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Introduction

• Recall: The main identification strategy of OLS regression is Control, ie. puting covariates
into the regression as control variables.

• The main identifying assumption of an OLS regression is
• Conditional Independence Assumption(CIA): which means that if we can “balance” covariates
X then we can take the treatment D as randomized, thus

(Y1, Y0) ⊥⊥ D|X

• Then ATE or ATT can be obtained to estimate the CEF

δ = E[Y1i − Y01 | Xi]

• Essentially the strategy compares treatment and control subjects who have the same
observable characteristics, which is often called Selection on observables.

• In addition to OLS regression, Matching is another method based on Selection on
observables.
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Matching Estimator

• Suppose we have treated and untreated groups but the here assignment is not random.
Then we can’t obtain the causal effect because we don’t know the counterfactural of an
outcome Yi in the treated group.

• The idea of matching method is quite simple. What if we can construct a “reasonable”
control group by selecting some(or all) samples in untreated group? i.e Yci

• then we can estimate the treatment effect

δ̂ =
1
NT

ΣNT
i=1(Yi − Yci )

• NT is the sample size in treatment group
• Yci is the corresponding counterfactual outcomes by matching(selecting) the sample from
untreated group.
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Matching Estimator: A Trainning Case

• the only covariates is X, which is used to select the “proper” counterfactuals
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Matching Estimator: A Trainning Case
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Matching Estimator: an example
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Matching Estimator: A Trainning Case
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Matching Estimator: A Training Case

• Difference in average earnings between trainees and non-trainees
• Before matching:

16426 − 20724 = −4298

• After mathcing:
16426 − 13982 = 2444
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Age Distribution: Before Matching
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Age Distribution: After Matching
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Matching Estimators: Assumptions

Conditional Independence Assumption

(Y1, Y0) ⊥⊥ D|X

Common Support Assumption

0 < Pr (Di = 1 | Xi) < 1
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Matching Estimators: Exact matching is hard

• The training case is an example of Exact matching which means that only units with
identical covariate values are used to contruct the control group.

• But what if we have multiple covariates using to match, thus X = (X1, X2, ...Xk)′.
• In this case, it is impossible to find proper units with identical values in all covariates
X1, X2, ...Xk.

• Two complementary solutions running in parallel
1. lower the accuracy of the comparison.

• From “find a unit in the untreated group with the same covariate values” to “find a unit in the
untreated group with similar covariate values.”

2. Directly reduce dimensionality by converting multiple variables into a single numerical value.
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Matching Estimators: similarity between vectors

• If X = (x1, x2, ...xk) is a k-class vector, then the distance to measure “closeness” or
“similarity” between two vectors such as Xi and Xj is the Euclidean distance

∥ (Xi − Xj) ∥ =
√
(Xi − Xj)′(Xi − Xj) =

√
Σk

n=1(Xni − Xnj)2

• The Euclidean distance is not invariant to changes in the scale of the X’s. A more
commonly used distance is the normalized Euclidean distance:

∥ (Xi − Xj) ∥=
√
(Xi − Xj)′V−1

X (Xi − Xj)

where V is the symmetric and positive semidefinite variance matrix of X.
• Alternatively, a more general measure is Mahalanobis distance, which takes into account
the correlation between variables.

∥ (Xi − Xj) ∥=
√
(Xi − Xj)′Σ−1

X (Xi − Xj)

where Σ is the variance-covariance matrix of X.
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Propensity Scores Matching(PSM)
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Introduction

• Even we use the “distance” between vectors, the Curse of dimensionality makes matching
on K covariates challenging.

• Rubin (1977) and Rosenbaum and Rubin (1983) develop a method that can contain those K
covariates used for adjusting.

• Propensity scores method

• Propensity scores summarize covariate information about treatment selection into a
probability, thus the propensity scores.

• Then comparing units with similar estimated probabilities of treatment instead of Xs.
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Defination

• A propensity score is a number bounded between 0 and 1 measuring the probability of
treatment assignment conditional on a vector of confounding variables:

p(X) = Pr(D = 1 | X)

• Remind: D is a dummy variable which denotes the treatment status.
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Propensity-score theorem

Propensity score theorem
If (Y0i, Y1i) ⊥ Di | Xi, then (Y0i, Y1i) ⊥ Di | p(xi) where p(xi) = Pr (Di = 1 | Xi)

• This theorem extends our CIA to a one-dimensional score, avoiding the curse of
dimensionality.

• Conditioning on the propensity score is enough to have independence between the
treatment indicator and the potential outcomes.

• To prove this theorem, we will show E [D | Y1, Y0, p(X)] = p(X) = E(D | X) i.e. D is
independent of (Y1, Y0) after conditioning on p(X).
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Propensity-score theorem

Proof

E [D | Y1, Y0, p(X)]

= E [E [D | Y1, Y0, p(X), X] | Y1, Y0, p(X)]︸ ︷︷ ︸
by LIE

= E [E [D | Y1, Y0, X] | Y1, Y0, p(X)]︸ ︷︷ ︸
Given X, we know p(X)

= E [E[D | X] | Y1, Y0, p(X)]︸ ︷︷ ︸
by CIA

= E [p(X) | Y1, Y0, p(X)]︸ ︷︷ ︸
propensity score definition

= p(X)
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Propensity-score theorem

Proof
Using a similar argument, we obtain

E [D | p(X)] = E [E[D|X] | p(X)] = E [p(X) | p(X)] = p(X)

Then
E [D | p(X)] = E [D | Y1, Y0, p(X)]

Thus
(Y0i, Y1i) ⊥ Di | p(xi)
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Propensity score matching

• Based on CIA, we need only control for covariates that affect the probability of treatment to
obtain the causal effect.

• Base on propensity score theorem: Actually we don’t need to control all covariates, but the
only one is the probability of treatment, thus the propensity scores

p(X) = Pr(D = 1 | X)
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Propensity score matching

• How to obtain the propensity scores?
• estimate it, thus p̂(X)

• Many ways to do
• Logit Model with flexible specification(with interactions)
• Kernel regression
• Machine learning
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Matching and PSM in practice

• Matching in practice
• both directions matching
• 1:1 matching v.s m:1
• With or without replacement
• greedy or optimal technique
• with or without a caliper width

• Choosing the “best” matching method for one’s data depends on the unique
characteristics of the dataset as well as the goals of the analysis.
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Matching v.s Regression

• Both matching and regression rely on CIA (selection on observables). Most biases we could
suffer in regression, such as OVB, measurement error, and simultaneous causality, will not
be avoided even if we use matching.

• Why we still need matching?
• Due to its non-parametric characteristics, matching does not impose any restrictions on
empirical specification or estimate specific parameters of the CEF function.

• Regression does not account for the common support issue.

• Using matching alone is less common in economics, but it can be combined with other
methods like DID and SCM.
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Extensions of DID(II): Synthetic Control Method(SCM)
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Basic Idea

• The synthetic control method(SCM) were originally proposed in Abadie and Gardeazabal
(2003) and Abadie et al. (2010) with the aim to estimate the effects of aggregate
interventions,

• Interventions that are implemented at an aggregate level affecting a small number of large
units (such as a cities, regions, or countries), on some aggregate outcome of interest.

• The basic idea behind synthetic controls is that a combination of units often provides a
better comparison for the unit exposed to the intervention than any single unit alone.

• a data-driven procedure to use a small number of non-treated units to build the suitable
counterfactuals.

• It is useful for case studies, which is nice because that is often all we have.

• Continues to also be methodologically a frontier for applied econometrics and is widely
used in many field, even outside academia.
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Extensions of DID: Synthetic Controls Method

• The basic idea is use (long) longitudinal data to build the weighted average of non-treated
units that best reproduces characteristics of the treated unit over time in pre-treatment
period.

• The weighted average of non-treated units is the synthetic cohort.

• Causal effect of treatment can be quantified by a simple difference after treatment:
• treated vs synthetic cohort.
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Abadie et.al(2010): Tax on Cig-Consumption

• In 1988, California passed comprehensive tobacco control legislation: Increased cigarette
taxes by $0.25 per pack.
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Abadie et.al(2010): Tax on Cig-Consumption

• Using 38 states that had never passed such programs as controls: Synthetic CA
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Predictor Means: Actual vs Synthetic California

• Most observables are similar between Actual and Synthetic
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The Application: Actual vs Synthetic California

• The treatment effect is measured by the gap in ciga-sales between Actual and Synthetic
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Formalization
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Formalization: The Setting

• Suppose that we obtain data for J+ 1 units: j = 1, 2, ..., J+ 1

• Assume that the first unit (j = 1) is the treated unit, that is, the unit affected by the policy
intervention of interest.

• Then the set of potential comparisons,j = 2, ..., J+ 1 is a collection of untreated units, not
affected by the intervention.

• Assume also that our data span T periods and that the first T0 periods are before the intervention.

• Let Yjt and YCjt be the real and counterfactual outcomes of interest for unit j of J+ 1 aggregate units
at time t with and without intervention.

• Then the effect of the intervention of interest for the affected unit in period t(t > T0)(ATT)

τ1t = Y1t − YC1t
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Formalization: The Setting

• How to reproduce YC1t which is totally unobservable?
• Use unaffected units in control groups to predict it like matching in cross-sectional data.

• More specifically, a weighted average of the units in the comparison group use to construct
the potential outcome of treated units, which define as synthetic control.Thus,

ŶC1t = ΣJ+1
j=2wjYjt

• Then the question is how to determine these values of the weights, wj
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Formalization: Weights

• Let more specifically, W = (w2, ...,wJ+1)
′ have to satisfy two restriction conditions

• wj ≥ 0 for j = 2, ..., J+ 1
• ΣJ+1

j=2wj = 1

• Key Question: how to determine these values of the weights, wj or how to construct a
proper control group?

• eg. assigning equal weights, thus

wj =
1
J

• or a fraction of the total population in the comparison group(at the time of the
intervention),thus

wj =
Nj

ΣJ+1
j=2Nj
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Formalization: Weights of Xs

• For each unit, j, we also observe a set of characteristics or covariates which can be use to
predict the outcome Yjt, denoted as X1j, ...Xkj

• Let X1 is a k × 1 vector of these characteristics for the treated unit. Similarly, let X0 be a
(k × J) matrix which contains the same variables for the untreated units.

• Let X1 is a k × 1 vector of pre-intervention characteristics for the treated unit. Similarly, let
X0 be a (k × J) matrix which contains the same variables for the unaffected units.

• Recall: how to measure the closeness or similarity between two vectors?
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Formalization: Weight by Matching

• The rule to choose the optimal weight vector W∗ = (w2, ...,wJ+1)
′ will be

argminW ∥ (X1 − X0W) ∥

• Thus,the optimal vector of weight W should minimize the “distance” between treated unit and
untreated group,subject to two weight constraints.

• More specifically, Abadie, et al(2010) consider

∥ (X1 − X0W) ∥V=
√
(X1 − X0W)′V(X1 − X0W)

where V can be some (k × k) symmetric and positive semidefinite matrix.
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Formalization: More on the V matrix

• Typically, V is diagonal with main diagonal v1, ..., vk. Then the synthetic control weights
minimize

k∑
m=1

vm
(
X1m −

J+1∑
j=2

w∗
j Xjm

)2
• Where vm is a weight that reflects the relative importance that we assign to the mth variable
when we measure the discrepancy between the treated unit and the synthetic controls.

• And vm is critical because it weights directly shape wj,which help reproducing the
counterfactual outcome for the treated unit in the absence of the treatment.
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Formalization: Estimating the V matrix

• Various ways to choose V
• In practice,most people choose V that minimizes the mean squared prediction
error(MSPE).Thus,

T0∑
t=1

(
Y1t −

J+1∑
j=2

w∗
j (V)Yjt

)2

• If the number of pre-intervention periods in the data is “large”, then matching on
pre-intervention outcomes can allow us to control for the heterogeneous responses to
multiple unobserved factors.

• The intuition here is that only units that are alike on unobservables and unobservables
would follow a similar trajectory pre-treatment.
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A Machine learning procedure

1. Divide the pre-intervention periods(T0) into a initial training period(t = 1, ...t0) and a
subsequent validation period(t = t0 + 1, ...T0).

2. Select a value V∗ make the MSPE is small

T0∑
t=t0+1

(
Y1t −

J+1∑
j=2

wj(V)Yjt
)2

3. Use the resulting V∗ and data on the predictors for the last t0 before in the
intervention,t = t0 + 1, t0 + 2, ..., T0 to calculate w∗ = w(V∗)
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Inference

• Permutation Strategy: whether the effect estimated by the synthetic control for the unit
affected by the intervention is large relative to the effect estimated for a unit chosen at
random.

• Implementation: “randomization” of the treatment to each unit, re-estimating the model,
and calculating a set of root mean squared prediction error (RMSPE) values for the pre-
and post-treatment period.

• For 0 ≤ t1 ≤ t2 ≤ T and j = 1, 2, ..., J+ 1,let

Rj(t1, t2) =
( 1
t2 − t1 + 1

t2∑
t=t1

(Yjt − ŶNjt)
2) 1

2

• Some states whose pre-treatment RMSPE is considerably different than California’s can be
dropped.
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Inference: Dropping Sample
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Inference: Dropping Sample
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Inference: Dropping Sample
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Inference: Dropping Sample
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Inference: Procedure

1. Iteratively apply the synthetic method to each state in the unaffected group and obtain a
distribution of placebo effects.

2. Calculate the RMSPE(root mean squared prediction error) for each placebo for the
pre-treatment and post-treatment.

• Post-treatment Rj,post = RMSPEj(T0 + 1, T)
• Pre-treatment Rj,pre = RMSPEj(1, T0)

3. Compute the ratio of the post-to-pre-treatment and sort it in descending order from
greatest to highest. Thus

rj =
Rj,post
Rj,pre

4. The exact p-value is defined as

p − value =
rankth
J+ 1
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Inference: P-Value
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An Application: The 1990 German Reunification
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The Economic Effect of the German Reunification onWest Germany

• Cross-country regressions are often criticized because they put side-by-side countries of
very different characteristics.

• “What do Thailand, the Dominican Republic, Zimbabwe,Greece and Bolivia have in common
that merits their being put in the same regression analysis? Answer: For most purposes,
nothing at all.” (Harberger 1987)

• Application: The economic effect of “Berlin Wall” Falling,thus the 1990 German
reunification,on West Germany.

• Control group is compositional restricted to 16 OECD countries
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West Germany v.s. OECD countries
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Economic Growth Predictors Means across groups
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West Germany v.s Sythetic West Germany
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GDP Gap: West Germany and synthetic West Germany
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The 1990 German Reunification: Leave-one-out estimates
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RMSE Test
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Placebo Test: What if ‘1980’ German Reunification
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Wrap Up

• Synthetic control method provide many practical advantages for causal inference.

• The credibility of the results depends on
• the level of diligence exerted in the application
• whether contextual and data requirements are met
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A Summary of Causal Inference Method
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The goal of causal inference

• Build a reasonable counterfactual world by naturally occurring data to find or construct a
proper control group is the core of econometrical methods.

• Common Idea: match similar units, and produce a proper comparison
• OLS: gives conditional mean comparison
• Matching: a weighted conditional mean comparison
• IV: compares difference between instrumented and non-instrumented groups.
• RD: compares means around the cutoff.
• DID: compares the changes of the difference across locations.
• SCM: compares the gaps between treated and sythetic control groups.

• All are about a a believable and reliable comparison.
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Final Thoughts(Angrist and Pischeke,2008)

• A good research design is one you are excited to tell people about
• that’s basically what characterizes all research designs, whether instrumental
variable,regression discontinuity designs or difference-in-differences,synthetic control
method among others(Seven Magic Weapons).

• Causality is easy and hard. Don’t get confused which is the hard part and which is the easy
part.

• Always understand what assumptions you must make, be clear which parameters you are
and are not identifying.

• Last but not least, Remember: Good question is always the first priority. Along with good
research design is in the second place.

• What is a good research question?
• interesting(people cares) and/or relevent(does matter something)
• should not simply duplicate existing research, but instead should aim to be innovative and
unique.
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Though still a long way to go but now we could take a break and
enjoy the landscape.
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