve Bank in Boston.
\begin{tabular}{llll}
\hline Variable & Description & Mean & SD \\
\hline deny & \(=1\) if application is denied & 0.120 & 0.325 \\
pi_ratio & monthly loan payments / monthly income & 0.331 & 0.107 \\
black & \(=1\) if applicant is black & 0.142 & 0.350 \\
\hline
\end{tabular}
- Our linear probability model is
\[
\operatorname{Pr}\left(Y=1 \mid X_{1 i}, X_{2 i}\right)=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}
\]

\section*{An Example: Mortgage Applications}
- Does the payment to income ratio affect whether or not a mortgage application is denied?
\[
\begin{aligned}
\widehat{\text { deny }}=- & 0.080+0.604 P / I \text { ratio } \\
& (0.032)(0.098)
\end{aligned}
\]
- The estimated OLS coefficient on the payment to income ratio
\[
\hat{\beta}_{1}=0.604
\]
- The estimated coefficient is significantly different from 0 at a \(1 \%\) significance level.(the \(t\)-statistic is over 6)

\section*{An Example: Mortgage Applications}
- How should we interpret \(\hat{\beta}_{1}\) ?
- An original one: payments/monthly income ratio increase 1,then probability being denied will also increase 0.6
- Another more reasonable one: payments/monthly income ratio increase \(10 \%(0.1)\),then probability being denied will also increase \(6 \%(0.06)\).
- Question: Does the effect matter? Or the magnitude of the effect is large enough.
- Answer: An option is comparing with the mean value of dependent variable.
- Here deny rate \(=0.12\) means that the deny ratio will increase \(0.06 / 0.12 \times 100 \%=50 \%\) if PI Ratio increases \(10 \%\).

\section*{An Example: Mortgage Applications}
- What is the effect of race on the probability of denial, holding constant the P/I ratio?
- the differences between black applicants and white applicants.
\[
\begin{aligned}
\widehat{\text { deny }}=- & 0.091+0.559 \text { P/I ratio }+0.177 \text { black } \\
& (0.029)(0.089)
\end{aligned}
\]
- The coefficient on black, 0.177, indicates that an African American applicant has a \(17.7 \%\) higher probability of having a mortgage application denied than a white applicant, holding constant their payment-to-income ratio.
- This coefficient is significant at the \(1 \%\) level (the \(t\)-statistic is 7.11 ).

\section*{LPM: Similar to an OLS Regression}
- Assumptions are the same as for general multiple regression model: 1.
2.
3.
4.
- Advantages of the linear probability model:
- Easy to estimate and inference
- Coefficient estimates are easy to interpret
- Very useful under some circumstances like using IV.

\section*{LPM: Heteroskedasticity}
- Then conditional variance of the error term \(u_{i}\) is always heteroskedasticity.
\[
\operatorname{Var}\left(u_{i} \mid X_{1 i}, \cdots, X_{k i}\right) \neq \sigma_{u}^{2}
\]
- Always use heteroskedasticity robust standard errors when estimating a linear probability model!

\section*{LPM: Predicted values}
- More serious problem: the predicted probability can be below 0 or above 1!

FIGURE 11.1 Scatterplot of Mortgage Application Denial and the Payment-to-Income Ratio

Mortgage applicants with a high ratio of debt payments to income ( \(P / / \mathrm{ratio}\) ) are more likely to have their application denied (deny \(=1\) if denied, deny \(=0\) if approved). The linear probability model uses a straight line to model the probability of denial, conditional on the P/I ratio.


\title{
Nonlinear Probability Models
}

\section*{Introduction}
- Intuition: Probabilities should not be less than 0 or greater than 1
- To address this problem,consider a nonlinear probability models
\[
\begin{aligned}
\operatorname{Pr}\left(Y_{i}=1 \mid X_{1}, \ldots X_{k}\right) & =G(Z) \\
& =G\left(\beta_{0}+\beta_{1} X_{1, i}+\beta_{2} X_{2, i}+\ldots+\beta_{k} X_{k, i}\right)
\end{aligned}
\]
where \(Z=\beta_{0}+\beta_{1} X_{1, i}+\beta_{2} X_{2, i}+\ldots+\beta_{k} X_{k, i}\)
- And the function have to satisfy the conditions:
- \(0 \leq G(Z) \leq 1\)
- monotonicity and continuity
- The key is whether we could find a proper function \(G(x)\) which can limit the prediction value less than 1 and greater than 0.
- The cumulative distribution function(c.d.f)

\section*{Math Review: The cumulative distribution function}
- The cumulative distribution function (c.d.f) of a random variable \(X\) at a given value \(x\) is defined as the probability that \(X\) is smaller than \(x\)
\[
F_{X}(x)=\operatorname{Pr}(X \leq x)
\]
- Assume that the probability mass function or probability distribution function is \(f_{X}(x)\), then the c.d.f is
\[
F_{X}(x)=\left\{\begin{array}{l}
\sum_{t \in \mathcal{X}} f_{X}(t) \text { if } \mathbf{X} \text { is discrete } \\
\int_{-\infty}^{x} f_{X}(t) \mathrm{d} t \text { if } \mathbf{X} \text { is continuous }
\end{array}\right.
\]
- More importantly,the c.d.f satisfies
- \(0 \leq F_{X}(x) \leq 1\)
- monotonicity and continuity

\section*{Logit and Probit functions}
- Two common nonlinear functions
1. Probit Model
\[
G(Z)=\Phi(Z)=\int_{-\infty}^{Z} \phi(Z) d Z=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{Z} e^{-\frac{t^{2}}{2}} d t
\]
which is the standard normal cumulative distribution function
2. Logit Model
\[
G(Z)=\frac{1}{1+e^{-Z}}=\frac{e^{Z}}{1+e^{Z}}
\]
which is the logistic cumulative distribution function.
- where
\[
Z=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\ldots+\beta_{k} X_{k i}
\]
- Several reasons why these two are chosen:
- good shapes, thus the predictions make more senses.
- relatively easy to use and interprete them.

\section*{Probit Model}
- Probit regression models the probability that \(Y=1\)
\[
\operatorname{Pr}\left(Y_{i}=1 \mid X_{1}, \ldots X_{k}\right)=\Phi\left(\beta_{0}+\beta_{1} X_{1, i}+\beta_{2} X_{2, i}+\ldots+\beta_{k} X_{k, i}\right)
\]
- where \(\Phi(Z)\) is the standard normal c.d.f, then we have
\[
0 \leq \Phi(Z) \leq 1
\]
- Then it make sure that the predicted probabilities of the probit model are between 0 and 1 .

\section*{Probit Model: Shape and Prediction Value}

\section*{FIGURE 11.2 Probit Model of the Probability of Denial, Given P/I Ratio}

The probit model uses the cumulative normal distribution function to model the probability of denial given the payment-toincome ratio or, more generally, to model \(\operatorname{Pr}(Y=1 \mid X)\). Unlike the linear probability model, the probit conditional probabilities are always between 0 and 1 .


\section*{Probit Model: Explaination to the Coefficient}
- How should we interpret \(\hat{\beta}_{1}\) ?
- \(\operatorname{Recall} Z=\beta_{0}+\beta_{1} X_{1, i}+\beta_{2} X_{2, i}+\ldots+\beta_{k} X_{k, i}\)
- The coefficient \(\beta_{j}\) is the change in the \(Z\)-value rather than the probability arising from a unit change in \(X_{j}\), holding constant other \(X_{i}\) s.
- The effect on the predicted probability of a change in a regressor should be computed by the general formula in the nonlinear regression model(Key concept 8.3)
1. computing the predicted probability for the initial value of the regressors,
2. computing the predicted probability for the new or changed value of the regressors,
3. taking their difference.

\section*{Probit Model: Explaination to the Coefficient}

\section*{The Expected Change on \(Y\) of a Change in \(X_{1}\) in the Nonlinear Regression Model (8.3)}

\section*{KEY CONCEPT}

The expected change in \(Y, \Delta Y\), associated with the change in \(X_{1}, \Delta X_{1}\), holding \(X_{2}, \ldots, X_{k}\) constant, is the difference between the value of the population regression function before and after changing \(X_{1}\), holding \(X_{2}, \ldots, X_{k}\) constant. That is, the expected change in \(Y\) is the difference:
\[
\begin{equation*}
\Delta Y=f\left(X_{1}+\Delta X_{1}, X_{2}, \ldots, X_{k}\right)-f\left(X_{1}, X_{2}, \ldots, X_{k}\right) \tag{8.4}
\end{equation*}
\]

The estimator of this unknown population difference is the difference between the predicted values for these two cases. Let \(\hat{f}\left(X_{1}, X_{2}, \ldots, X_{k}\right)\) be the predicted value of \(Y\) based on the estimator \(\hat{f}\) of the population regression function. Then the predicted change in \(Y\) is
\[
\begin{equation*}
\Delta \hat{Y}=\hat{f}\left(X_{1}+\Delta X_{1}, X_{2}, \ldots, X_{k}\right)-\hat{f}\left(X_{1}, X_{2}, \ldots, X_{k}\right) \tag{8.5}
\end{equation*}
\]

\section*{The Predicted Probability: one regressor}
- Suppose the probit population regression model with only one regressors, \(X_{1}\)
\[
\operatorname{Pr}\left(Y=1 \mid X_{1}\right)=\Phi(Z)=\Phi\left(\beta_{0}+\beta_{1} X_{1}\right)
\]
- Suppose the estimate result is \(\hat{\beta}_{0}=-2\) and \(\hat{\beta}_{1}=3\),which means
\[
Z=-2+3 X_{1}
\]
- How to compute the probability change of \(X_{1}\) with a change from 0.4 to 0.5 ?

\section*{The Predicted Probability: one regressor}
- The probability that \(Y=1\) when \(X_{1}=0.4\), then \(z=-2+3 \times 0.4=-0.8\), then the predicted probability is
\[
\operatorname{Pr}\left(Y=1 \mid X_{1}=0.4\right)=\operatorname{Pr}(z \leq-0.8)=\Phi(-0.8)
\]
- Likewise the probability that \(Y=1\) when \(X_{1}=0.5\), then \(z=-2+3 \times 0.5=-0.5\),the predicted probability is
\[
\operatorname{Pr}\left(Y=1 \mid X_{1}=0.5\right)=\operatorname{Pr}(z \leq-0.5)=\Phi(-0.5)
\]
- Then the difference is
\[
\begin{array}{r}
\operatorname{Pr}\left(Y=1 \mid X_{1}=0.5\right)-\operatorname{Pr}\left(Y=1 \mid X_{1}=0.4\right)= \\
\Phi(-.5)-\Phi(-.8)=0.3085-0.2119=0.097
\end{array}
\]

\section*{The Predicted Probability: one regressor}

\section*{TABLE 1 The Cumulative Standard Normal Distribution Function, \(\Phi(z)=\operatorname{Pr}\left(\mathbf{Z}^{\prime \prime} \mathbf{z}\right)\)}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{z} & \multicolumn{10}{|c|}{Second Decimal Value of x} \\
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline -2.9 & 0.0019 & 0.0018 & 0.0018 & 0.0017 & 0.0016 & 0.0016 & 0.0015 & 0.0015 & 0.0014 & 0.0014 \\
\hline -2.8 & 0.0026 & 0.0025 & 0.0024 & 0.0023 & 0.0023 & 0.0022 & 0.0021 & 0.0021 & 0.0020 & 0.0019 \\
\hline -0.8 & 0.2119 & . 2090 & 0.2061 & 0.2033 & 0.2005 & 0.1977 & 0.1949 & 0.1922 & 0.1894 & 0.1867 \\
\hline -0.7 & 0.2420 & 0.2389 & 0.2358 & 0.2327 & 0.2296 & 0.2266 & 0.2236 & 0.2206 & 0.2177 & 0.2148 \\
\hline -0.6 & 0.2743 & 0.2709 & 0.2676 & 0.2643 & 0.2611 & 0.2578 & 0.2546 & 0.2514 & 0.2483 & 0.2451 \\
\hline -0.5 & 0.3085 & 0.3050 & 0.3015 & 0.2981 & 0.2946 & 0.2912 & 0.2877 & 0.2843 & 0.2810 & 0.2776 \\
\hline \(\bigcirc \bigcirc\) & 024.46 & O 3400 & 0387) & 03336 & ก 3 3 0 & 03764 & 03778 & ก 3197 & O 3156 & ก 3171 \\
\hline
\end{tabular}

\section*{Example: Mortgage Applications}
- The probit model:
\[
\operatorname{Pr}\left(Y=1 \mid X_{1}\right)=\Phi(Z)=\Phi\left(\beta_{0}+\beta_{1} X_{1}\right)
\]
- Does the payment to income ratio affect whether or not a mortgage application is denied?
\[
\operatorname{Pr}(\text { deny } \widehat{=1 \mid P} / \text { I ratio })=\Phi(-2.19+2.97 P / \text { I ratio })
\]

\section*{Example: Mortgage Applications}
- What is the change in the predicted probability that an application will be denied if P/I ratio increases from 0.3 to 0.4 ?
- The probability of denial when \(P / I\) ratio \(=0.3\)
\[
\Phi(-2.19+2.97 \times 0.3)=\Phi(-1.3)=0.097
\]
- The probability of denial when \(P / I\) ratio \(=0.4\)
\[
\Phi(-2.19+2.97 \times 0.4)=\Phi(-1.0)=0.159
\]
- The estimated change in the probability of denial is \(0.159-0.097=0.062\), which means that the P/I ratio increase from from 0.3 to 0.4 , the denial probability increase \(6.2 \%\).

\section*{Effect of a Change in X : When X is continuous}
- the \(\mathrm{P} / \mathrm{I}\) ratio increase from
- 0.3 to 0.4, denial probability increase \(6.2 \%\).
- 0.4 to 0.5 , denial probability increase \(9.7 \%\).
- Marginal Effects for \(X_{j}\)
\[
\frac{\partial \operatorname{Pr}\left(Y=1 \mid X_{1}, \ldots X_{k}\right)}{\partial X_{j}}=\phi\left(\beta_{0}+\beta_{1} X_{1, i}+\beta_{2} X_{2, i}+\ldots+\beta_{k} X_{k, i}\right) \times \beta_{j}
\]
- Where \(\phi(\cdot)\) is the probability distribution function(p.d.f) of the standard normal c.d.f.
- Hence, the effect of a change in \(X\) depends on the starting value of \(X\) and other Xs like other nonlinear functions.

\section*{Effect of a Change in X: Marginal Effects}
- Then the Marginal Effects varies with the point of evaluation
- Marginal Effect at a Representative Value (MER):ME at \(X=X^{*}\) (at representative values of the regressors)
- Marginal Effect at Mean (MEM): ME at \(X=\bar{X}\) (at the sample mean of the regressors)
- Average Marginal Effect (AME): average of ME at each \(X=X_{i}\) (at sample values and then average)
- The most common one is MEM while the other two are not meaningless.

\section*{Example: Mortgage Applications}
- The Marginal Effect
\[
\frac{\partial \operatorname{Pr}(\text { den } y=1 \mid P / \text { ratio })}{\partial P / I \text { ratio }}=\phi(-2.19+2.97 P / I \text { ratio }) \times 2.97
\]
- Then Marginal Effect at Mean (MEM):(at the sample mean of the regressors: \(P / I_{\text {ratio }}^{\text {mean }}=0.331\)
\[
\begin{aligned}
&{\frac{\partial \operatorname{Pr}(\text { deny }=1 \mid P / \text { I ratio })_{\partial P / I \text { ratio }}^{\text {at mean }}}{}}=\phi(-2.19+2.97 \times 0.331) \times 2.97 \\
&=\phi(-1.21) \times 2.97
\end{aligned}
\]
- The the effect of \(P / I\) ratio change \(10 \%(0.1)\) on the probability of deny is \(3.36 \%\) ( 0.0336 )

\section*{Discrete Explanatory Variable}
- If \(X_{j}\) is a discrete variable, then we should not rely on calculus in evaluating the effect on the response probability.
- Assume \(X_{2}\) is a dummy variable, then partial effect of \(X_{2}\) changing from 0 to 1:
\[
G\left(\beta_{0}+\beta_{1} X_{1, i}+\beta_{2} \times 1+\ldots+\beta_{k} X_{k, i}\right)-G\left(\beta_{0}+\beta_{1} X_{1, i}+\beta_{2} \times 0+\ldots+\beta_{k} X_{k, i}\right)
\]

\section*{Example: Race in Mortgage Applications}
- Mortgage denial (deny) and the payment-income ratio (P/I ratio) and race
\[
\begin{aligned}
\operatorname{Pr}(\text { deny } \widehat{=1 \mid P} / \text { I ratio })= & \Phi(-2.26+2.74 P / \text { I ratio }+0.71 \text { black }) \\
& (0.16)
\end{aligned}
\]
- The probability of denial when black \(=0\),thus whites(non-blacks) is
\[
\Phi(-2.26+2.74 \times 0.3+0.71 \times 0)=\Phi(-1.43)=0.075
\]
- The probability of denial when black \(=1\),thus blacks is
\[
\Phi(-2.26+2.74 \times 0.3+0.71 \times 1)=\Phi(-0.73)=0.233
\]
- so the difference between whites and blacks at \(P /\) Iratio \(=0.3\) is \(0.233-0.075=0.158\), which means probability of denial for blacks is \(15.8 \%\) higher than that for whites.

\section*{Logit Model}

\section*{Logistic Function}
- Using the standard logistic cumulative distribution function
\[
\begin{aligned}
\operatorname{Pr}\left(Y_{i}=1 \mid Z\right) & =\frac{1}{1+e^{-Z}} \\
& =\frac{e^{Z}}{1+e^{Z}}
\end{aligned}
\]
- As in the Probit model
\[
Z=\beta_{0}+\beta_{1} X_{1, i}+\beta_{2} X_{2, i}+\ldots+\beta_{k} X_{k, i}
\]
- Since \(F(z)=\operatorname{Pr}(Z \leq z)\) we have that the predicted probabilities of the logit model are also between 0 and 1 .

\section*{Logit Model: Predicted Probabilities}
- Suppose we have only one regressor X and \(Z=-2+3 X_{1}\)
- We want to know the probability that \(Y=1\) when \(X_{1}=0.4\)
- Then
\[
Z=-2+3 \times 0.4=-0.8
\]
- So the probability
\[
\begin{aligned}
\operatorname{Pr}\left(Y=1 \mid X_{1}=0.4\right) & =\operatorname{Pr}(Z \leq-0.8) \\
& =F(-0.8) \\
& =\frac{1}{1+e^{-0.8}} \\
& =0.31
\end{aligned}
\]

\section*{Logit Model: Predicted Probabilities}
- \(\operatorname{Pr}(Y=1)=\operatorname{Pr}(Z \leq-0.8)=\frac{1}{1+e^{-0.8}}=0.31\)

Standard logistic density


\section*{Logit Model: Explaination to the Coefficient}
- How should we interpret \(\hat{\beta}_{1}\) ?
- Similar to the Probit model, \(Z=\beta_{0}+\beta_{1} X_{1, i}+\beta_{2} X_{2, i}+\ldots+\beta_{k} X_{k, i}\)
- The coefficient \(\beta_{j}\) can not be explained directly.
- the change in the \(Z\)-value rather than the probability arising from a unit change in \(X_{j}\), holding constant other \(X_{i}\).
- Different from the Probit model
- The odds ratio

\section*{Logit Model: the Odds Ratio}
- Let \(p\) is the conditional probability of \(Y=1\),then
\[
p=\operatorname{Pr}\left(Y_{i}=1 \mid Z\right)=\frac{e^{Z}}{1+e^{Z}}
\]
- Then \(1-p\) is the probability of \(Y=0\)
\[
1-p=\operatorname{Pr}\left(Y_{i}=0 \mid Z\right)=1-\frac{e^{Z}}{1+e^{Z}}=\frac{1}{1+e^{Z}}
\]
- Then the ratio of probability of \(Y=1\) to the probability of \(Y=0\) is
\[
\frac{p}{1-p}=\frac{\operatorname{Pr}\left(Y_{i}=1 \mid Z\right)}{\operatorname{Pr}\left(Y_{i}=0 \mid Z\right)}=e^{z}
\]
- the \(\frac{p}{1-p}\) is called as Odds Ratio.

\section*{Logit Model: the Odds Ratio}
- Then
\[
\ln \left(\frac{p}{1-p}\right)=Z=\beta_{0}+\beta_{1} X_{1, i}+\beta_{2} X_{2, i}+\ldots+\beta_{k} X_{k, i}
\]
- Therefore \(\hat{\beta}_{j}\) can be expressed that the percentage change in odds ratio arising from a unit change in \(X_{j}\).

\section*{Example: Mortgage Applications}
- Logit Model: Mortgage denial (deny) and the payment-to-income ratio (P/I ratio)
\[
\operatorname{Pr}(\text { deny } \widehat{=1 \mid P} / \text { I ratio })=F(-4.03+5.88 P / \text { I ratio })
\]
- If \(P / I\) ratio increases \(10 \%(0.1)\), then odds ratio of deny to accept will be increased 58.8\%.

\section*{Marginal Effect in logit model}
- Then Marginal Effect at Mean (MEM):(at the sample mean of the regressors: \(P /\) ratio \(_{\text {mean }}=0.331\)
\[
\begin{aligned}
\frac{\partial \operatorname{Pr}(\text { den } y=1 \mid P / \text { r ratio })}{\partial P / I \text { ratio }}{ }_{\text {at mean }} & =f(-2.19+2.97 \times 0.331) \times 2.97 \\
& =f(-1.21) \times 2.97 \\
& =0.526
\end{aligned}
\]
- The the effect of \(P / I\) ratio change \(10 \%(0.1)\) on the probability of deny is \(5.26 \%\) (0.0526)

\section*{Example: Mortgage Applications on Race}
- Logit Model: Mortgage denial (deny) and the payment-to-income ratio (P/I ratio) and race
\[
\begin{array}{r}
\operatorname{Pr}(\text { deny } \widehat{=1 \mid P} / \text { I ratio })=F(-4.13+5.37 P / \text { I ratio }+1.27 \text { black }) \\
(0.35) \tag{0.15}
\end{array}
\]

\section*{Example: Mortgage Applications on Race}
- The predicted denial probability of a white applicant with \(P / I\) ratio \(=0.3\) is
\[
\frac{1}{1+e^{-(-4.13+5.37 \times 0.3+1.27 \times 0)}}=0.074
\]
- The predicted denial probability of a black applicant with \(P / I\) ratio \(=0.3\) is
\[
\frac{1}{1+e^{-(-4.13+5.37 \times 0.3+1.27 \times 1)}}=0.222
\]
- the difference is
\[
0.222-0.074=0.148=14.8 \%
\]
which indicates that the probability of denial for blacks is \(14.8 \%\) higher than that for whites when \(P /\) Iratio \(=0.3\).

\section*{Estimation and Inference in Probit and Logit Model}

\section*{Estimation and Inference in Probit and Logit Model}
- How to estimate \(\beta_{0}, \beta_{1}, \ldots, \beta_{k}\) ?
- What is the sampling distribution of the estimators?
- Logit and Probit models are nonlinear in the coefficients \(\beta_{0}, \beta_{1}, \ldots, \beta_{k}\)
- These models can NOT be estimated directly by OLS, but by Nonlinear Least Squares(NLS).
- In practice,the most common method used to estimate logit and probit models is Maximum Likelihood Estimation (MLE).

\section*{Review: Maximum Likelihood Estimation}
- The likelihood function is a joint probability distribution of the data, treated as a function of the unknown coefficients.
- The maximum likelihood estimator (MLE) are the estimate values of the coefficients that maximize the likelihood function.
- MLE's logic: the most likely function is the function to have produce the data we observed.

\section*{Review: Maximum Likelihood Estimation}
- Random Variables \(Y_{1}, Y_{2}, Y_{3}, \ldots Y_{n}\) have a joint density function denoted
\[
f_{\theta}\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)=f\left(Y_{1}, Y_{2}, \ldots, Y_{n} \mid \theta\right)
\]
- where \(\theta\) is an unknown parameter.
- Given observed values \(Y_{1}=y_{1}, Y_{2}=y_{2}, \ldots, Y_{n}=y_{n}\), the likelihood of \(\theta\) is the function
\[
\operatorname{likelihood}(\theta)=f\left(Y_{1}=y_{1}, Y_{2}=y_{2}, \ldots, Y_{n}=y_{n} \mid \theta\right)=f\left(\theta ; y_{1}, \ldots, y_{n}\right)
\]
- which can be considered as a function of \(\theta\).
- Then the Maximum Likelihood Estimation to \(\theta\) is a solution to the question
\[
\left.\underset{\hat{\theta}}{\arg \max } f\left(\theta ; Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right)\right)
\]

\section*{Maximum Likelihood Estimation of a Binary Variable}
- Suppose we flip a coin which is yields heads \((Y=1)\) and tails \((Y=0)\). We want to estimate the probability \(p\) of heads.
- Therefore, let \(Y_{i}=1\) (heads) be a binary variable that indicates whether or not a heads is observed.
\[
Y_{i}=\left\{\begin{array}{l}
1 \text { with probability } p \\
0 \text { with probability } 1-p
\end{array}\right.
\]
- Then the probability mass function for a single observation is a Bernoulli distribution
\[
\operatorname{Pr}\left(Y_{i}\right)= \begin{cases}p & \text { when } Y_{i}=1 \\ 1-p & \text { when } Y_{i}=0\end{cases}
\]
- which can be transform into
\[
\operatorname{Pr}\left(Y_{i}=y\right)=\operatorname{Pr}\left(Y_{i}=1\right)^{y}\left(1-\operatorname{Pr}\left(Y_{i}=1\right)\right)^{1-y}=p^{y}(1-p)^{1-y}
\]

\section*{Maximum Likelihood Estimation of a Binary Variable}

MLE Step 1: write down the likelihood function, the joint probability distribution of the data
- Since \(Y_{1}, \ldots, Y_{n}\) are i.i.d,the joint probability distribution of the observations, thus the Likelihood function is the product of the individual distributions
\[
f_{\text {bernouilli }}\left(p ; Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right)=\operatorname{Pr}\left(Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right)
\]

\section*{Maximum Likelihood Estimation of a Binary Variable}

MLE Step 1: write down the likelihood function, the joint probability distribution of the data
- Since \(Y_{1}, \ldots, Y_{n}\) are i.i.d,the joint probability distribution of the observations, thus the Likelihood function is the product of the individual distributions
\[
\begin{aligned}
f_{\text {bernouilli }}\left(p ; Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right) & =\operatorname{Pr}\left(Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right) \\
& =\operatorname{Pr}\left(Y_{1}=y_{1}\right) \times \ldots \times \operatorname{Pr}\left(Y_{n}=y_{n}\right)
\end{aligned}
\]

\section*{Maximum Likelihood Estimation of a Binary Variable}

MLE Step 1: write down the likelihood function, the joint probability distribution of the data
- Since \(Y_{1}, \ldots, Y_{n}\) are i.i.d,the joint probability distribution of the observations, thus the Likelihood function is the product of the individual distributions
\[
\begin{aligned}
f_{\text {bernouilli }}\left(p ; Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right) & =\operatorname{Pr}\left(Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right) \\
& =\operatorname{Pr}\left(Y_{1}=y_{1}\right) \times \ldots \times \operatorname{Pr}\left(Y_{n}=y_{n}\right) \\
& =p^{y_{1}}(1-p)^{1-y_{1}} \times \ldots \times p^{y_{n}}(1-p)^{1-y_{n}}
\end{aligned}
\]

\section*{Maximum Likelihood Estimation of a Binary Variable}

MLE Step 1: write down the likelihood function, the joint probability distribution of the data
- Since \(Y_{1}, \ldots, Y_{n}\) are i.i.d,the joint probability distribution of the observations, thus the Likelihood function is the product of the individual distributions
\[
\begin{aligned}
f_{\text {bernouilli }}\left(p ; Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right) & =\operatorname{Pr}\left(Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right) \\
& =\operatorname{Pr}\left(Y_{1}=y_{1}\right) \times \ldots \times \operatorname{Pr}\left(Y_{n}=y_{n}\right) \\
& =p^{y_{1}}(1-p)^{1-y_{1}} \times \ldots \times p^{y_{n}}(1-p)^{1-y_{n}} \\
& =p^{\left(y_{1}+y_{2}+\ldots+y_{n}\right)}(1-p)^{n-\left(y_{1}+y_{2}+\ldots+y_{n}\right)}
\end{aligned}
\]

\section*{Maximum Likelihood Estimation of a Binary Variable}

MLE Step 1: write down the likelihood function, the joint probability distribution of the data
- Since \(Y_{1}, \ldots, Y_{n}\) are i.i.d,the joint probability distribution of the observations, thus the Likelihood function is the product of the individual distributions
\[
\begin{aligned}
f_{\text {bernouilli }}\left(p ; Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right) & =\operatorname{Pr}\left(Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right) \\
& =\operatorname{Pr}\left(Y_{1}=y_{1}\right) \times \ldots \times \operatorname{Pr}\left(Y_{n}=y_{n}\right) \\
& =p^{y_{1}}(1-p)^{1-y_{1}} \times \ldots \times p^{y_{n}}(1-p)^{1-y_{n}} \\
& =p^{\left(y_{1}+y_{2}+\ldots+y_{n}\right)}(1-p)^{n-\left(y_{1}+y_{2}+\ldots+y_{n}\right)} \\
& =p^{\sum y_{i}}(1-p)^{n-\sum y_{i}}
\end{aligned}
\]

\section*{Maximum Likelihood Estimation}

MLE Step 2: Write down the maximization problem
- More easier to maximize the logarithm of the likelihood function
\[
\ln \left(f_{\text {bernouilli }}\left(p ; Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right)\right)=\left(\sum y_{i}\right) \ln (p)+\left(n-\sum y_{i}\right) \ln (1-p)
\]
- Since the logarithm is a strictly increasing function, maximizing the likelihood or the log likelihood will give the same estimator.
- Then the maximization problem is
\[
\underset{\hat{p}}{\arg \max } \ln \left(f_{\text {bernouilli }}\left(p ; Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right)\right)
\]

\section*{Maximum Likelihood Estimation}

MLE Step 3: Maximize the likelihood function
- F.O.C: taking the derivative and setting it to zero.

\section*{Maximum Likelihood Estimation}

MLE Step 3: Maximize the likelihood function
- F.O.C: taking the derivative and setting it to zero.
\[
\frac{d}{d p} \ln \left(f_{\text {bernouilli }}\left(p ; Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right)\right)=0
\]

\section*{Maximum Likelihood Estimation}

MLE Step 3: Maximize the likelihood function
- F.O.C: taking the derivative and setting it to zero.
\[
\begin{aligned}
& \frac{d}{d p} \ln \left(f_{\text {bernouilli }}\left(p ; Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right)\right)=0 \\
\Rightarrow & \frac{d}{d p}\left[\left(\sum y_{i}\right) \ln (p)+\left(n-\sum y_{i}\right) \ln (1-p)\right]=0
\end{aligned}
\]

\section*{Maximum Likelihood Estimation}

MLE Step 3: Maximize the likelihood function
- F.O.C: taking the derivative and setting it to zero.
\[
\begin{aligned}
& \frac{d}{d p} \ln \left(f_{\text {bernouilli }}\left(p ; Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right)\right)=0 \\
\Rightarrow & \frac{d}{d p}\left[\left(\sum y_{i}\right) \ln (p)+\left(n-\sum y_{i}\right) \ln (1-p)\right]=0 \\
\Rightarrow & \frac{\sum y_{i}}{p}-\frac{n-\sum y_{i}}{1-p}=0
\end{aligned}
\]

\section*{Maximum Likelihood Estimation}

MLE Step 3: Maximize the likelihood function
- F.O.C: taking the derivative and setting it to zero.
\[
\begin{aligned}
& \frac{d}{d p} \ln \left(f_{\text {bernouill }}\left(p ; Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right)\right)=0 \\
\Rightarrow & \frac{d}{d p}\left[\left(\sum y_{i}\right) \ln (p)+\left(n-\sum y_{i}\right) \ln (1-p)\right]=0 \\
\Rightarrow & \frac{\sum y_{i}}{p}-\frac{n-\sum y_{i}}{1-p}=0 \\
\Rightarrow & \left(n-\sum y_{i}\right)=\sum y_{i}(1-p)
\end{aligned}
\]
- Solving the equation for \(p\) yields the MLE estimator; that is, \(\hat{p}_{M L E}\) satisfies
\[
\hat{p}_{M L E}=\frac{1}{n} \sum y_{i}=\bar{Y}
\]

\section*{MLE of the Probit Model}
- Assume our probit model is
\[
P\left(Y_{i}=1 \mid X_{i}\right)=\Phi\left(\beta_{0}+\beta_{1} X_{1 i}+\ldots+\beta_{k} X_{k i}\right)=p_{i}
\]
- Step 1: write down the likelihood function
\[
f_{\text {probit }}\left(\beta_{0}, \ldots, \beta_{k} ; Y_{1}, \ldots, Y_{n} \mid X_{1 i}, \ldots, X_{k i}, i=1, \ldots, n\right)=\operatorname{Pr}\left(Y_{1}=y_{1}, . ., Y_{n}=y_{n}\right)
\]

\section*{MLE of the Probit Model}
- Assume our probit model is
\[
P\left(Y_{i}=1 \mid X_{i}\right)=\Phi\left(\beta_{0}+\beta_{1} X_{1 i}+\ldots+\beta_{k} X_{k i}\right)=p_{i}
\]
- Step 1: write down the likelihood function
\[
\begin{aligned}
f_{\text {probit }}\left(\beta_{0}, \ldots, \beta_{k} ; Y_{1}, \ldots, Y_{n} \mid X_{1 i}, \ldots, X_{k i}, i=1, \ldots, n\right) & =\operatorname{Pr}\left(Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right) \\
& =\operatorname{Pr}\left(Y_{1}=y_{1}\right) \times \ldots \times \operatorname{Pr}\left(Y_{n}=y_{n}\right)
\end{aligned}
\]

\section*{MLE of the Probit Model}
- Assume our probit model is
\[
P\left(Y_{i}=1 \mid X_{i}\right)=\Phi\left(\beta_{0}+\beta_{1} X_{1 i}+\ldots+\beta_{k} X_{k i}\right)=p_{i}
\]
- Step 1: write down the likelihood function
\[
\begin{aligned}
f_{\text {probit }}\left(\beta_{0}, \ldots, \beta_{k} ; Y_{1}, \ldots, Y_{n} \mid X_{1 i}, \ldots, X_{k i}, i=1, \ldots, n\right) & =\operatorname{Pr}\left(Y_{1}=y_{1}, . ., Y_{n}=y_{n}\right) \\
& =\operatorname{Pr}\left(Y_{1}=y_{1}\right) \times \ldots \times \operatorname{Pr}\left(Y_{n}=y_{n}\right) \\
& =p^{y_{1}}(1-p)^{1-y_{1}} \times \ldots \times p^{y_{n}}(1-p)^{1-y_{n}}
\end{aligned}
\]

\section*{MLE of the Probit Model}
- Assume our probit model is
\[
P\left(Y_{i}=1 \mid X_{i}\right)=\Phi\left(\beta_{0}+\beta_{1} X_{1 i}+\ldots+\beta_{k} X_{k i}\right)=p_{i}
\]
- Step 1: write down the likelihood function
\[
\begin{aligned}
& f_{\text {probit }}\left(\beta_{0}, \ldots, \beta_{k} ; Y_{1}, \ldots, Y_{n} \mid X_{1 i}, \ldots, X_{k i}, i=1, \ldots, n\right)=\operatorname{Pr}\left(Y_{1}=y_{1}, . ., Y_{n}=y_{n}\right) \\
&=\operatorname{Pr}\left(Y_{1}=y_{1}\right) \times \ldots \times \operatorname{Pr}\left(Y_{n}=y_{n}\right) \\
&=p^{y_{1}}(1-p)^{1-y_{1}} \times \ldots \times p^{y_{n}}(1-p)^{1-y_{n}} \\
&=\left[\Phi\left(\beta_{0}+\beta_{1} X_{11}+\ldots+\beta_{k} X_{k 1}\right)^{y_{1}}\left(1-\Phi\left(\beta_{0}+\beta_{1} X_{11}+\ldots+\beta_{k} X_{k 1}\right)\right)^{1-}\right. \\
& \ldots \times\left[\Phi\left(\beta_{0}+\beta_{1} X_{1 n}+\ldots+\beta_{k} X_{k n}\right)^{y_{n}}\left(1-\Phi\left(\beta_{0}+\beta_{1} X_{1 n}+\ldots+\beta_{k} X_{k n}\right)\right)^{1}\right.
\end{aligned}
\]

\section*{MLE of the Probit Model}
- Step 2: Maximize the log likelihood function
\[
\ln \left(f_{\text {probit }}\left(\beta_{0}, \ldots, \beta_{k} ; Y_{1}, \ldots, Y_{n} \mid X_{1 i}, \ldots, X_{k i}, i=1, \ldots, n\right)\right)
\]

\section*{MLE of the Probit Model}
- Step 2: Maximize the log likelihood function
\[
\begin{aligned}
& \ln \left(f_{\text {probit }}\left(\beta_{0}, \ldots, \beta_{k} ; Y_{1}, \ldots, Y_{n} \mid X_{1 i}, \ldots, X_{k i}, i=1, \ldots, n\right)\right) \\
& \quad=\sum_{i}^{n} y_{i} \times \ln \left[\Phi\left(\beta_{0}+\beta_{1} X_{1 i}+\ldots+\beta_{k} X_{k i}\right)\right] \\
& \quad+\sum_{i}^{n}\left(1-y_{i}\right) \times \ln \left[1-\Phi\left(\beta_{0}+\beta_{1} X_{1 i}+\ldots+\beta_{k} X_{k i}\right)\right]
\end{aligned}
\]
- Then the maximization problem is
\[
\underset{\hat{\beta}_{0}, \hat{\beta}_{1}, . ., \hat{\beta}_{k}}{\arg \max } \ln \left(f_{\text {probit }}\left(\beta_{0}, \beta_{1}, \ldots, \beta_{k} ; Y_{1}=y_{1}, \ldots, Y_{n}=y_{n} \mid X_{1 i}, \ldots, X_{k i}, i=1, \ldots, n\right)\right)
\]

\section*{MLE of the Logit Model}
- Step 1 write down the likelihood function
\[
\operatorname{Pr}\left(Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right)=p^{y_{1}}(1-p)^{1-y_{1}} \times \ldots \times p^{y_{n}}(1-p)^{1-y_{n}}
\]
- Similar to the Probit model but with a different function for \(p_{i}\)
\[
p_{i}=\frac{1}{1+e^{-\left(\beta_{0}+\beta_{1} X_{1 i}+\ldots+\beta_{k} X_{k i}\right)}}
\]

\section*{MLE of the Logit Model}
- Step 2: Maximize the log likelihood function
\[
\ln \left(f_{l o g i t}\left(\beta_{0}, \ldots, \beta_{k} ; Y_{1}, \ldots, Y_{n} \mid X_{1 i}, \ldots, X_{k i}, i=1, \ldots, n\right)\right)
\]

\section*{MLE of the Logit Model}
- Step 2: Maximize the log likelihood function
\[
\begin{array}{r}
\ln \left(f_{\text {logit }}\left(\beta_{0}, \ldots, \beta_{k} ; Y_{1}, \ldots, Y_{n} \mid X_{1 i}, \ldots, X_{k i}, i=1, \ldots, n\right)\right) \\
=\sum y_{i} \times \ln \left(\frac{1}{1+e^{-\left(\beta_{0}+\beta_{1} X_{1 i}+\ldots+\beta_{k} X_{k i}\right)}}\right) \\
+\sum\left(1-y_{i}\right) \times \ln \left(\frac{1}{1+e^{-\left(\beta_{0}+\beta_{1} X_{1 i}+\ldots+\beta_{k} X_{k i}\right)}}\right)
\end{array}
\]
- Then the maximization problem is
\[
\underset{\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{k}}{\arg \max } \ln \left(f_{\text {logit }}\left(\beta_{0}, \ldots, \beta_{k} ; Y_{1}=y_{1}, \ldots, Y_{n}=y_{n} \mid X_{1 i}, \ldots, X_{k i}, i=1, \ldots, n\right)\right)
\]

\section*{Computation of MLE Estimators}
- In most cases the computation of maximum likelihood estimators is not easy to obtain since the first order conditions do not have closed form solutions necessarily.
- We can still obtain the values of estimators using numerical algorithm with iterative methods.
- One of common methods is Gradient Method based on low order Taylor series expansions.

\section*{Math Review: Taylor Expressions}
- Recall Taylor series of a function \(f(x)\) at a certain value of \(x\),thus \(x_{0}\)
\[
f(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\ldots \sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
\]
- Then we can have the Taylor expression of \(f(x)\) at first and second orders
\[
f(x) \simeq f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
\]

\section*{Math Review: Taylor Expressions}
- Recall Taylor series of a function \(f(x)\) at a certain value of \(x\), thus \(x_{0}\)
\[
f(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\ldots \sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
\]
- Then we can have the Taylor expression of \(f(x)\) at first and second orders
\[
\begin{aligned}
& f(x) \simeq f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \\
& f(x) \simeq f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2}
\end{aligned}
\]

\section*{Newton-Raphson Method}
- Our objective: find the solution of \(x\) to a equation: \(f(x)=0\)
- An alternative way: find some \(x\) make
\[
f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)=0
\]
- here the \(x_{0}\) is some initial value \(x_{0}\) we guess, which is close to the desired solution. And then we obtain a better approximation \(x_{1}\), based on
\[
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
\]
- We do not stop repeating this procedure until
\[
f\left(x_{j}\right)=0
\]
, here the \(x_{j}\) is the solution to the function.

\section*{Newton-Raphson Method}


\section*{Newton-Raphson Method}
- Our objective: find the solution of \(x\) to a equation: \(f^{\prime}(x)=0\)
- Then we need the Taylor expression of \(f(x)\) at second order
\[
f(x) \simeq f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2}
\]
- F.O.C for \(f^{\prime}(x)=0\)

\section*{Newton-Raphson Method}
- Our objective: find the solution of \(x\) to a equation: \(f^{\prime}(x)=0\)
- Then we need the Taylor expression of \(f(x)\) at second order
\[
f(x) \simeq f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2}
\]
- F.O.C for \(f^{\prime}(x)=0\)
\[
\frac{d}{d\left(x-x_{0}\right)}\left[f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}\right]=0
\]

\section*{Newton-Raphson Method}
- Our objective: find the solution of \(x\) to a equation: \(f^{\prime}(x)=0\)
- Then we need the Taylor expression of \(f(x)\) at second order
\[
f(x) \simeq f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2}
\]
- F.O.C for \(f^{\prime}(x)=0\)
\[
\begin{aligned}
& \frac{d}{d\left(x-x_{0}\right)}\left[f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}\right]=0 \\
\Rightarrow & f^{\prime}\left(x_{0}\right)+f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)=0
\end{aligned}
\]

\section*{Newton-Raphson Method}
- Our objective: find the solution of \(x\) to a equation: \(f^{\prime}(x)=0\)
- Then we need the Taylor expression of \(f(x)\) at second order
\[
f(x) \simeq f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2}
\]
- F.O.C for \(f^{\prime}(x)=0\)
\[
\begin{aligned}
& \frac{d}{d\left(x-x_{0}\right)}\left[f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}\right]=0 \\
\Rightarrow & f^{\prime}\left(x_{0}\right)+f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)=0 \\
\Rightarrow & x=x_{0}-\frac{f^{\prime}\left(x_{0}\right)}{f^{\prime \prime}\left(x_{0}\right)}
\end{aligned}
\]
- repeating this procedure until
\[
f^{\prime}\left(x_{j}\right)=0
\]
, here the \(x_{j}\) is the solution to the function.

\section*{Computation of MLE estimators}
- For simplicity, assume only one parameter \(\theta\), the maximum likelihood function is \(L\left(\theta_{M L E}\right)\)
- Then the F.O.C for the problem of maximization is as following
\[
\frac{\partial L\left(\theta_{M L E}\right)}{\partial \theta}=0
\]
- A initial guess of the parameter value, which denotes as \(\theta_{0}\). Then the MLE estimator can be calculated by
\[
\theta_{M L E, 1} \simeq \theta_{0}-\left[\frac{\partial^{2} L\left(\theta_{0}\right)}{\partial \theta^{2}}\right]^{-1} \frac{\partial L\left(\theta_{0}\right)}{\partial \theta}
\]
- We do not stop repeating this procedure until
\[
\frac{\partial L\left(\hat{\theta}_{M L E, j}\right)}{\partial \theta}=0
\]
, here the \(\hat{\theta}_{M L E, j}\) is the solution to the function.

\section*{Measures of Fit}
- \(R^{2}\) is a poor measure of fit for the linear probability model. This is also true for probit and logit regression.
- Two measures of fit for models with binary dependent variables
1. fraction correctly predicted
- If \(Y_{i}=1\) and the predicted probability exceeds \(50 \%\) or if \(Y_{i}=0\) and the predicted probability is less than \(50 \%\), then \(Y_{i}\) is said to be correctly predicted.

\section*{Measures of Fit}

\section*{2. The pseudo-R2}
- The pseudo - \(R^{2}\) compares the value of the likelihood of the estimated model to the value of the likelihood when none of the Xs are included as regressors.
\[
\text { pseudo }-R^{2}=1-\frac{\ln \left(f_{\text {probit }}^{\text {max }}\right)}{\ln \left(f_{\text {bernoulli }}^{\text {max }}\right)}
\]
- \(f_{p r o b i t}^{m a x}\) is the value of the maximized probit likelihood (which includes the X's)
- \(f_{\text {bernoulli }}^{\max }\) is the value of the maximized Bernoulli likelihood (the probit model excluding all the X 's).

\section*{Statistical inference based on the MLE}
- It can be prove that under very general conditions, the MLE estimator is unbiased,consistent, asymptotic normally distributed in large samples.
- Because the MLE is normally distributed in large samples, statistical inference about the probit and logit coefficients based on the MLE proceeds in the same way as inference about the linear regression function coefficients based on the OLS estimator.
- That is, hypothesis tests are performed using the \(\mathbf{t}\)-statistic and \(95 \%\) confidence intervals are formed as 1.96 standard errors.

\section*{Statistical inference based on the MLE}
- Testing of joint hypotheses on multiple coefficients are very similar to the F-statistic which is discussed in multiple OLS model.
- The likelihood ratio test, it is based on comparing the log likelihood values of the unrestricted and the restricted model. The test statistic is
\[
L R=2\left(\log L_{u r}-\log L_{r}\right) \sim \chi_{q}^{2}
\]
- where q is the number of restrictions being tested.

\section*{Comparing the LPM,Probit and Logit}
- All three models: linear probability, probit, and logit are just approximations to the unknown population regression function \(E(Y \mid X)=\operatorname{Pr}(Y=1 \mid X)\).
- LPM is easiest to use and to interpret, but it cannot capture the nonlinear nature of the true population regression function.
- Probit and logit regressions model this nonlinearity in the probabilities, but their regression coefficients are more difficult to interpret.
- So which should you use in practice?
- There is no one right answer, and different researchers use different models.
- Probit and logit regressions frequently produce similar results.

\section*{Logit v.s. Probit}


\section*{Comparing the LPM,Probit and Logit}
- The marginal effects and predicted probabilities are much more similar across models.
- Coefficients can be compared across models, using the following rough conversion factors (Amemiya 1981)
\[
\begin{aligned}
\hat{\beta}_{\text {logit }} & \simeq 4 \hat{\beta}_{\text {ols }} \\
\hat{\beta}_{\text {probit }} & \simeq 2.5 \hat{\beta}_{\text {ols }} \\
\hat{\beta}_{\text {logit }} & \simeq 1.6 \hat{\beta}_{\text {probit }}
\end{aligned}
\]

\section*{Example: Mortgage Applications(short regression)}

Dependent variable: deny \(=1\) if mortgage application is denied, \(=0\) if accepted
\begin{tabular}{llcc} 
regression model & LPM & Probit & Logit \\
\hline black & \(0.177^{* * *}\) & \(0.71^{* * *}\) & \(1.27^{* * *}\) \\
& \((0.025)\) & \((0.083)\) & \((0.15)\) \\
P/I ratio & \(0.559^{* * *}\) & \(2.74^{* * *}\) & \(5.37^{* * *}\) \\
& \((0.089)\) & \((0.44)\) & \((0.96)\) \\
constant & \(-0.091^{* * *}\) & \(-2.26^{* * *}\) & \(-4.13^{* * *}\) \\
& \((0.029)\) & \((0.16)\) & \((0.35)\) \\
\hline difference \(\operatorname{Pr}(\) deny \(=1)\) between black & \(17.7 \%\) & \(15.8 \%\) & \(14.8 \%\) \\
and white applicant when \(P / I\) ratio \(=0.3\) & & & \\
\hline \hline
\end{tabular}

\title{
A Lastest Application: Jia,Lan and Miquel(2021)
}

\section*{Jia，Lan and Miquel（2021）}
－Ruixue Jia（贾瑞雪），Xiaohuan Lan（兰小欢）and Gerard Padrói Miquel，＂Doing Business in China：Parental background and government intervention determine who owns business＂，The Journal of Development Economics，Volume 151，June 2021.
－Main Question：
1．the parental determinants of entrepreneurship in China．
2．how the parental determinants of entrepreneurship vary with government intervention in the economy．

\section*{Jia,Lan and Miquel(2021): Data}
1. Individual-level data:
- China General Social Survey (GCSS) 2006,2008,2010,2012,2013
- 31 provinces, 22801 urban respondents
2. Province-level data:
- China Statistic Yearbooks.

\section*{Jia,Lan and Miquel(2021) Main Variables}
- Independent Variables: cadre parents and entrepreneur parents
- cadre parents: "does a parent work in government or in a public organization affiliated with the government?"
- entrepreneur parents: business owner + self-employed
- Dependent Variables: whether the respondent is
- business owner: all owners of incorporated businesses, who must pay corporation tax and follow corporation law.
- self-employment: owners of non-incorporated small businesses.
- goverment employee: work in government or in a public organization affiliated with the government.
- Interaction:
- Provincial Government Expenditure on Business-related activities(PGEB) as a measure of the role of government on the private business environment.

\section*{Parental Background and Doing Business}
- Goal: examine the difference in the probability of being in different occupations between those with entrepreneur parents, cadre parents and others.
- Linear Probability Model:
\[
\operatorname{Pr}(Y=1 \mid X)=\beta_{1} \text { CardreParent }_{i}+\beta_{2} \text { EntreParent }_{i}+\gamma X_{i}+\text { Prov }_{p} \times \text { Year }_{t}+u_{i p t}
\]
- \(Y_{i}\) is a dummy indicating the respondent's occupation, all the other occupations grouped together in the reference group.
- \(X_{i}\) are individual-level characteristics such as gender,age, marital status, college education or not, and minority status.
- \(\operatorname{Prov}_{p} \times\) Year \(_{t}\) are the province-by-year fixed effects.

\section*{Empirical Results: LPM}

Table 3A
Parent background and child occupations: OLS estimates.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & (1) & (2) & (3) & (4) & (5) & (6) \\
\hline & \multicolumn{2}{|l|}{Government worker ( \(0 / 1\), mean \(=0.217\) )} & \multicolumn{2}{|l|}{Business owner ( \(0 / 1\), mean \(=0.022\) )} & \multicolumn{2}{|l|}{Self-employed ( \(0 / 1\), mean \(=0.107\) )} \\
\hline Cadre Parent & \(\left(\begin{array}{l}0.144^{* * *} \\ \text { (0.009) }\end{array}\right.\) & \(0.115^{* * *}\)
\((0.009)\) & \[
\begin{aligned}
& 0.006^{* *} \\
& (0.003)
\end{aligned}
\] & \[
\begin{aligned}
& 0.003 \\
& (0.003)
\end{aligned}
\] & \[
\begin{aligned}
& -0.009^{*} \\
& (0.005)
\end{aligned}
\] & \[
\begin{aligned}
& -0.011^{* *} \\
& (0.005)
\end{aligned}
\] \\
\hline Entrepreneur Parent & \({ }_{(0.006}^{(0.012)}\) & -0.006
\((0.011)\) & \[
\begin{aligned}
& 0.016^{* * *} \\
& (0.006)
\end{aligned}
\] & \[
\begin{aligned}
& 0.014^{* *} \\
& (0.006)
\end{aligned}
\] & \[
\begin{aligned}
& 0.063^{* * *} \\
& (0.013)
\end{aligned}
\] & \[
\begin{aligned}
& 0.057^{* * *} \\
& (0.013)
\end{aligned}
\] \\
\hline Province FE*Year FE & Y & Y & Y & Y & Y & Y \\
\hline Individual Characteristics & & Y & & Y & & Y \\
\hline Observations & 22,801 & 22,801 & 22,801 & 22,801 & 22,801 & 22,801 \\
\hline R-squared & 0.057 & 0.139 & 0.015 & 0.022 & 0.039 & 0.067 \\
\hline
\end{tabular}
- Cadre Parents increase the probability of being government workers(11.5\%).
- Entrepreneur Parents do not.

\section*{Empirical Results: LPM}

Table 3A
Parent background and child occupations: OLS estimates.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & (1) & (2) & (3) & (4) & (5) & (6) \\
\hline & \multicolumn{2}{|l|}{Government worker ( \(0 / 1\), mean \(=0.217\) )} & \multicolumn{2}{|l|}{Business owner ( \(0 / 1\), mean \(=0.022\) )} & \multicolumn{2}{|l|}{Self-employed ( \(0 / 1\), mean \(=0.107\) )} \\
\hline Cadre Parent & \[
\begin{aligned}
& 0.144^{* * *} \\
& (0.009)
\end{aligned}
\] & \[
\begin{aligned}
& 0.115^{* * *} \\
& (0.009)
\end{aligned}
\] & ( \(\begin{aligned} & 0.006 * * \\ & (0.003)\end{aligned}\) & 0.003
\((0.003)\) & \[
\begin{aligned}
& -0.009^{*} \\
& (0.005)
\end{aligned}
\] & \[
\begin{aligned}
& -0.011^{* *} \\
& (0.005)
\end{aligned}
\] \\
\hline Entrepreneur Parent & \[
\begin{aligned}
& -0.006 \\
& (0.012)
\end{aligned}
\] & \[
\begin{aligned}
& -0.006 \\
& (0.011)
\end{aligned}
\] & \(\underbrace{0.016^{* * *}} \mathbf{( 0 . 0 0 6 )}\) & \(0.014^{* *}\)
\((0.006)\) & \[
\begin{aligned}
& 0.063^{* * *} \\
& (0.013)
\end{aligned}
\] & \[
\begin{aligned}
& 0.057^{* * *} \\
& (0.013)
\end{aligned}
\] \\
\hline Province FE*Year FE & Y & Y & Y & Y & Y & Y \\
\hline Individual Characteristics & & Y & & Y & & Y \\
\hline Observations & 22,801 & 22,801 & 22,801 & 22,801 & 22,801 & 22,801 \\
\hline R-squared & 0.057 & 0.139 & 0.015 & 0.022 & 0.039 & 0.067 \\
\hline
\end{tabular}
- Entrepreneur Parents increase the probability of being business owner(1.6\%).
- Cadre Parents also increase the probability of being business owner( \(0.6 \%\) ). However, the effect will go away when controlling individual characteristics.

\section*{Empirical Results: LPM}

Table 3A
Parent background and child occupations: OLS estimates.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & (1) & (2) & (3) & (4) & (5) & (6) \\
\hline & \multicolumn{2}{|l|}{Government worker ( \(0 / 1\), mean \(=0.217\) )} & \multicolumn{2}{|l|}{Business owner ( \(0 / 1\), mean \(=0.022\) )} & \multicolumn{2}{|l|}{Self-employed ( \(0 / 1\), mean \(=0.107\) )} \\
\hline Cadre Parent & \[
\begin{aligned}
& 0.144^{* * *} \\
& (0.009)
\end{aligned}
\] & \[
\begin{aligned}
& 0.115^{* * *} \\
& (0.009)
\end{aligned}
\] & \[
\begin{aligned}
& 0.006^{* *} \\
& (0.003)
\end{aligned}
\] & \[
\begin{aligned}
& 0.003 \\
& (0.003)
\end{aligned}
\] & \({ }^{-0.009^{*}} \mathbf{( 0 . 0 0 5 )}\) & \(-0.011^{* *}\)
\((0.005)\) \\
\hline Entrepreneur Parent & \[
\begin{aligned}
& -0.006 \\
& (0.012)
\end{aligned}
\] & \[
\begin{aligned}
& -0.006 \\
& (0.011)
\end{aligned}
\] & \[
\begin{aligned}
& 0.016^{* * *} \\
& (0.006)
\end{aligned}
\] & \[
\begin{aligned}
& 0.014^{* *} \\
& (0.006)
\end{aligned}
\] & \(\underbrace{0.063 * * *}\) & \(0.057^{* * *}\)
\((0.013)\) \\
\hline Province FE*Year FE & Y & Y & Y & Y & Y & Y \\
\hline Individual Characteristics & & Y & & Y & & Y \\
\hline Observations & 22,801 & 22,801 & 22,801 & 22,801 & 22,801 & 22,801 \\
\hline R-squared & 0.057 & 0.139 & 0.015 & 0.022 & 0.039 & 0.067 \\
\hline
\end{tabular}
- Entrepreneur Parents increase the probability of being business owner(6\%).
- Cadre Parents decrease the probability of self-employment(1.1\%).

\section*{Descriptive patterns: Cross-provinces}
(a) Prob. Being a Business Owner


\footnotetext{
coef \(=-.26796817\), (robust) \(\mathrm{se}=.15185212, \mathrm{t}=-1.76\)
}

\section*{Descriptive patterns}
(b) Diff b/w Cadre Children and Others


\section*{Descriptive patterns}
(c) Diff b/w Entrepreneur Children and Others


\section*{Parental Background and Local Economic Context}
- Question: Whether the association between parental occupation and business ownership varies with the level of government intervention in the business environment.
- Linear Probability Model: Interacted with PGEB
\[
\begin{array}{r}
\operatorname{Pr}(Y=1 \mid X)=\beta_{1} \text { CardreParent }_{i}+\beta_{2} \text { CardreParent }_{i} \times P G E B_{p t} \\
+\beta_{3} \text { EntreParents }_{i}+\beta_{4} \text { EntreParents }_{i} \times P G E B_{p t} \\
+\gamma X_{i}+\gamma X_{i} \times P G E B_{p t}+\text { Prov }_{p} \times \text { Year }_{t}+u_{i p t}
\end{array}
\]

\section*{Empirical Results: LPM+Interactions}

Table 4
The impact of cadre Parent \(\times\) PGEB in determining business ownership.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & (1) & (2) & (3) & (4) & (5) & (6) \\
\hline & \multicolumn{6}{|l|}{\(\mathrm{Y}=\) business owner (mean \(=0.022\) )} \\
\hline Cadre Parent * PGEB (sd) & \[
\begin{aligned}
& \hline 0.004^{*} \\
& (0.002)
\end{aligned}
\] & \[
\begin{aligned}
& \hline 0.004^{*} \\
& (0.002)
\end{aligned}
\] & \[
\begin{aligned}
& \hline 0.005^{* *} \\
& (0.002)
\end{aligned}
\] & & & \[
\begin{aligned}
& 0.007 * * \\
& (0.003)
\end{aligned}
\] \\
\hline Cadre Parent & \[
\frac{0.006^{* *}}{(0.003)}
\] & \[
\frac{0.003}{(0.003)}
\] & \[
\frac{0.003}{(0.003)}
\] & \[
\begin{aligned}
& 0.003 \\
& (0.003)
\end{aligned}
\] & \[
\begin{aligned}
& 0.003 \\
& (0.003)
\end{aligned}
\] & \[
\begin{aligned}
& 0.003 \\
& (0.003)
\end{aligned}
\] \\
\hline Entrepreneur Parent * PGEB (sd) & \[
\begin{aligned}
& -0.008^{*} \\
& (0.004)
\end{aligned}
\] & \[
\begin{aligned}
& -0.008^{* *} \\
& (0.004)
\end{aligned}
\] & \[
\begin{aligned}
& -0.008^{*} \\
& (0.004)
\end{aligned}
\] & & & \[
\begin{aligned}
& -0.006 \\
& (0.008)
\end{aligned}
\] \\
\hline Entrepreneur Parent & \[
\begin{aligned}
& 0.016^{* * *} \\
& (0.006)
\end{aligned}
\] & \[
\begin{aligned}
& 0.014^{* *} \\
& (0.006)
\end{aligned}
\] & \[
\begin{aligned}
& 0.014^{* *} \\
& (0.006)
\end{aligned}
\] & \[
\begin{aligned}
& 0.014^{* *} \\
& (0.006)
\end{aligned}
\] & \[
\begin{aligned}
& 0.013^{* *} \\
& (0.006)
\end{aligned}
\] & \[
\begin{aligned}
& 0.014^{* *} \\
& (0.006)
\end{aligned}
\] \\
\hline Cadre Parent * GDP Per Capita (sd) & & & & \[
\begin{aligned}
& -0.001 \\
& (0.002)
\end{aligned}
\] & & \[
\begin{aligned}
& -0.001 \\
& (0.002)
\end{aligned}
\] \\
\hline Entre. Parent * GDP Per Capita (sd) & & & & \[
\begin{aligned}
& -0.006 \\
& (0.005)
\end{aligned}
\] & & \[
\begin{aligned}
& -0.006 \\
& (0.004)
\end{aligned}
\] \\
\hline Cadre Parent * Other Expend (sd) & & & & & \[
\begin{aligned}
& 0.003 \\
& (0.003)
\end{aligned}
\] & \[
\begin{aligned}
& -0.002 \\
& (0.004)
\end{aligned}
\] \\
\hline Entrepreneur Parent * Other Expend (sd) & & & & & \[
\begin{aligned}
& -0.007 \\
& (0.005)
\end{aligned}
\] & \[
\begin{aligned}
& -0.003 \\
& (0.010)
\end{aligned}
\] \\
\hline Province FE*Year FE & Y & Y & Y & Y & Y & Y \\
\hline Individual Characteristics & & Y & Y & Y & Y & Y \\
\hline PGEB *Individual Characteristics & & & Y & Y & Y & Y \\
\hline Observations & 22,801 & 22,801 & 22,801 & 22,801 & 22,801 & 22,801 \\
\hline R-squared & 0.015 & 0.023 & 0.023 & 0.023 & 0.023 & 0.023 \\
\hline
\end{tabular}

\section*{Empirical Results: LPM+Interactions}

Table 4
The impact of cadre Parent \(\times\) PGEB in determining business ownership.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & (1) & (2) & (3) & (4) & (5) & (6) \\
\hline & \multicolumn{6}{|l|}{\(\mathrm{Y}=\) business owner (mean \(=0.022\) )} \\
\hline Cadre Parent * PGEB (sd) & \[
\begin{aligned}
& 0.004^{*} \\
& (0.002)
\end{aligned}
\] & \[
\begin{aligned}
& 0.004^{*} \\
& (0.002)
\end{aligned}
\] & \[
\begin{aligned}
& 0.005^{* *} \\
& (0.002)
\end{aligned}
\] & & & \[
\begin{aligned}
& 0.007 * * \\
& (0.003)
\end{aligned}
\] \\
\hline Cadre Parent & \[
\begin{aligned}
& 0.006^{* *} \\
& (0.003)
\end{aligned}
\] & \[
\begin{aligned}
& 0.003 \\
& (0.003) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.003 \\
& (0.003) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.003 \\
& (0.003)
\end{aligned}
\] & \[
\begin{aligned}
& 0.003 \\
& (0.003)
\end{aligned}
\] & \[
\begin{aligned}
& 0.003 \\
& (0.003)
\end{aligned}
\] \\
\hline Entrepreneur Parent * PGEB (sd) & \[
\begin{array}{|l|}
\hline-0.008^{*} \\
(0.004)
\end{array}
\] & \[
\begin{aligned}
& -0.008^{* *} \\
& (0.004)
\end{aligned}
\] & \[
\begin{aligned}
& -0.008^{\star} \\
& (0.004)
\end{aligned}
\] & & & \[
\begin{aligned}
& -0.006 \\
& (0.008)
\end{aligned}
\] \\
\hline Entrepreneur Parent & \[
\begin{aligned}
& 0.016^{* * *} \\
& (0.006)
\end{aligned}
\] & \[
\begin{aligned}
& 0.014^{* *} \\
& (0.006)
\end{aligned}
\] & \[
\begin{aligned}
& 0.014^{* *} \\
& (0.006)
\end{aligned}
\] & \[
\begin{aligned}
& 0.014^{* *} \\
& (0.006)
\end{aligned}
\] & \[
\begin{aligned}
& 0.013^{* *} \\
& (0.006)
\end{aligned}
\] & \[
\begin{aligned}
& 0.014^{* *} \\
& (0.006)
\end{aligned}
\] \\
\hline Cadre Parent * GDP Per Capita (sd) & & & & \[
\begin{aligned}
& -0.001 \\
& (0.002)
\end{aligned}
\] & & \[
\begin{aligned}
& -0.001 \\
& (0.002)
\end{aligned}
\] \\
\hline Entre. Parent * GDP Per Capita (sd) & & & & \[
\begin{aligned}
& -0.006 \\
& (0.005)
\end{aligned}
\] & & \[
\begin{aligned}
& -0.006 \\
& (0.004)
\end{aligned}
\] \\
\hline Cadre Parent * Other Expend (sd) & & & & & \[
\begin{aligned}
& 0.003 \\
& (0.003)
\end{aligned}
\] & \[
\begin{aligned}
& -0.002 \\
& (0.004)
\end{aligned}
\] \\
\hline Entrepreneur Parent * Other Expend (sd) & & & & & \[
\begin{aligned}
& -0.007 \\
& (0.005)
\end{aligned}
\] & \[
\begin{aligned}
& -0.003 \\
& (0.010)
\end{aligned}
\] \\
\hline Province FE*Year FE & Y & Y & Y & Y & Y & Y \\
\hline Individual Characteristics & & Y & Y & Y & Y & Y \\
\hline PGEB *Individual Characteristics & & & Y & Y & Y & Y \\
\hline Observations & 22,801 & 22,801 & 22,801 & 22,801 & 22,801 & 22,801 \\
\hline R-squared & 0.015 & 0.023 & 0.023 & 0.023 & 0.023 & 0.023 \\
\hline
\end{tabular}

\section*{Empirical Results: LPM+Interactions}

\section*{Table 4}

The impact of cadre Parent \(\times\) PGEB in determining business ownership.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline & \multicolumn{6}{|l|}{\(\mathrm{Y}=\) business owner (mean \(=0.022\) )} & \(\mathrm{Y}=\) self-employed ( mean \(=0.107\) ) \\
\hline Cadre Parent * PGEB (sd) & \[
\begin{aligned}
& 0.004^{\star} \\
& (0.002)
\end{aligned}
\] & \[
\begin{aligned}
& 0.004^{*} \\
& (0.002)
\end{aligned}
\] & \[
\begin{aligned}
& 0.005^{* *} \\
& (0.002)
\end{aligned}
\] & & & \[
\begin{aligned}
& \hline 0.007^{* *} \\
& (0.003)
\end{aligned}
\] & 0.002
\((0.007)\) \\
\hline Cadre Parent & \[
\begin{aligned}
& 0.006^{* *} \\
& (0.003)
\end{aligned}
\] & \[
\begin{aligned}
& 0.003 \\
& (0.003)
\end{aligned}
\] & \[
\begin{aligned}
& 0.003 \\
& (0.003)
\end{aligned}
\] & \[
\begin{aligned}
& 0.003 \\
& (0.003)
\end{aligned}
\] & \[
\begin{aligned}
& 0.003 \\
& (0.003)
\end{aligned}
\] & \[
\begin{aligned}
& 0.003 \\
& (0.003)
\end{aligned}
\] & \[
\begin{aligned}
& -0.011^{* *} \\
& (0.005) \\
& \hline
\end{aligned}
\] \\
\hline Entrepreneur Parent * PGEB (sd) & \[
\begin{aligned}
& -0.008^{*} \\
& (0.004)
\end{aligned}
\] & \[
\begin{aligned}
& -0.008^{* *} \\
& (0.004)
\end{aligned}
\] & \[
\begin{aligned}
& -0.008^{*} \\
& (0.004)
\end{aligned}
\] & & & \[
\begin{aligned}
& -0.006 \\
& (0.008)
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 0.017 \\
(0.011) \\
\hline
\end{array}
\] \\
\hline Entrepreneur Parent & \[
\begin{aligned}
& 0.016^{* * *} \\
& (0.006)
\end{aligned}
\] & \[
\begin{aligned}
& 0.014^{* *} \\
& (0.006)
\end{aligned}
\] & \[
\begin{aligned}
& 0.014^{* *} \\
& (0.006)
\end{aligned}
\] & \[
\begin{aligned}
& 0.014^{* *} \\
& (0.006)
\end{aligned}
\] & \[
\begin{aligned}
& 0.013^{* *} \\
& (0.006)
\end{aligned}
\] & \[
\begin{aligned}
& 0.014^{* *} \\
& (0.006)
\end{aligned}
\] & \[
\begin{aligned}
& 0.057^{* * *} \\
& (0.012)
\end{aligned}
\] \\
\hline Cadre Parent * GDP Per Capita (sd) & & & & \[
\begin{aligned}
& -0.001 \\
& (0.002)
\end{aligned}
\] & & \[
\begin{aligned}
& -0.001 \\
& (0.002)
\end{aligned}
\] & \\
\hline Entre. Parent * GDP Per Capita (sd) & & & & \[
\begin{aligned}
& -0.006 \\
& (0.005)
\end{aligned}
\] & & \[
\begin{aligned}
& -0.006 \\
& (0.004)
\end{aligned}
\] & \\
\hline Cadre Parent * Other Expend (sd) & & & & & \[
\begin{aligned}
& 0.003 \\
& (0.003)
\end{aligned}
\] & \[
\begin{aligned}
& -0.002 \\
& (0.004)
\end{aligned}
\] & \\
\hline Entrepreneur Parent * Other Expend (sd) & & & & & \[
\begin{aligned}
& -0.007 \\
& (0.005) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& -0.003 \\
& (0.010) \\
& \hline
\end{aligned}
\] & \\
\hline Province FE*Year FE & Y & Y & Y & Y & Y & Y & Y \\
\hline Individual Characteristics & & Y & Y & Y & Y & Y & Y \\
\hline PGEB *Individual Characteristics & & & Y & Y & Y & Y & Y \\
\hline Observations & 22,801 & 22,801 & 22,801 & 22,801 & 22,801 & 22,801 & 22,801 \\
\hline R-squared & 0.015 & 0.023 & 0.023 & 0.023 & 0.023 & 0.023 & 0.068 \\
\hline
\end{tabular}

Notes: This table shows that the advantage in becoming a business owner (1) increases with PGEB for those with cadre parents and (2) decreases with PGEB for those with entrepreneur parents. Individual characteristics include: age, gender, marital status, ethnic minority status, and college education. Standard errors are clustered at the province-year level. Significance level: \({ }^{*} p<0.1,{ }^{* *} p<0.05\), \({ }^{* * *} p<0.01\).

\section*{Jia,Lan and Miquel(2021): Main Findings}
1. Is there intergenerational transmission of entrepreneurship in China?
- Yes, and the magnitude is similar to findings elsewhere.
2. Do children of government officials have a higher likelihood of becoming entrepreneurs?
- Yes, in particular they have a high likelihood of owning incorporated businesses.
3. Do parental determinants depend on the role of government?
- the larger is government involvement in business-related spending, the larger the business-ownership propensity of children of government officials, and the smaller the propensity of children of entrepreneurs.```

