Lecture 3: Multiple OLS Regression

Introduction to Econometrics,Spring 2023

Zhaopeng Qu

Nanjing University Business School

March 152023

1 Review for the previous lecturesMultiple OLS Regression: IntroductionMultiple OLS Regression: Estimation

4 Partitioned Regression: OLS Estimators in Multiple RegressionMeasures of Fit in Multiple Regression

6 Categoried Variable as independent variables in Regression

17 Multiple Regression: Assumption

8 Properties of OLS Estimators in Multiple Regression

Review for the previous lectures

Simple OLS formula

- The linear regression model with one regressor is denoted by

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

- Where
- Y_{i} is the dependent variable(Test Score)
- X_{i} is the independent variable or regressor(Class Size or Student-Teacher Ratio)
- u_{i} is the error term which contains all the other factors besides X that determine the value of the dependent variable, Y, for a specific observation, i.

The OLS Estimator

- The estimators of the slope and intercept that minimize the sum of the squares of \hat{u}_{j},thus

$$
\underset{b_{0}, b_{1}}{\arg \min } \sum_{i=1}^{n} \hat{u}_{i}^{2}=\min _{b_{0}, b_{1}} \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

are called the ordinary least squares (OLS) estimators of β_{0} and β_{1}.
OLS estimator of β_{1} :

$$
b_{1}=\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)}
$$

Least Squares Assumptions

- Under 3 least squares assumptions,

1. Assumption 1
2. Assumption 2
3. Assumption 3

- The OLS estimators will be

1. unbiased
2. consistent
3. normal sampling distribution

Multiple OLS Regression: Introduction

Violation of the 1st Least Squares Assumption

- Recall simple OLS regression equation

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

- Question: What does u_{i} represent?
- Answer: contains all other factors(variables) which potentially affect Y_{i}.
- Assumption 1

$$
E\left(u_{i} \mid X_{i}\right)=0
$$

- It states that u_{i} are unrelated to X_{i} in the sense that,given a value of X_{i}, the mean of these other factors equals zero.
- But what if they (or at least one) are correlated with X_{i} ?

Example: Class Size and Test Score

- Many other factors can affect student's performance in the school.
- One of factors is the share of immigrants in the class. Because immigrant children may have different backgrounds from native children, such as
- parents' education level
- family income and wealth
- parenting style
- traditional culture

Scatter Plot: The share of immigrants and STR

Scatter Plot: The share of immigrants and STR

The share of immigrants as an Omitted Variable

- Class size may be related to percentage of English learners and students who are still learning English likely have lower test scores.
- In other words, the effect of class size on scores we had obtained in simple OLS may contain an effect of immigrants on scores.
- It implies that percentage of English learners is contained in u_{i}, in turn that Assumption 1 is violated.
- More precisely,the estimates of $\hat{\beta}_{1}$ and $\hat{\beta}_{0}$ are biased and inconsistent.

Omitted Variable Bias: Introduction

- As before, X_{i} and Y_{i} represent STR and Test Score,repectively.
- Besides, W_{i} is the variable which represents the share of english learners.
- Suppose that we have no information about it for some reasons, then we have to omit in the regression.
- Thus we have two regressions in mind:
- True model(the Long regression):

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\gamma W_{i}+u_{i}
$$

where $E\left(u_{i} \mid X_{i}\right)=0$

- OVB model(the Short regression):

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+v_{i}
$$

where $v_{i}=\gamma W_{i}+u_{i}$

Omitted Variable Bias: Biasedness

- Let us see what is the consequence of OVB

$$
\begin{aligned}
E\left[\hat{\beta}_{1}\right] & =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)} \\
& =E\left[\frac{\sum\left(X_{i}-\bar{x}\right)\left(\beta_{0}+\beta_{1} x_{i}+v_{i}-\left(\beta_{0}+\beta_{1} \bar{X}+\bar{v}\right)\right)}{\sum\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)}\right] \\
& =E\left[\frac{\sum\left(x_{i}-\bar{x}\right)\left(\beta_{0}+\beta_{1} x_{i}+\gamma W_{i}+u_{i}-\left(\beta_{0}+\beta_{1} \bar{x}+\gamma \bar{W}+\bar{u}\right)\right)}{\sum\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)}\right] \\
& =E\left[\frac{\sum\left(x_{i}-\bar{x}\right)\left(\beta_{1}\left(x_{i}-\bar{x}\right)+\gamma\left(W_{i}-\bar{W}\right)+u_{i}-\bar{u}\right)}{\sum\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)}\right]
\end{aligned}
$$

- Using the Law of Iterated Expectation(LIE) again, we will obtain the following expression(Skip these steps which are very similar to those for proving unbiasedness of $\hat{\beta}_{1}$, please prove it by yourself).

$$
E\left[\hat{\beta}_{1}\right]=\beta_{1}+\gamma E\left[\frac{\sum\left(X_{i}-\bar{X}\right)\left(W_{i}-\bar{W}\right)}{\sum\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)}\right]
$$

Omitted Variable Bias: Biasedness

- As proving unbiasedness of $\hat{\beta}_{1}$, thus $E\left[\hat{\beta}_{1}\right]=\beta_{1}$, then we need

$$
E\left[\frac{\sum\left(X_{i}-\bar{x}\right)\left(W_{i}-\bar{W}\right)}{\sum\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)}\right]=0
$$

- Two scenarios:

1. If W_{i} is unrelated to X_{i},then $E\left[\hat{\beta}_{1}\right]=\beta_{1}$.
2. If W_{i} is not determinant of Y_{i}, which means that

$$
\gamma=0
$$

,then $E\left[\hat{\beta}_{1}\right]=\beta_{1}$, too.

- Only if both two conditions above are violated simultaneously, then $\hat{\beta}_{1}$ is biased, which is normally called Omitted Variable Bias(OVB).

Omitted Variable Bias(OVB): inconsistency

- Recall: simple OLS is consistency when n is large, thus $\operatorname{plim} \hat{\beta}_{1}=\frac{\operatorname{Cov}\left(X_{i}, Y_{i}\right)}{\operatorname{Var}\left(X_{i}\right)}$

$$
\begin{aligned}
\operatorname{plim} \hat{\beta}_{1} & =\frac{\operatorname{Cov}\left(X_{i}, Y_{i}\right)}{\operatorname{Var} X_{i}} \\
& =\frac{\operatorname{Cov}\left(X_{i},\left(\beta_{0}+\beta_{1} X_{i}+v_{i}\right)\right)}{\operatorname{Var} X_{i}} \\
& =\frac{\operatorname{Cov}\left(X_{i},\left(\beta_{0}+\beta_{1} X_{i}+\gamma W_{i}+u_{i}\right)\right)}{\operatorname{Var} X_{i}} \\
& =\frac{\operatorname{Cov}\left(X_{i}, \beta_{0}\right)+\beta_{1} \operatorname{Cov}\left(X_{i}, X_{i}\right)+\gamma \operatorname{Cov}\left(X_{i}, W_{i}\right)+\operatorname{Cov}\left(X_{i}, u_{i}\right)}{\operatorname{Var} X_{i}} \\
& =\beta_{1}+\gamma \frac{\operatorname{Cov}\left(X_{i}, W_{i}\right)}{\operatorname{Var} X_{i}}
\end{aligned}
$$

Omitted Variable Bias(OVB): inconsistency

- Thus we obtain

$$
p \lim \hat{\beta}_{1}=\beta_{1}+\gamma \frac{\operatorname{Cov}\left(X_{i}, W_{i}\right)}{\operatorname{Var} X_{i}}
$$

- $\hat{\beta}_{1}$ is still consistent
- if W_{i} is unrelated to X, thus $\operatorname{Cov}\left(X_{i}, W_{i}\right)=0$
- if W_{i} has no effect on Y_{i}, thus $\gamma=0$
- Only if both two conditions above are violated simultaneously, then $\hat{\beta}_{1}$ is inconsistent.

Omitted Variable Bias(OVB):Directions

- If OVB can be possible in our regressions,then we should guess the directions of the bias, in case that we can't eliminate it.
- A summary of the directions of the OVB bias

	$\operatorname{Cov}\left(X_{i}, W_{i}\right)>0$	$\operatorname{Cov}\left(X_{i}, W_{i}\right)<0$
$\gamma>0$	Positive bias	Negative bias
$\gamma<0$	Negative bias	Positive bias

Omitted Variable Bias: Examples

- Question: If we omit following variables, then what are the directions of these biases? and why?

1. Time of day of the test
2. The number of dormitories
3. Teachers' salary
4. Family income
5. Percentage of English learners(the share of immigrants)

Omitted Variable Bias: Examples in R

- Regress Testscore on Class size

```
#>
#> Call:
#> lm(formula = testscr ~ str, data = ca)
#>
#> Residuals:
\begin{tabular}{lrrrrr} 
\#> & Min & 1Q & Median & 3Q & Max \\
\#> & -47.727 & -14.251 & 0.483 & 12.822 & 48.540
\end{tabular}
#>
#> Coefficients:
#> Estimate Std. Error t value Pr
#> (Intercept) 698.9330 9.4675 73.825 < 2e-16
#> str -2.2798 0.4798 -4.751 2.78e-06 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

\#>

Omitted Variable Bias: Examples in R

- Regress Testscore on Class size and the percentage of English learners

```
#>
#> Call:
#> lm(formula = testscr ~ str + el_pct, data = ca)
#>
#> Residuals:
\begin{tabular}{lrrrrr} 
\#> & Min & \(1 Q\) & Median & 3Q & Max \\
\#> & -48.845 & -10.240 & -0.308 & 9.815 & 43.461
\end{tabular}
#>
#> Coefficients:
#> Estimate Std. Error t value Pr (>|t|)
#> (Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
#> str -1.10130 0.38028 -2.896 0.00398 **
#> el_pct -0.64978 0.03934 -16.516 < 2e-16 ***
```


Omitted Variable Bias: Examples in R

Table 2: Class Size and Test Score

	Dependent variable:	
	testscr	
	(1)	(2)
str	$-2.280^{* * *}$	$-1.101^{* * *}$ (0.480)
el_pct		(0.380) $-0.650^{* * *}$ (0.039)
Constant	$698.933^{* * *}$	$686.032^{* * *}$ (7.411)
Observations	420	420
R^{2}	0.051	0.426

Warp Up

- OVB is the most common bias when we run OLS regressions using nonexperimental data.
- OVB means that there are some variables which should have been included in the regression but actually was not.
- Then the simplest way to overcome OVB: Put omitted the variable into the right side of the regression, which means our regression model should be

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\gamma W_{i}+u_{i}
$$

- The strategy can be denoted as controlling informally, which introduces the more general regression model: Multiple OLS Regression.

Multiple OLS Regression: Estimation

Multiple regression model with k regressors

- The multiple regression model is

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{1, i}+\beta_{2} X_{2, i}+\ldots+\beta_{k} x_{k, i}+u_{i}, i=1, \ldots, n \tag{4.1}
\end{equation*}
$$

where

- Y_{i} is the dependent variable
- $X_{1}, X_{2}, \ldots X_{k}$ are the independent variables(includes one is our of interest and some control variables)
- $\beta_{i}, j=1 \ldots k$ are slope coefficients on X_{i} corresponding.
- β_{0} is the estimate intercept, the value of Y when all $X_{j}=0, j=1 \ldots k$
- u_{i} is the regression error term, still all other factors affect outcomes.

Interpretation of coefficients $\beta_{i}, j=1 \ldots k$

- β_{j} is partial (marginal) effect of X_{j} on Y.

$$
\beta_{j}=\frac{\partial Y_{i}}{\partial x_{j, i}}
$$

- β_{j} is also partial (marginal) effect of $E\left[Y_{i} \mid X_{1} . . X_{k}\right]$.

$$
\beta_{j}=\frac{\partial E\left[Y_{i} \mid X_{1}, \ldots, X_{k}\right]}{\partial X_{j, i}}
$$

- it does mean that we are estimate the effect of X on Y when "other things equal", thus the concept of ceteris paribus.

OLS Estimation in Multiple Regressors

- As in a Simple OLS Regression, the estimators of Multiple OLS Regression is just a minimize the following question

$$
\operatorname{argmin} \sum_{b_{0}, b_{1}, \ldots, b_{k}}\left(Y_{i}-b_{0}-b_{1} X_{1, i}-\ldots-b_{k} X_{k, i}\right)^{2}
$$

where $b_{0}=\hat{\beta}_{1}, b_{1}=\hat{\beta}_{2}, \ldots, b_{k}=\hat{\beta}_{k}$ are estimators.

OLS Estimation in Multiple Regressors

- Similarly in Simple OLS, based on F.O.C,the multiple OLS estimators $\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{k}$ are obtained by solving the following system of normal equations

$$
\begin{array}{rlrl}
\frac{\partial}{\partial b_{0}} \sum_{i=1}^{n} \hat{u}_{i}^{2} & =\sum\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{1, i}-\ldots-\hat{\beta}_{k} x_{k, i}\right) & =0 \\
\frac{\partial}{\partial b_{1}} \sum_{i=1}^{n} \hat{u}_{i}^{2} & =\sum\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{1, i}-\ldots-\hat{\beta}_{k} x_{k, i}\right) x_{1, i} & =0 \\
\vdots & =\vdots & & =\vdots \\
\frac{\partial}{\partial b_{k}} \sum_{i=1}^{n} \hat{u}_{i}^{2} & =\sum\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{1, i}-\ldots-\hat{\beta}_{k} x_{k, i}\right) x_{k, i} & =0
\end{array}
$$

OLS Estimation in Multiple Regressors

- Similar to in Simple OLS, the fitted residuals are

$$
\hat{u}_{i}=Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{1, i}-\ldots-\hat{\beta}_{k} X_{k, i}
$$

- Therefore, the normal equations also can be written as

$$
\begin{aligned}
\sum \hat{u}_{i} & =0 \\
\sum \hat{u}_{i} x_{1, i} & =0 \\
\vdots & =\vdots \\
\sum \hat{u}_{i} x_{k, i} & =0
\end{aligned}
$$

- While it is convenient to transform equations above using matrix algebra to compute these estimators, we can use partitioned regression to obtain the formula of estimators without using matrices.

Partitioned Regression: OLS Estimators in Multiple Regression

Partitioned regression: OLS estimators

- A useful representation of $\hat{\beta}_{j}$ could be obtained by the partitioned regression, which computed OLS estimators of $\beta_{j} ; j=1,2 \ldots k$ in following 3 steps.

1. Regress X_{j} on $X_{1}, X_{2}, \ldots X_{j-1}, X_{j+1}, X_{k}$, thus

$$
x_{j, i}=\gamma_{0}+\gamma_{1} x_{1 i}+\ldots+\gamma_{j-1} x_{j-1, i}+\gamma_{j+1} x_{j+1, i} \ldots+\gamma_{k} x_{k, i}+v_{j i}
$$

2. Obtain the residuals from the regression above,denoted as $\tilde{X}_{j, i}=\hat{v}_{j i}$
3. Regress Y on $\tilde{X}_{j, i}$

- The last step implies that the OLS estimator of β_{j} can be expressed as follows

$$
\hat{\beta}_{j}=\frac{\sum_{i=1}^{n}\left(\tilde{X}_{j i}-\overline{\tilde{x}}_{j i}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(\tilde{X}_{j i}-\tilde{X}_{j i}\right)^{2}}=\frac{\sum_{i=1}^{n} \tilde{X}_{j j} Y_{i}}{\sum_{i=1}^{n} \tilde{X}_{j i}^{2}}
$$

Partitioned regression: OLS estimators

- Suppose we want to obtain an expression for $\hat{\beta}_{1}$.
- Then the first step: regress $X_{1, i}$ on other regressors, thus

$$
x_{1, i}=\gamma_{0}+\gamma_{2} x_{2, i}+\ldots+\gamma_{k} x_{k, i}+v_{i}
$$

- Then, we can obtain

$$
x_{1, i}=\hat{\gamma}_{0}+\hat{\gamma}_{2} x_{2, i}+\ldots+\hat{\gamma}_{k} X_{k, i}+\tilde{x}_{1, i}
$$

where $\tilde{x}_{1, i}$ is the fitted OLS residual,thus $\tilde{X}_{j, i}=\hat{v}_{1 i}$

- Then we could prove that

$$
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n} \tilde{X}_{1, j} Y_{i}}{\sum_{i=1}^{n} \tilde{X}_{1, i}^{2}}
$$

Proof of Partitioned regression result(1)

- Recall u_{i} are the residuals for the Multiple OLS regression equation,thus

$$
Y_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{1, i}+\hat{\beta}_{2} X_{2, i}+\ldots+\hat{\beta}_{k} X_{k, i}+\hat{u}_{i}
$$

- Then we have

$$
\sum \hat{u}_{i}=\sum \hat{u}_{i} x_{j i}=0, j=1,2, \ldots, k
$$

- Likewise, $\tilde{X}_{1 i}$ are the residuals for the partitioned regression equation on $X_{2 i} \ldots, X_{k i}$, then we have

$$
\sum \tilde{x}_{1 i}=\sum \tilde{x}_{1 i} x_{2, i}=\ldots=\sum \tilde{x}_{1 i} x_{k, i}=0
$$

- Additionally, because $\tilde{X}_{1, i}=X_{1, i}-\hat{\gamma}_{0}-\hat{\gamma}_{2} X_{2, i}-\ldots-\hat{\gamma}_{k} X_{k, i}$, then

$$
\sum \hat{u}_{i} \tilde{x}_{j i}=0
$$

Proof of Partitioned regression result(2)

$$
\begin{aligned}
& \frac{\sum_{i=1}^{n} \tilde{x}_{1, Y_{i}}}{\sum_{i=1}^{n} \tilde{X}_{1, i}^{2}}=\frac{\sum \tilde{x}_{1, i}\left(\hat{\beta}_{0}+\hat{\beta}_{1} X_{1, i}+\hat{\beta}_{2} X_{2, i}+\ldots+\hat{\beta}_{k} X_{k, i}+\hat{u}_{i}\right)}{\sum \tilde{x}_{1, i}^{2}} \\
& =\hat{\beta}_{0} \frac{\sum_{i=1}^{n} \tilde{x}_{1, i}}{\sum_{i=1}^{n} \tilde{x}_{1, i}^{2}}+\hat{\beta}_{1} \frac{\sum_{i=1}^{n} \tilde{x}_{1, i} x_{1, i}}{\sum_{i=1}^{n} \tilde{x}_{1, i}^{2}}+\ldots \\
& +\hat{\beta}_{k} \frac{\sum_{i=1}^{n} \tilde{x}_{1, i} x_{k, i}}{\sum_{i=1}^{n} \tilde{x}_{1, i}^{2}}+\frac{\sum_{i=1}^{n} \tilde{x}_{1, i} \hat{u}_{i}}{\sum_{i=1}^{n} \tilde{X}_{1, i}} \\
& =\hat{\beta}_{1} \frac{\sum_{i=1}^{n} \tilde{x}_{1, i}, X_{1, i}}{\sum_{i=1}^{n} \tilde{x}_{1, i}^{2}}
\end{aligned}
$$

Proof of Partitioned regression result(3)

- We will see

$$
\begin{aligned}
\sum_{i=1}^{n} \tilde{x}_{1, i} x_{1, i} & =\sum_{i=1}^{n} \tilde{x}_{1, i}\left(\hat{\gamma}_{0}+\hat{\gamma}_{2} x_{2, i}+\ldots+\hat{\gamma}_{k} x_{k, i}+\tilde{x}_{1, i}\right) \\
& =\hat{\gamma}_{0} \cdot 0+\hat{\gamma}_{2} \cdot 0+\ldots+\hat{\gamma}_{k} \cdot 0+\sum \tilde{x}_{1, i}^{2} \\
& =\sum \tilde{x}_{1, i}^{2}
\end{aligned}
$$

- Then

$$
\frac{\sum_{i=1}^{n} \tilde{X}_{1, i} Y_{i}}{\sum_{i=1}^{n} \tilde{X}_{1, i}^{2}}=\hat{\beta}_{1} \frac{\sum_{i=1}^{n} \tilde{X}_{1, i} X_{1, i}}{\sum_{i=1}^{n} \tilde{X}_{1, i}^{2}}=\hat{\beta}_{1}
$$

A transformation of FWL theorem

Regression anatomy theorem

The multiple regression model is

$$
Y_{i}=\beta_{0}+\beta_{1} x_{1, i}+\beta_{2} x_{2, i}+\ldots+\beta_{k} x_{k, i}+u_{i}, i=1, \ldots, n
$$

Then estimator of $\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{k}$ can be expressed as following

$$
\hat{\beta}_{j}=\frac{\sum_{i=1}^{n} \tilde{X}_{j, i} Y_{i}}{\sum_{i=1}^{n} \tilde{X}_{j, i}^{2}} \text { for } j=1,2, \ldots, k
$$

where $\tilde{X}_{j, i}$ is the fitted OLS residual of the regression X_{j} on the other X s.

The intuition of partitioned regression

Partialling Out

- First, we regress X_{j} against the rest of the regressors (and a constant) and keep \tilde{X}_{j} which is the "part" of X_{j} that is uncorrelated
- Then, to obtain $\hat{\beta}_{j}$, we regress Y against \tilde{X}_{j} which is "clean" from correlation with other regressors.
- $\hat{\beta}_{j}$ measures the effect of X_{1} after the effects of X_{2}, \ldots, X_{k} have been partialled out or netted out.

Test Scores and Student-Teacher Ratios

- Now we put one additional control variables into our OLS regression model

$$
\text { Testscore }=\beta_{0}+\beta_{1} \text { STR }+\beta_{2} \text { elpct }+u_{i}
$$

- elpct: the share of English learners as an indicator for immigrants

Test Scores and Student-Teacher Ratios(2)

```
tilde.str <- residuals(lm(str ~ el_pct, data=ca))
mean(tilde.str) # should be zero
#> [1] -1.0111e-16
sum(tilde.str) # also is zero
#> [1] -4.240358e-14
```


Test Scores and Student-Teacher Ratios(3)

- Multiple OLS estimator

$$
\hat{\beta}_{j}=\frac{\sum_{i=1}^{n} \tilde{x}_{j, i} Y_{i}}{\sum_{i=1}^{n} \tilde{X}_{j, i}} \text { for } j=1,2, \ldots, k
$$

sum(tilde.str*ca\$testscr)/sum(tilde.str^2)
\#> [1] -1. 101296

Test Scores and Student-Teacher Ratios(4)

```
reg3 <- lm(testscr ~ tilde.str,data = ca)
summary(reg3)
#>
#> Call:
#> lm(formula = testscr ~ tilde.str, data = ca)
#>
#> Residuals:
\begin{tabular}{lrrrrr} 
\#> & Min & 1Q & Median & 3Q & Max \\
\#> & -48.693 & -14.124 & 0.988 & 13.209 & 50.872
\end{tabular}
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 654.1565 0.9254 706.864 <2e-16 ***
#> tilde.str -1.1013 0.4986 -2.209 0.0277 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

\section*{Test Scores and Student-Teacher Ratios(5)}
```

reg4 <- lm(testscr ~ str+el_pct,data = ca)
summary(reg4)
\#>
\#> Call:
\#> lm(formula = testscr ~ str + el_pct, data = ca)
\#>
\#> Residuals:

\#>	Min	$1 Q$	Median	3Q	Max
\#>	-48.845	-10.240	-0.308	9.815	43.461

\#>
\#> Coefficients:

\#>	Estimate Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$				
\#> (Intercept)	686.03225	7.41131	92.566	< 2e-16	***
\#> str	-1.10130	0.38028	-2.896	0.00398	**
\#> el_pct	-0.64978	0.03934	-16.516	< 2e-16	***

```

Table 3: Class Size and Test Score


\section*{Measures of Fit in Multiple Regression}

\section*{Measures of Fit: The \(R^{2}\)}
- Decompose \(Y_{i}\) into the fitted value plus the residual \(Y_{i}=\hat{Y}_{i}+\hat{u}_{i}\)
- The total sum of squares (TSS): TSS \(=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}\)
- The explained sum of squares (ESS): \(\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}\)
- The sum of squared residuals (SSR): \(\sum_{i=1}^{n}\left(\hat{Y}_{i}-Y_{i}\right)^{2}=\sum_{i=1}^{n} \hat{u}_{i}^{2}\)
- And
\[
T S S=E S S+S S R
\]
- The regression \(R^{2}\) is the fraction of the sample variance of \(Y_{i}\) explained by (or predicted by) the regressors.
\[
R^{2}=\frac{E S S}{T S S}=1-\frac{S S R}{T S S}
\]

\section*{Measures of Fit in Multiple Regression}
- When you put more variables into the regression, then \(R^{2}\) always increases when you add another regressor. Because in general the SSR will decrease.
- Consider two models
\[
\begin{aligned}
& Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+u_{i} \\
& Y_{i}=\tilde{\beta}_{0}+\tilde{\beta}_{1} X_{1 i}+\tilde{\beta}_{2} X_{2 i}+v_{i}
\end{aligned}
\]
- Recall: about two residuals \(\hat{u}_{i}\) and \(\hat{v}_{i}\), we have
\[
\begin{aligned}
& \sum_{i=1}^{n} \hat{u}_{i}=\sum_{i=1}^{n} \hat{u}_{i} x_{1 i}=0 \\
& \sum_{i=1}^{n} \hat{v}_{i}=\sum_{i=1}^{n} \hat{v}_{i} X_{1 i}=\sum_{i=1}^{n} \hat{v}_{i} X_{2 i}=0
\end{aligned}
\]

\section*{Measures of Fit in Multiple Regression}
- we will show that
\[
\sum_{i=1}^{n} \hat{u}_{i}^{2} \geq \sum_{i=1}^{n} \hat{v}_{i}^{2}
\]
- therefore \(R_{v}^{2} \geq R_{u}^{2}\), thus \(R^{2}\) that correspinds the regression with one regressor is less or equal than \(R^{2}\) that corresponds to the regression with two regressors.
- This conclusion can be generalized to the case of \(k+1\) regressors.

\section*{Measures of Fit in Multiple Regression}
- At first we would like to know \(\sum_{i=1}^{n} \hat{u}_{i} \hat{v}_{i}\)
\[
\begin{aligned}
\sum_{i=1}^{n} \hat{u}_{i} \hat{v}_{i} & =\sum_{i=1}^{n}\left(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{1 i}\right) \hat{v}_{i} \\
& =\sum_{i=1}^{n} Y_{i} \hat{v}_{i}-\hat{\beta}_{0} \sum_{i=1}^{n} \hat{v}_{i}-\hat{\beta}_{1} \sum_{i=1}^{n} X_{1} \hat{v}_{i} \\
& =\sum_{i=1}^{n} Y_{i} \hat{v}_{i}-\hat{\beta}_{0} \cdot 0-\hat{\beta}_{1} \cdot 0 \\
& =\sum_{i=1}^{n}\left(\hat{\tilde{\beta}}_{0}+\hat{\tilde{\beta}}_{1} X_{1 i}+\hat{\tilde{\beta}}_{2} X_{2 i}+\hat{v}_{i}\right) \hat{v}_{i} \\
& =\sum_{i=1} \hat{v}_{i} \hat{v}_{i}
\end{aligned}
\]

\section*{Measures of Fit in Multiple Regression}
- Then we can obtain
\[
\begin{aligned}
\sum_{i=1}^{n} \hat{u}_{i}^{2}-\sum_{i=1}^{n} \hat{v}_{i}^{2} & =\sum_{i=1}^{n} \hat{u}_{i}^{2}+\sum_{i=1}^{n} \hat{v}_{i}^{2}-2 \sum_{i=1}^{n} \hat{v}_{i}^{2} \\
& =\sum_{i=1}^{n} \hat{u}_{i}^{2}+\sum_{i=1}^{n} \hat{v}_{i}^{2}-2 \sum_{i=1}^{n} \hat{u}_{i} \hat{v}_{i} \\
& =\sum_{i=1}^{n}\left(\hat{u}_{i}-\hat{v}_{i}\right)^{2} \geq 0
\end{aligned}
\]
- Therefore \(R_{v}^{2} \geq R_{u}^{2}\), thus \(R^{2}\) the regression with one regressor is less or equal than \(R^{2}\) that corresponds to the regression with two regressors.

\section*{Measures of Fit: The Adjusted \(R^{2}\)}
- the Adjusted \(R^{2}\), is a modified version of the \(R^{2}\) that does not necessarily increase when a new regressor is added.
\[
\overline{R^{2}}=1-\frac{n-1}{n-k-1} \frac{S S R}{T S S}=1-\frac{S_{\hat{U}}^{2}}{S_{Y}^{2}}
\]
- because \(\frac{n-1}{n-k-1}\) is always greater than 1 , so \(\overline{R^{2}}<R^{2}\)
- adding a regressor has two opposite effects on the \(\overline{R^{2}}\).
- \(\overline{R^{2}}\) can be negative.
- Remind: neither \(R^{2}\) nor \(\overline{R^{2}}\) is not the golden criterion for good or bad OLS estimation.

\section*{Standard Error of the Regression}
- Recall: SER(Standard Error of the Regression)
- SER is an estimator of the standard deviation of the \(u_{i}\), which are measures of the spread of the Y's around the regression line.
- Because the regression errors are unobserved, the SER is computed using their sample counterparts, the OLS residuals \(\hat{u}_{i}\)
\[
S E R=s_{\hat{u}}=\sqrt{s_{\hat{u}}^{2}}
\]
\[
\text { where } s_{\hat{u}}^{2}=\frac{1}{n-k-1} \sum \hat{u}^{2}{ }_{i}=\frac{S S R}{n-k-1}
\]
- \(n-k-1\) because we have \(k+1\) restricted conditions in the F.O.C.In another word, in order to construct \(\hat{u}^{2}\), we have to estimate \(k+1\) parameters,thus \(\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{k}\)

\section*{Example: Test scores and Student Teacher Ratios}

1 . reg testscr str el_pct


\section*{Categoried Variable as independent variables in Regression}

\section*{A Special Case: Categorical Variable as \(X\)}
- Recall if \(X\) is a dummy variable, then we can put it into regression equation straightly.
- What if \(X\) is a categorical variable?
- Question: What is a categorical variable?
- For example, we may define \(D_{i}\) as follows:
\[
D_{i}=\left\{\begin{array}{l}
1 \text { small-size class if STR in } i^{\text {th }} \text { school district }<18  \tag{4.5}\\
2 \text { middle-size class if } 18 \leq \text { STR in } i^{\text {th }} \text { school district }<22 \\
3 \text { large-size class if STR in } i^{\text {th }} \text { school district } \geq 22
\end{array}\right.
\]

\section*{A Special Case: Categorical Variable as \(X\)}
- Naive Solution: a simple OLS regression model
\[
\text { TestScore }_{i}=\beta_{0}+\beta_{1} D_{i}+u_{i}
\]
- Question: Can you explain the meanning of estimate coefficient \(\beta_{1}\) ?
- Answer: It doese not make sense that the coefficient of \(\beta_{1}\) can be explained as continuous variables.

\section*{A Special Case: Categorical Variables as X}
- The first step: turn a categorical variable \(\left(D_{i}\right)\) into multiple dummy variables \(\left(D_{1 i}, D_{2 i}, D_{3 i}\right)\)
\[
\begin{gathered}
D_{1 i}=\left\{\begin{array}{l}
1 \text { small-sized class if STR in } i^{\text {th }} \text { school district }<18 \\
0 \text { middle-sized class or large-sized class if not }
\end{array}\right. \\
D_{2 i}=\left\{\begin{array}{l}
1 \text { middle-sized class if } 18 \leq \text { STR in } i^{\text {th }} \text { school district }<22 \\
0 \text { large-sized class or small-sized class if not }
\end{array}\right. \\
D_{3 i}= \begin{cases}1 & \text { large-sized class if STR in } i^{\text {th }} \text { school district } \geq 22 \\
0 & \text { middle-sized class or small-sized class if not }\end{cases}
\end{gathered}
\]

\section*{A Special Case: Categorical Variables as \(X\)}
- We put these dummies into a multiple regression
\[
\begin{equation*}
\text { TestScore }_{i}=\beta_{0}+\beta_{1} D_{1 i}+\beta_{2} D_{2 i}+\beta_{3} D_{3 i}+u_{i} \tag{4.6}
\end{equation*}
\]
- Then as a dummy variable as the independent variable in a simple regression The coefficients \(\left(\beta_{1}, \beta_{2}, \beta_{3}\right)\) represent the effect of every categorical class on testscore respectively.

\section*{A Special Case: Categorical Variables as X}
- In practice, we can't put all dummies into the regression, but only have \(n-1\) dummies unless we will suffer perfect multi-collinearity.
- The regression may be like as
\[
\begin{equation*}
\text { TestScore }_{i}=\beta_{0}+\beta_{1} D_{1 i}+\beta_{2} D_{2 i}+u_{i} \tag{4.6}
\end{equation*}
\]
- The default intercept term, \(\beta_{0}\),represents the large-sized class.Then, the coefficients ( \(\beta_{1}, \beta_{2}\) ) represent testscore gaps between small_sized, middle-sized class and large-sized class,respectively.

\section*{Multiple Regression: Assumption}

\section*{Multiple Regression: Assumption}
- Assumption 1: The conditional distribution of \(u_{i}\) given \(X_{1 i}, \ldots, X_{k i}\) has mean zero,thus
\[
E\left[u_{i} \mid X_{1 i}, \ldots, X_{k i}\right]=0
\]
- Assumption 2: \(\left(Y_{i}, X_{1 i}, \ldots, X_{k i}\right)\) are i.i.d.
- Assumption 3: Large outliers are unlikely.
- Assumption 4: No perfect multicollinearity.

\section*{Perfect multicollinearity}

Perfect multicollinearity arises when one of the regressors is a perfect linear combination of the other regressors.
- Binary variables are sometimes referred to as dummy variables
- If you include a full set of binary variables (a complete and mutually exclusive categorization) and an intercept in the regression, you will have perfect multicollinearity.
- eg. female and male = 1-female
- eg. West, Central and East China
- This is called the dummy variable trap.
- Solutions to the dummy variable trap: Omit one of the groups or the intercept

\section*{Perfect multicollinearity}
- regress Testscore on Class size and the percentage of English learners
```

\#>
\#> Call:
\#> lm(formula = testscr ~ str + el_pct, data = ca)
\#>
\#> Residuals:

\#>	Min	1Q	Median	3Q	Max
\#>	-48.845	-10.240	-0.308	9.815	43.461

\#>
\#> Coefficients:
\#> Estimate Std. Error t value Pr (>|t|)
\#> (Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
\#> str -1.10130 0.38028 -2.896 0.00398 **
\#> el_pct -0.64978 0.03934 -16.516 < 2e-16 ***

```

\section*{Perfect multicollinearity}
- add a new variable nel=1-el_pct into the regression
```

\#>
\#> Call:
\#> lm(formula = testscr ~ str + nel_pct + el_pct, data = ca)
\#>
\#> Residuals:

\#>	Min	1Q	Median	3Q	Max
\#>	-48.845	-10.240	-0.308	9.815	43.461

\#>
\#> Coefficients: (1 not defined because of singularities)
\#> Estimate Std. Error t value Pr (>|t|)
\#> (Intercept) 685.38247 7.41556 92.425 < 2e-16 ***
\#> str -1.10130 0.38028 -2.896 0.00398 **
\#> nel_pct 0.64978 0.03934 16.516 < 2e-16 ***

```

\section*{Perfect multicollinearity}

Table 4: Class Size and Test Score
\begin{tabular}{lcc}
\hline \hline & \multicolumn{2}{c}{ Dependent variable: } \\
\cline { 2 - 3 } & \multicolumn{2}{c}{ testscr } \\
& \((1)\) & \((2)\) \\
\hline str & \(-1.101^{* * *}\) & \(-1.101^{* * *}\) \\
& \((0.380)\) & \((0.380)\) \\
nel_pct & & \(0.650^{* * *}\) \\
& & \((0.039)\) \\
el_pct & \(-0.650^{* * *}\) & \\
Constant & \(686.032^{* * *}\) & \(685.382^{* * *}\) \\
& \((7.411)\) & \((7.416)\) \\
\hline Observations & 420 & 420 \\
\(R^{2}\) & 0.426 & 0.426 \\
\hline \hline
\end{tabular}

\section*{Multicollinearity}

Multicollinearity means that two or more regressors are highly correlated, but one regressor is NOT a perfect linear function of one or more of the other regressors.
- multicollinearity is NOT a violation of OLS assumptions.
- It does not impose theoretical problem for the calculation of OLS estimators.
- But if two regressors are highly correlated, then the the coefficient on at least one of the regressors is imprecisely estimated (high variance).
- To what extent two correlated variables can be seen as "highly correlated"?
- rule of thumb: correlation coefficient is over 0.8.

\section*{Venn Diagrams for Multiple Regression Model}

- In a simple model (y on X), OLS uses ‘Blue' + 'Red' to estimate \(\beta\).
- When \(y\) is regressed on \(X\) and \(W\) : OLS throws away the red area and just uses blue to estimate \(\beta\).
- Idea: Red area is contaminated(we do not know if the movements in \(y\) are due to X or to W ).

\section*{Venn Diagrams for Multicollinearity}


Figure 3a Modest collinearity


Figure 3b Considerable collinearity
- Less information (compare the Blue and Green areas in both figures) is used, the estimation is less precise.

\section*{Multiple Regression: Test Scores and Class Size}

Table 5: Class Size and Test Score
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{testscr} & \\
\hline & (1) & (2) & (3) & \\
\hline \multirow[t]{2}{*}{str} & \(-2.280^{* * *}\) & \(-1.101^{* * *}\) & -0.069 & \\
\hline & (0.480) & (0.380) & (0.277) & \\
\hline \multirow[t]{2}{*}{el_pct} & & \(-0.650^{* * *}\) & \(-0.488^{* * *}\) & \\
\hline & & (0.039) & (0.029) & \\
\hline \multirow[t]{2}{*}{avginc} & & & 1.495*** & \\
\hline & & & (0.075) & \\
\hline \multirow[t]{2}{*}{Constant} & 698.933*** & 686.032 \({ }^{* * *}\) & 640.315*** & \\
\hline & (9.467) & (7.411) & (5.775) & \\
\hline \(N\) & 420 & 420 & 420 & \\
\hline \(\mathrm{R}^{2}\) & 0.051 & 0.426 & 0.707 & 68 / 87 \\
\hline
\end{tabular}

\section*{Properties of OLS Estimators in Multiple Regression}

\section*{Properties of OLS estimators: Unbiasedness(1)}
- Use partitioned regression formula
\[
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n} \tilde{x}_{1, i} Y_{i}}{\sum_{i=1}^{n} \tilde{X}_{i, i}^{2}}
\]
- Substitute \(Y_{i}=\beta_{0}+\beta_{1} x_{1, i}+\beta_{2} x_{2, i}+\ldots+\beta_{k} x_{k, i}+u_{i}, i=1, \ldots, n\),then
\[
\begin{aligned}
& \hat{\beta}_{1}=\frac{\sum \tilde{X}_{1, i}\left(\beta_{0}+\beta_{1} X_{1, i}+\beta_{2} X_{2, i}+\ldots+\beta_{k} X_{k, i}+u_{i}\right)}{\sum \tilde{x}_{1, i}^{2}} \\
& =\beta_{0} \frac{\sum_{i=1}^{n} \tilde{X}_{1, i}}{\sum_{i=1}^{n} \tilde{X}_{1, i}^{2}}+\beta_{1} \frac{\sum_{i=1}^{n} \tilde{x}_{1, i} X_{1, i}}{\sum_{i=1}^{n} \tilde{x}_{1, i}^{2}}+\ldots \\
& +\beta_{k} \frac{\sum_{i=1}^{n} \tilde{x}_{1, i} X_{k, i}}{\sum_{i=1}^{n} \tilde{x}_{1, i}^{2}}+\frac{\sum_{i=1}^{n} \tilde{x}_{1, i}, u_{i}}{\sum_{i=1}^{n} \tilde{x}_{1, i}^{2}}
\end{aligned}
\]

\section*{Properties of OLS estimators: Unbiasedness(2)}
- Because
\[
\begin{aligned}
\sum_{i=1}^{n} \tilde{X}_{1, i} & =\sum_{i=1}^{n} \tilde{X}_{1, i} X_{j, i}=0, j=2,3, \ldots, k \\
\sum_{i=1}^{n} \tilde{X}_{1, i} X_{1, i} & =\sum \tilde{X}_{1, i}^{2}
\end{aligned}
\]
- Therefore
\[
\hat{\beta}_{1}=\beta_{1}+\frac{\sum_{i=1}^{n} \tilde{X}_{1, i} u_{i}}{\sum_{i=1}^{n} \tilde{X}_{1, i}^{2}}
\]

\section*{Properties of OLS estimators: Unbiasedness(3)}
- Recall Assumption 1: \(E\left[u_{i} \mid X_{1 i}, X_{2 i} \ldots X_{k i}\right]=0\) and \(\tilde{X}_{1 i}\) is a function of \(X_{2 i} \ldots X_{k i}\)
- Then take expectations of \(\hat{\beta}_{1}\) and The Law of Iterated Expectations again
\[
\begin{aligned}
E\left[\hat{\beta}_{1}\right]=E\left[\beta_{1}+\frac{\sum_{i=1}^{n} \tilde{X}_{1, i} u_{i}}{\sum_{i=1}^{n} \tilde{x}_{1, i}^{2}}\right] & =\beta_{1}+E\left[\frac{\sum_{i=1}^{n} \tilde{x}_{1, i} u_{i}}{\sum_{i=1}^{n} \tilde{x}_{1, i}^{2}}\right] \\
& =\beta_{1}+E\left[\frac{\sum_{i=1}^{n} \tilde{x}_{1, i} E\left[u_{i} \mid x_{1 i} \ldots x_{k i}\right]}{\sum_{i=1}^{n} \tilde{x}_{1, i}^{2}}\right] \\
& =\beta_{1}
\end{aligned}
\]
- Identical argument works for \(\beta_{2}, \ldots, \beta_{k}\), thus
\[
E\left[\hat{\beta}_{j}\right]=\beta_{j} \text { where } j=1,2, \ldots, k
\]

\section*{Properties of OLS estimators: Consistency(1)}
- Recall
\[
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n} \tilde{X}_{1, i} Y_{i}}{\sum_{i=1}^{n} \tilde{X}_{1, i}^{2}}
\]
- Similar to the proof in the Simple OLS Regression,thus
\[
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n} \tilde{X}_{1, i} Y_{i}}{\sum_{i=1}^{n} \tilde{X}_{1, i}^{2}}=\frac{\frac{1}{n-2} \sum_{i=1}^{n} \tilde{X}_{11} Y_{i}}{\frac{1}{n-2} \sum_{i=1}^{n} \tilde{X}_{1 i}^{2}}=\left(\frac{s_{\tilde{x}_{1} Y}}{s_{\tilde{X}_{1}}^{2}}\right)
\]
where \(s_{\tilde{X}_{1} Y}\) and \(s_{\tilde{X}_{1}}^{2}\) are the sample covariance of \(\tilde{X}_{1}\) and \(Y\) and the sample variance of \(\tilde{X}_{1}\).

\section*{Properties of OLS estimators: Consistency(2)}
- Base on L.L.N(the law of large numbers) and random sample(i.i.d)
\[
\begin{aligned}
& s_{\tilde{X}_{1}^{2}} \xrightarrow{p} \sigma_{\tilde{X}_{1}^{2}}=\operatorname{Var}\left(\tilde{X}_{1}\right) \\
& s_{\tilde{X}_{1} Y} \xrightarrow{p} \sigma_{\tilde{X}_{1} Y}=\operatorname{Cov}\left(\tilde{X}_{1}, Y\right)
\end{aligned}
\]
- Combining with Continuous Mapping Theorem,then we obtain the partitioned multiple OLS estimator \(\hat{\beta}_{1}\), when \(n \longrightarrow \infty\)
\[
p \lim \hat{\beta}_{1}=p \lim \left(\frac{S_{\tilde{X}_{1} Y}}{S_{\tilde{X}_{1}}^{2}}\right)=\frac{\operatorname{Cov}\left(\tilde{X}_{1}, Y\right)}{\operatorname{Var}\left(\tilde{X}_{1}\right)}
\]

\section*{Properties of OLS estimators: Consistency(3)}
\[
\begin{aligned}
\operatorname{plim} \hat{\beta}_{1} & =\frac{\operatorname{Cov}\left(\tilde{X}_{1}, Y\right)}{\operatorname{Var}\left(\tilde{X}_{1}\right)} \\
& =\frac{\operatorname{Cov}\left(\tilde{X}_{1},\left(\beta_{0}+\beta_{1} X_{1 i}+\ldots+\beta_{k} X_{k i}+u_{i}\right)\right)}{\operatorname{Var}\left(\tilde{X}_{1}\right)} \\
& =\frac{\operatorname{Cov}\left(\tilde{X}_{1}, \beta_{0}\right)+\beta_{1} \operatorname{Cov}\left(\tilde{X}_{1}, X_{1 i}\right)+\ldots+\beta_{k} \operatorname{Cov}\left(\tilde{X}_{1}, X_{k i}\right)+\operatorname{Cov}\left(\tilde{X}_{1}, u_{i}\right)}{\operatorname{Var}\left(\tilde{X}_{1}\right)} \\
& =\beta_{1}+\frac{\operatorname{Cov}\left(\tilde{X}_{1}, u_{i}\right)}{\operatorname{Var}\left(\tilde{X}_{1}\right)}
\end{aligned}
\]

\section*{Properties of OLS estimators: Consistency(4)}
- Based on Assumption 1: \(\mathrm{E}\left[u_{i} \mid X_{1 i}, X_{2 i} \ldots X_{k i}\right]=0\)
- And \(\tilde{X}_{1 i}\) is a function of \(X_{2 i} \ldots X_{k i}\)
- Then
\[
\operatorname{Cov}\left(\tilde{X}_{1}, u_{i}\right)=0
\]
- Then we can obtain
\[
\operatorname{plim} \hat{\beta}_{1}=\beta_{1}
\]
- Identical argument works for \(\beta_{2}, \ldots, \beta_{k}\), thus
\[
\operatorname{plim}_{j}=\beta_{j} \text { where } j=1,2, \ldots, k
\]

\section*{Recall: The Distribution of Simple OLS Estimators}
- Under the least squares assumptions,the Simple OLS estimators \(\hat{\beta}_{1}\) and \(\hat{\beta}_{0}\), are unbiased and consistent estimators of \(\beta_{1}\) and \(\beta_{0}\).
- In large samples, the sampling distribution of \(\hat{\beta}_{1}\) and \(\hat{\beta}_{0}\) is well approximated by a bivariate normal distribution.
- Specifically, the sampling distribution of \(\hat{\beta}_{1}\) is
\[
\hat{\beta}_{1} \xrightarrow{d} N\left(\beta_{1}, \sigma_{\hat{\beta}_{1}}^{2}\right)
\]
where
\[
\sigma_{\hat{\beta}_{1}}^{2}=\frac{\operatorname{Var}\left[\left(x_{i}-\mu_{x}\right) u_{i}\right]}{n\left[\operatorname{Var}\left(X_{i}\right)\right]^{2}}
\]

\section*{The Distribution of Multiple OLS Estimators}
- Similarly as in the simple OLS, the multiple OLS estimators are averages of the randomly sampled data, and if the sample size is sufficiently large, the sampling distribution of those averages becomes normal.
\[
\hat{\boldsymbol{\beta}}_{j}=\boldsymbol{\beta}_{j}+\frac{\left(\sum_{i=1}^{n} \tilde{x}_{i j} u_{i}\right)}{\left(\sum_{i=1}^{n} \tilde{x}_{i j}^{2}\right)}
\]
- Then we have
\[
\sigma_{\beta_{j}}^{2}=\operatorname{Var}\left(\hat{\beta}_{j}\right)=\frac{\operatorname{Var}\left(\sum_{i=1}^{n} \tilde{x}_{i j}^{2} u_{i}\right)}{\left(\sum_{i=1}^{n} \tilde{x}_{i j}^{2}\right)^{2}}
\]
- Here the expression of \(\operatorname{Var}\left(\sum_{i=1}^{n} \tilde{X}_{i j} u_{i}\right)\) is a little bit complicated, Then best way mathematically to handle it is using matrix algebra, the expressions for the joint distribution of the OLS estimators are deferred to Chapter 18(SW textbook).

\section*{Multiple OLS Regression and Causality}

\section*{Independent Variable v.s Control Variables}
- Generally, we would like to pay more attention to only one independent variable(thus we would like to call it treatment variable), though there could be many independent variables.
- Because \(\beta_{j}\) is partial (marginal) effect of \(X_{j}\) on \(Y\).
\[
\beta_{j}=\frac{\partial Y_{i}}{\partial x_{j, i}}
\]
which means that we are estimate the effect of X on Y when "other things equal", thus the concept of ceteris paribus.
- Therefore,other variables in the right hand of equation, we call them control variables, which we would like to explicitly hold fixed when studying the effect of \(X_{1}\) or \(D\) on \(Y\).

\section*{Independent Variable v.s Control Variables}
- In a multiple regression, OLS is a way to control observable confounding factors, which assume the source of selection bias is only from the difference in observed characteristics(Selection-on-Observables)
- If the multiple regression model is
\[
Y_{i}=\beta_{0}+\beta_{1} X_{1, i}+\beta_{2} X_{2, i}+\ldots+\beta_{k} X_{k, i}+u_{i}, i=1, \ldots, n
\]
- Generally, we would like to pay more attention to only one independent variable(thus we would like to call it treatment variable), though there could be many independent variables.
- Other variables in the right hand of equation, we call them control variables, which we would like to explicitly hold fixed when studying the effect of \(X_{1}\) on \(Y\).

\section*{Picking Control Variables}
- Questions: Are "more controls" always better (or at least never worse)?
- Answer: It depends on.
- Irrelevant controls are variables which have a ZERO partial effect on the outcome, thus the coefficient in the population regression function is zero.
- Relevant controls are variables which have a NONZERO partial effect on the dependent variable.
- Non-Omitted Variables
- Omitted Variables
- Highly-correlated Variables
- Multicollinearity
- We will come back soon to discuss this topic again in Lecture 8 in details.

\section*{OLS Regression, Covariates and RCT}
- More specifically,regression model turns into
\[
Y_{i}=\beta_{0}+\beta_{1} D_{i}+\gamma_{2} C_{2, i}+\ldots+\gamma_{k} C_{k, i}+u_{i}, i=1, \ldots, n
\]
- transform it into
\[
Y_{i}=\beta_{0}+\beta_{1} D_{i}+\gamma_{2 \ldots k} C_{2 \ldots k, i}^{\prime}+u_{i}, i=1, \ldots, n
\]
- It turns out
\[
Y_{i}=\alpha+\rho D_{i}+\gamma C^{\prime}+u_{i}
\]

\section*{OLS Regression, Covariates and RCT}
- Now write out the conditional expectation of \(Y_{i}\) for both levels of \(D_{i}\) conditional on \(C\)
\[
\begin{aligned}
E\left[Y_{i} \mid D_{i}=1, C\right] & =E\left[\alpha+\rho+\gamma C+u_{i} \mid D_{i}=1, C\right] \\
& =\alpha+\rho+\gamma+E\left[u_{i} \mid D_{i}=1, C\right] \\
E\left[Y_{i} \mid D_{i}=0, C\right] & =E\left[\alpha+\gamma C+u_{i} \mid D_{i}=0, C\right] \\
& =\alpha+\gamma+E\left[u_{i} \mid D_{i}=0, C\right]
\end{aligned}
\]
- Taking the difference
\[
\begin{array}{r}
E\left[Y_{i} \mid D_{i}=1, C\right]-E\left[Y_{i} \mid D_{i}=0, C\right] \\
=\rho+\underbrace{E\left[u_{i} \mid D_{i}=1, C\right]-E\left[u_{i} \mid D_{i}=0, C\right]}_{\text {Selection bias }}
\end{array}
\]

\section*{OLS Regression, Covariates and RCT}
- Again, our estimate of the treatment effect \((\rho)\) is only going to be as good as our ability to eliminate the selection bias,thus
\[
E\left[u_{1 i} \mid D_{i}=1, C\right]-E\left[u_{0 i} \mid D_{i}=0, C\right] \neq 0
\]

\section*{Conditional Independence Assumption(CIA)}
"balance" covariates \(C\) then we can take the treatment \(D\) as randomized, thus
\[
\left(Y^{1}, Y^{0}\right) \Perp D \mid C
\]

\section*{OLS Regression, Covariates and RCT}
- This is the equivalence of the CIA assumption, which is also equivalent to the 1st assumption of Multiple OLS
\[
\begin{array}{r}
E\left[u_{1 i} \mid D_{i}=1, C\right]-E\left[u_{0 i} \mid D_{i}=0, C\right] \\
=E\left[u_{1 i} \mid C\right]-E\left[u_{0 i} \mid C\right]
\end{array}
\]
- Then we can eliminate the selection bias, thus making
\[
E\left[u_{1 i} \mid D_{i}=1, C\right]=E\left[u_{0 i} \mid D_{i}=0, C\right]
\]
- Thus
\[
E\left[Y_{i} \mid D_{i}=1, C\right]-E\left[Y_{i} \mid D_{i}=0, C\right]=\rho
\]

\section*{Wrap up}
- OLS regression is valid or can obtain a causal explanation only when least squares assumptions are held.
- The most important assumption is
\[
E\left(u_{i} \mid D\right)=0
\]
or
\[
E\left(u_{i} \mid D, C\right)=E\left(u_{i} \mid C\right)
\]
- In most cases, it does not satisfy it when using nonexperimental data. Therefore,how to make a convincing causal inference when these assumptions are not held is the key question.```

