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Review for the previous lectures
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Simple OLS formula

• The linear regression model with one regressor is denoted by

Yi = β0 + β1Xi + ui

• Where
• Yi is the dependent variable(Test Score)
• Xi is the independent variable or regressor(Class Size or Student-Teacher Ratio)
• ui is the error term which contains all the other factors besides X that determine the value of
the dependent variable, Y, for a specific observation, i.
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The OLS Estimator

• The estimators of the slope and intercept that minimize the sum of the squares of ûi,thus

argmin
b0,b1

n∑
i=1

û2
i = min

b0,b1

n∑
i=1

(Yi − b0 − b1Xi)2

are called the ordinary least squares (OLS) estimators of β0 and β1.

OLS estimator of β1:

b1 = β̂1 =

∑n
i=1(Xi − X)(Yi − Y)∑n
i=1(Xi − X)(Xi − X)
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Least Squares Assumptions

• Under 3 least squares assumptions,
1. Assumption 1
2. Assumption 2
3. Assumption 3

• The OLS estimators will be
1. unbiased
2. consistent
3. normal sampling distribution
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Multiple OLS Regression: Introduction
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Violation of the 1st Least Squares Assumption

• Recall simple OLS regression equation

Yi = β0 + β1Xi + ui

• Question: What does ui represent?
• Answer: contains all other factors(variables) which potentially affect Yi.

• Assumption 1
E(ui|Xi) = 0

• It states that ui are unrelated to Xi in the sense that,given a value of Xi,the mean of these
other factors equals zero.

• But what if they (or at least one) are correlated with Xi?
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Example: Class Size and Test Score

• Many other factors can affect student’s performance in the school.

• One of factors is the share of immigrants in the class. Because immigrant children may
have different backgrounds from native children, such as

• parents’ education level
• family income and wealth
• parenting style
• traditional culture
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Scatter Plot: The share of immigrants and STR
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Scatter Plot: The share of immigrants and STR
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The share of immigrants as an Omitted Variable

• Class size may be related to percentage of English learners and students who are still
learning English likely have lower test scores.

• In other words, the effect of class size on scores we had obtained in simple OLS may contain
an effect of immigrants on scores.

• It implies that percentage of English learners is contained in ui, in turn that Assumption 1
is violated.

• More precisely,the estimates of β̂1 and β̂0 are biased and inconsistent.
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Omitted Variable Bias: Introduction

• As before, Xi and Yi represent STR and Test Score,repectively.

• Besides, Wi is the variable which represents the share of english learners.

• Suppose that we have no information about it for some reasons, then we have to omit in
the regression.

• Thus we have two regressions in mind:
• True model(the Long regression):

Yi = β0 + β1Xi + γWi + ui

where E(ui|Xi) = 0
• OVB model(the Short regression):

Yi = β0 + β1Xi + vi

where vi = γWi + ui
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Omitted Variable Bias: Biasedness

• Let us see what is the consequence of OVB

E[β̂1] =

∑n
i=1(Xi − X)(Yi − Y)∑n
i=1(Xi − X)(Xi − X)

= E
[∑

(Xi − X̄)(β0 + β1Xi + vi − (β0 + β1X+ v))∑
(Xi − X̄)(Xi − X̄)

]
= E

[∑
(Xi − X̄)(β0 + β1Xi + γWi + ui − (β0 + β1X+ γW+ u))∑

(Xi − X̄)(Xi − X̄)

]
= E

[∑
(Xi − X̄)(β1(Xi − X) + γ(Wi − W) + ui − u)∑

(Xi − X̄)(Xi − X̄)

]
• Using the Law of Iterated Expectation(LIE) again, we will obtain the following expression(Skip these
steps which are very similar to those for proving unbiasedness of β̂1, please prove it by yourself).

E[β̂1] = β1 + γE
[∑

(Xi − X̄)(Wi − W̄)∑
(Xi − X̄)(Xi − X̄)

]
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Omitted Variable Bias: Biasedness

• As proving unbiasedness of β̂1, thus E[β̂1] = β1, then we need

E
[∑

(Xi − X̄)(Wi − W̄)∑
(Xi − X̄)(Xi − X̄)

]
= 0

• Two scenarios:
1. If Wi is unrelated to Xi,then E[β̂1] = β1.
2. If Wi is not determinant of Yi, which means that

γ = 0

,then E[β̂1] = β1, too.

• Only if both two conditions above are violated simultaneously, then β̂1 is biased, which is
normally called Omitted Variable Bias(OVB).
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Omitted Variable Bias(OVB): inconsistency

• Recall: simple OLS is consistency when n is large, thus plimβ̂1 =
Cov(Xi,Yi)
Var(Xi)

plimβ̂1 =
Cov(Xi, Yi)

VarXi

=
Cov(Xi, (β0 + β1Xi + vi))

VarXi

=
Cov(Xi, (β0 + β1Xi + γWi + ui))

VarXi

=
Cov(Xi, β0) + β1Cov(Xi, Xi) + γCov(Xi,Wi) + Cov(Xi, ui)

VarXi

= β1 + γ
Cov(Xi,Wi)

VarXi
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Omitted Variable Bias(OVB): inconsistency

• Thus we obtain

plimβ̂1 = β1 + γ
Cov(Xi,Wi)

VarXi

• β̂1 is still consistent
• if Wi is unrelated to X, thus Cov(Xi,Wi) = 0
• if Wi has no effect on Yi, thus γ = 0

• Only if both two conditions above are violated simultaneously, then β̂1 is inconsistent.
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Omitted Variable Bias(OVB):Directions

• If OVB can be possible in our regressions,then we should guess the directions of the bias,
in case that we can’t eliminate it.

• A summary of the directions of the OVB bias

Cov(Xi,Wi) > 0 Cov(Xi,Wi) < 0

γ > 0 Positive bias Negative bias
γ < 0 Negative bias Positive bias
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Omitted Variable Bias: Examples

• Question: If we omit following variables, then what are the directions of these biases? and
why?

1. Time of day of the test
2. The number of dormitories
3. Teachers’ salary
4. Family income
5. Percentage of English learners(the share of immigrants)
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Omitted Variable Bias: Examples in R

• Regress Testscore on Class size

#>
#> Call:
#> lm(formula = testscr ~ str, data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -47.727 -14.251 0.483 12.822 48.540
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 698.9330 9.4675 73.825 < 2e-16 ***
#> str -2.2798 0.4798 -4.751 2.78e-06 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 18.58 on 418 degrees of freedom
#> Multiple R-squared: 0.05124, Adjusted R-squared: 0.04897
#> F-statistic: 22.58 on 1 and 418 DF, p-value: 2.783e-06
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Omitted Variable Bias: Examples in R
• Regress Testscore on Class size and the percentage of English learners

#>
#> Call:
#> lm(formula = testscr ~ str + el_pct, data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -48.845 -10.240 -0.308 9.815 43.461
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
#> str -1.10130 0.38028 -2.896 0.00398 **
#> el_pct -0.64978 0.03934 -16.516 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 14.46 on 417 degrees of freedom
#> Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
#> F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16
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Omitted Variable Bias: Examples in R

Table 2: Class Size and Test Score

Dependent variable:

testscr

(1) (2)

str −2.280∗∗∗ −1.101∗∗∗

(0.480) (0.380)
el_pct −0.650∗∗∗

(0.039)
Constant 698.933∗∗∗ 686.032∗∗∗

(9.467) (7.411)

Observations 420 420
R2 0.051 0.426

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Warp Up

• OVB is the most common bias when we run OLS regressions using nonexperimental data.

• OVB means that there are some variables which should have been included in the
regression but actually was not.

• Then the simplest way to overcome OVB: Put omitted the variable into the right side of the
regression, which means our regression model should be

Yi = β0 + β1Xi + γWi + ui

• The strategy can be denoted as controlling informally, which introduces the more general
regression model: Multiple OLS Regression.
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Multiple OLS Regression: Estimation
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Multiple regression model with k regressors

• The multiple regression model is

Yi = β0 + β1X1,i + β2X2,i + ... + βkXk,i + ui, i = 1, ..., n (4.1)

where
• Yi is the dependent variable
• X1, X2, ...Xk are the independent variables(includes one is our of interest and some control
variables)

• βi, j = 1...k are slope coefficients on Xi corresponding.
• β0 is the estimate intercept, the value of Y when all Xj = 0, j = 1...k
• ui is the regression error term, still all other factors affect outcomes.

25 / 87



Interpretation of coefficients βi, j = 1...k

• βj is partial (marginal) effect of Xj on Y.

βj =
∂Yi
∂Xj,i

• βj is also partial (marginal) effect of E
[
Yi|X1..Xk

]
.

βj =
∂E[Yi|X1, ..., Xk]

∂Xj,i

• it does mean that we are estimate the effect of X on Y when “other things equal”, thus the
concept of ceteris paribus.
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OLS Estimation in Multiple Regressors

• As in a Simple OLS Regression, the estimators of Multiple OLS Regression is just a
minimize the following question

argmin
∑

b0,b1,...,bk

(Yi − b0 − b1X1,i − ... − bkXk,i)2

where b0 = β̂1, b1 = β̂2, ..., bk = β̂k are estimators.
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OLS Estimation in Multiple Regressors

• Similarly in Simple OLS, based on F.O.C,the multiple OLS estimators β̂0, β̂1, ..., β̂k are
obtained by solving the following system of normal equations

∂

∂b0

n∑
i=1

û2
i =

∑ (
Yi − β̂0 − β̂1X1,i − ... − β̂kXk,i

)
= 0

∂

∂b1

n∑
i=1

û2
i =

∑ (
Yi − β̂0 − β̂1X1,i − ... − β̂kXk,i

)
X1,i = 0

... =
... =

...

∂

∂bk

n∑
i=1

û2
i =

∑ (
Yi − β̂0 − β̂1X1,i − ... − β̂kXk,i

)
Xk,i = 0
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OLS Estimation in Multiple Regressors

• Similar to in Simple OLS, the fitted residuals are

ûi = Yi − β̂0 − β̂1X1,i − ... − β̂kXk,i

• Therefore, the normal equations also can be written as∑
ûi = 0∑

ûiX1,i = 0
... =

...∑
ûiXk,i = 0

• While it is convenient to transform equations above using matrix algebra to compute these
estimators, we can use partitioned regression to obtain the formula of estimators without
using matrices.
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Partitioned Regression: OLS Estimators in Multiple Regression
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Partitioned regression: OLS estimators

• A useful representation of β̂j could be obtained by the partitioned regression, which
computed OLS estimators of βj; j = 1, 2...k in following 3 steps.

1. Regress Xj on X1, X2, ...Xj−1, Xj+1, Xk, thus

Xj,i = γ0 + γ1X1i + ... + γj−1Xj−1,i + γj+1Xj+1,i... + γkXk,i + vji

2. Obtain the residuals from the regression above,denoted as X̃j,i = v̂ji
3. Regress Y on X̃j,i

• The last step implies that the OLS estimator of βj can be expressed as follows

β̂j =

∑n
i=1 (X̃ji − X̃ji)(Yi − Y)∑n

i=1 (X̃ji − X̃ji)2
=

∑n
i=1 X̃jiYi∑n
i=1 X̃

2
ji
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Partitioned regression: OLS estimators

• Suppose we want to obtain an expression for β̂1.

• Then the first step: regress X1,i on other regressors, thus

X1,i = γ0 + γ2X2,i + ... + γkXk,i + vi

• Then, we can obtain
X1,i = γ̂0 + γ̂2X2,i + ... + γ̂kXk,i + X̃1,i

where X̃1,i is the fitted OLS residual,thus X̃j,i = v̂1i

• Then we could prove that

β̂1 =

∑n
i=1 X̃1,iYi∑n
i=1 X̃

2
1,i
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Proof of Partitioned regression result(1)

• Recall ui are the residuals for the Multiple OLS regression equation,thus

Yi = β̂0 + β̂1X1,i + β̂2X2,i + ... + β̂kXk,i + ûi

• Then we have ∑
ûi =

∑
ûiXji = 0, j = 1, 2, ..., k

• Likewise,̃X1i are the residuals for the partitioned regression equation on X2i..., Xki, then we have∑
X̃1i =

∑
X̃1iX2,i = ... =

∑
X̃1iXk,i = 0

• Additionally, because X̃1,i = X1,i − γ̂0 − γ̂2X2,i − ... − γ̂kXk,i, then∑
ûiX̃ji = 0
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Proof of Partitioned regression result(2)

∑n
i=1 X̃1,iYi∑n
i=1 X̃

2
1,i

=

∑
X̃1,i(β̂0 + β̂1X1,i + β̂2X2,i + ... + β̂kXk,i + ûi)∑

X̃21,i

= β̂0

∑n
i=1 X̃1,i∑n
i=1 X̃

2
1,i

+ β̂1

∑n
i=1 X̃1,iX1,i∑n
i=1 X̃

2
1,i

+ ...

+ β̂k

∑n
i=1 X̃1,iXk,i∑n
i=1 X̃

2
1,i

+

∑n
i=1 X̃1,iûi∑n
i=1 X̃

2
1,i

= β̂1

∑n
i=1 X̃1,iX1,i∑n
i=1 X̃

2
1,i
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Proof of Partitioned regression result(3)

• We will see
n∑

i=1

X̃1,iX1,i =
n∑

i=1

X̃1,i(γ̂0 + γ̂2X2,i + ... + γ̂kXk,i + X̃1,i)

= γ̂0 · 0+ γ̂2 · 0+ ... + γ̂k · 0+
∑

X̃21,i

=
∑

X̃21,i

• Then ∑n
i=1 X̃1,iYi∑n
i=1 X̃

2
1,i

= β̂1

∑n
i=1 X̃1,iX1,i∑n
i=1 X̃

2
1,i

= β̂1
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A transformation of FWL theorem

Regression anatomy theorem
The multiple regression model is

Yi = β0 + β1X1,i + β2X2,i + ... + βkXk,i + ui, i = 1, ..., n

Then estimator of β̂0, β̂1, ..., β̂k can be expressed as following

β̂j =

∑n
i=1 X̃j,iYi∑n
i=1 X̃

2
j,i

for j = 1, 2, .., k

where X̃j,i is the fitted OLS residual of the regression Xj on the other Xs.
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The intuition of partitioned regression

Partialling Out

• First, we regress Xj against the rest of the regressors (and a constant) and keep X̃j which is
the “part” of Xj that is uncorrelated

• Then, to obtain β̂j , we regress Y against X̃j which is “clean” from correlation with other
regressors.

• β̂j measures the effect of X1 after the effects of X2, ..., Xk have been partialled out or netted
out.
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Test Scores and Student-Teacher Ratios

• Now we put one additional control variables into our OLS regression model

Testscore = β0 + β1STR+ β2elpct+ ui

• elpct: the share of English learners as an indicator for immigrants
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Test Scores and Student-Teacher Ratios(2)

tilde.str <- residuals(lm(str ~ el_pct, data=ca))
mean(tilde.str) # should be zero

#> [1] -1.0111e-16

sum(tilde.str) # also is zero

#> [1] -4.240358e-14
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Test Scores and Student-Teacher Ratios(3)

• Multiple OLS estimator

β̂j =

∑n
i=1 X̃j,iYi∑n
i=1 X̃

2
j,i

for j = 1, 2, .., k

sum(tilde.str*ca$testscr)/sum(tilde.str^2)

#> [1] -1.101296
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Test Scores and Student-Teacher Ratios(4)

reg3 <- lm(testscr ~ tilde.str,data = ca)
summary(reg3)

#>
#> Call:
#> lm(formula = testscr ~ tilde.str, data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -48.693 -14.124 0.988 13.209 50.872
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 654.1565 0.9254 706.864 <2e-16 ***
#> tilde.str -1.1013 0.4986 -2.209 0.0277 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 18.97 on 418 degrees of freedom
#> Multiple R-squared: 0.01154, Adjusted R-squared: 0.009171
#> F-statistic: 4.878 on 1 and 418 DF, p-value: 0.02774
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Test Scores and Student-Teacher Ratios(5)

reg4 <- lm(testscr ~ str+el_pct,data = ca)
summary(reg4)

#>
#> Call:
#> lm(formula = testscr ~ str + el_pct, data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -48.845 -10.240 -0.308 9.815 43.461
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
#> str -1.10130 0.38028 -2.896 0.00398 **
#> el_pct -0.64978 0.03934 -16.516 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 14.46 on 417 degrees of freedom
#> Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
#> F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16
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Table 3: Class Size and Test Score

Dependent variable:

testscr

(1) (2)

tilde.str −1.101∗∗

(0.499)
str −1.101∗∗∗

(0.380)
el_pct −0.650∗∗∗

(0.039)
Constant 654.157∗∗∗ 686.032∗∗∗

(0.925) (7.411)

Observations 420 420
R2 0.012 0.426
Adjusted R2 0.009 0.424

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Measures of Fit in Multiple Regression
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Measures of Fit: The R2

• Decompose Yi into the fitted value plus the residual Yi = Ŷi + ûi

• The total sum of squares (TSS): TSS =
∑n

i=1(Yi − Y)2

• The explained sum of squares (ESS):
∑n

i=1(Ŷi − Y)2

• The sum of squared residuals (SSR):
∑n

i=1(Ŷi − Yi)2 =
∑n

i=1 û
2
i

• And
TSS = ESS+ SSR

• The regression R2 is the fraction of the sample variance of Yi explained by (or predicted by)
the regressors.

R2 =
ESS
TSS

= 1 − SSR
TSS
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Measures of Fit in Multiple Regression

• When you put more variables into the regression, then R2 always increases when you add
another regressor. Because in general the SSR will decrease.

• Consider two models
Yi = β0 + β1X1i + ui

Yi = β̃0 + β̃1X1i + β̃2X2i + vi

• Recall: about two residuals ûi and v̂i, we have

n∑
i=1

ûi =
n∑

i=1

ûiX1i = 0

n∑
i=1

v̂i =
n∑

i=1

v̂iX1i =
n∑

i=1

v̂iX2i = 0
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Measures of Fit in Multiple Regression

• we will show that
n∑

i=1

û2
i ≥

n∑
i=1

v̂2i

• therefore R2
v ≥ R2

u, thus R
2 that correspinds the regression with one regressor is less or

equal than R2 that corresponds to the regression with two regressors.

• This conclusion can be generalized to the case of k+ 1 regressors.
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Measures of Fit in Multiple Regression

• At first we would like to know
∑n

i=1 ûiv̂i

n∑
i=1

ûiv̂i =
n∑

i=1

(Yi − β̂0 − β̂1X1i)v̂i

=
n∑

i=1

Yiv̂i − β̂0

n∑
i=1

v̂i − β̂1

n∑
i=1

X1v̂i

=
n∑

i=1

Yiv̂i − β̂0 · 0 − β̂1 · 0

=
n∑

i=1

(
ˆ̃
β0 +

ˆ̃
β1X1i +

ˆ̃
β2X2i + v̂i)v̂i

=
∑
i=1

v̂iv̂i
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Measures of Fit in Multiple Regression

• Then we can obtain

n∑
i=1

û2
i −

n∑
i=1

v̂2i =
n∑

i=1

û2
i +

n∑
i=1

v̂2i − 2
n∑

i=1

v̂2i

=
n∑

i=1

û2
i +

n∑
i=1

v̂2i − 2
n∑

i=1

ûiv̂i

=
n∑

i=1

(ûi − v̂i)2 ≥ 0

• Therefore R2
v ≥ R2

u, thus R
2 the regression with one regressor is less or equal than R2 that

corresponds to the regression with two regressors.
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Measures of Fit: The Adjusted R2

• the Adjusted R2,is a modified version of the R2 that does not necessarily increase when a
new regressor is added.

R2 = 1 − n − 1
n − k − 1

SSR
TSS

= 1 −
s2û
s2Y

• because n−1
n−k−1 is always greater than 1, so R2 < R2

• adding a regressor has two opposite effects on the R2.
• R2 can be negative.

• Remind: neither R2 nor R2 is not the golden criterion for good or bad OLS estimation.
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Standard Error of the Regression

• Recall: SER(Standard Error of the Regression)
• SER is an estimator of the standard deviation of the ui, which are measures of the spread of
the Y’s around the regression line.

• Because the regression errors are unobserved, the SER is computed using their sample
counterparts, the OLS residuals ûi

SER = sû =
√

s2û

where s2û =
1

n−k−1

∑
û2

i =
SSR

n−k−1

• n − k − 1 because we have k+ 1 restricted conditions in the F.O.C.In another word,in order
to construct û2

i, we have to estimate k+ 1 parameters,thus β̂0, β̂1, ..., β̂k
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Example: Test scores and Student Teacher Ratios
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Categoried Variable as independent variables in Regression
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A Special Case: Categorical Variable as X

• Recall if X is a dummy variable, then we can put it into regression equation straightly.

• What if X is a categorical variable?
• Question: What is a categorical variable?

• For example, we may define Di as follows:

Di =


1 small-size class if STR in ith school district < 18

2 middle-size class if 18 ≤ STR in ith school district < 22

3 large-size class if STR in ith school district ≥ 22

(4.5)
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A Special Case: Categorical Variable as X

• Naive Solution: a simple OLS regression model

TestScorei = β0 + β1Di + ui

• Question: Can you explain the meanning of estimate coefficient β1?

• Answer: It doese not make sense that the coefficient of β1 can be explained as continuous
variables.
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A Special Case: Categorical Variables as X

• The first step: turn a categorical variable(Di) into multiple dummy variables(D1i, D2i, D3i)

D1i =

1 small-sized class if STR in ith school district < 18

0 middle-sized class or large-sized class if not

D2i =

1 middle-sized class if 18 ≤ STR in ith school district < 22

0 large-sized class or small-sized class if not

D3i =

1 large-sized class if STR in ith school district ≥ 22

0 middle-sized class or small-sized class if not
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A Special Case: Categorical Variables as X

• We put these dummies into a multiple regression

TestScorei = β0 + β1D1i + β2D2i + β3D3i + ui (4.6)

• Then as a dummy variable as the independent variable in a simple regression The
coefficients (β1, β2, β3) represent the effect of every categorical class on testscore
respectively.
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A Special Case: Categorical Variables as X

• In practice, we can’t put all dummies into the regression, but only have n − 1 dummies
unless we will suffer perfect multi-collinearity.

• The regression may be like as

TestScorei = β0 + β1D1i + β2D2i + ui (4.6)

• The default intercept term, β0,represents the large-sized class.Then, the coefficients
(β1, β2) represent testscore gaps between small_sized, middle-sized class and large-sized
class,respectively.
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Multiple Regression: Assumption
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Multiple Regression: Assumption

• Assumption 1: The conditional distribution of ui given X1i, ..., Xki has mean zero,thus

E[ui|X1i, ..., Xki] = 0

• Assumption 2: (Yi, X1i, ..., Xki) are i.i.d.
• Assumption 3: Large outliers are unlikely.
• Assumption 4: No perfect multicollinearity.
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Perfect multicollinearity

Perfect multicollinearity arises when one of the regressors is a perfect linear combination of
the other regressors.

• Binary variables are sometimes referred to as dummy variables

• If you include a full set of binary variables (a complete and mutually exclusive
categorization) and an intercept in the regression, you will have perfect multicollinearity.

• eg. female and male = 1-female
• eg. West, Central and East China

• This is called the dummy variable trap.

• Solutions to the dummy variable trap: Omit one of the groups or the intercept
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Perfect multicollinearity
• regress Testscore on Class size and the percentage of English learners

#>
#> Call:
#> lm(formula = testscr ~ str + el_pct, data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -48.845 -10.240 -0.308 9.815 43.461
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
#> str -1.10130 0.38028 -2.896 0.00398 **
#> el_pct -0.64978 0.03934 -16.516 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 14.46 on 417 degrees of freedom
#> Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
#> F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16
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Perfect multicollinearity
• add a new variable nel=1-el_pct into the regression

#>
#> Call:
#> lm(formula = testscr ~ str + nel_pct + el_pct, data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -48.845 -10.240 -0.308 9.815 43.461
#>
#> Coefficients: (1 not defined because of singularities)
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 685.38247 7.41556 92.425 < 2e-16 ***
#> str -1.10130 0.38028 -2.896 0.00398 **
#> nel_pct 0.64978 0.03934 16.516 < 2e-16 ***
#> el_pct NA NA NA NA
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 14.46 on 417 degrees of freedom
#> Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
#> F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16
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Perfect multicollinearity

Table 4: Class Size and Test Score

Dependent variable:

testscr

(1) (2)

str −1.101∗∗∗ −1.101∗∗∗

(0.380) (0.380)
nel_pct 0.650∗∗∗

(0.039)
el_pct −0.650∗∗∗

(0.039)
Constant 686.032∗∗∗ 685.382∗∗∗

(7.411) (7.416)

Observations 420 420
R2 0.426 0.426

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 64 / 87



Multicollinearity

Multicollinearity means that two or more regressors are highly correlated, but one regressor is
NOT a perfect linear function of one or more of the other regressors.

• multicollinearity is NOT a violation of OLS assumptions.
• It does not impose theoretical problem for the calculation of OLS estimators.

• But if two regressors are highly correlated, then the the coefficient on at least one of the
regressors is imprecisely estimated (high variance).

• To what extent two correlated variables can be seen as “highly correlated”?
• rule of thumb: correlation coefficient is over 0.8.
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Venn Diagrams for Multiple Regression Model

• In a simple model (y on X), OLS uses
‘Blue‘ + ‘Red‘ to estimate β.

• When y is regressed on X and W: OLS
throws away the red area and just
uses blue to estimate β .

• Idea: Red area is contaminated(we
do not know if the movements in y
are due to X or to W).
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Venn Diagrams for Multicollinearity

• Less information (compare the Blue and Green areas in both figures) is used, the
estimation is less precise. 67 / 87



Multiple Regression: Test Scores and Class Size

Table 5: Class Size and Test Score

testscr

(1) (2) (3)

str −2.280∗∗∗ −1.101∗∗∗ −0.069
(0.480) (0.380) (0.277)

el_pct −0.650∗∗∗ −0.488∗∗∗

(0.039) (0.029)
avginc 1.495∗∗∗

(0.075)
Constant 698.933∗∗∗ 686.032∗∗∗ 640.315∗∗∗

(9.467) (7.411) (5.775)
N 420 420 420
R2 0.051 0.426 0.707
Adjusted R2 0.049 0.424 0.705

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Properties of OLS Estimators in Multiple Regression
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Properties of OLS estimators: Unbiasedness(1)

• Use partitioned regression formula

β̂1 =

∑n
i=1 X̃1,iYi∑n
i=1 X̃

2
1,i

• Substitute Yi = β0 + β1X1,i + β2X2,i + ... + βkXk,i + ui, i = 1, ..., n,then

β̂1 =

∑
X̃1,i(β0 + β1X1,i + β2X2,i + ... + βkXk,i + ui)∑

X̃21,i

= β0

∑n
i=1 X̃1,i∑n
i=1 X̃

2
1,i

+ β1

∑n
i=1 X̃1,iX1,i∑n
i=1 X̃

2
1,i

+ ...

+ βk

∑n
i=1 X̃1,iXk,i∑n
i=1 X̃

2
1,i

+

∑n
i=1 X̃1,iui∑n
i=1 X̃

2
1,i
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Properties of OLS estimators: Unbiasedness(2)

• Because

n∑
i=1

X̃1,i =
n∑

i=1

X̃1,iXj,i = 0 , j = 2, 3, ..., k

n∑
i=1

X̃1,iX1,i =
∑

X̃21,i

• Therefore

β̂1 = β1 +

∑n
i=1 X̃1,iui∑n
i=1 X̃

2
1,i
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Properties of OLS estimators: Unbiasedness(3)

• Recall Assumption 1: E[ui|X1i, X2i...Xki] = 0 and X̃1i is a function of X2i...Xki

• Then take expectations of β̂1 and The Law of Iterated Expectations again

E[β̂1] = E
[
β1 +

∑n
i=1 X̃1,iui∑n
i=1 X̃

2
1,i

]
= β1 + E

[∑n
i=1 X̃1,iui∑n
i=1 X̃

2
1,i

]

= β1 + E
[∑n

i=1 X̃1,iE[ui|X1i...Xki]∑n
i=1 X̃

2
1,i

]
= β1

• Identical argument works for β2, ..., βk, thus

E[β̂j] = βj where j = 1, 2, ..., k
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Properties of OLS estimators: Consistency(1)

• Recall

β̂1 =

∑n
i=1 X̃1,iYi∑n
i=1 X̃

2
1,i

• Similar to the proof in the Simple OLS Regression,thus

β̂1 =

∑n
i=1 X̃1,iYi∑n
i=1 X̃

2
1,i

=
1

n−2
∑n

i=1 X̃1iYi
1

n−2
∑n

i=1 X̃
2
1i

=

(sX̃1Y
s2X̃1

)

where sX̃1Y and s2X̃1 are the sample covariance of X̃1 and Y and the sample variance of X̃1.
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Properties of OLS estimators: Consistency(2)

• Base on L.L.N(the law of large numbers) and random sample(i.i.d)

sX̃21
p−→ σX̃21

= Var(X̃1)

sX̃1Y
p−→ σX̃1Y = Cov(X̃1, Y)

• Combining with Continuous Mapping Theorem,then we obtain the partitioned multiple OLS
estimator β̂1,when n −→ ∞

plimβ̂1 = plim
(sX̃1Y

s2X̃1

)
=

Cov(X̃1, Y)
Var(X̃1)
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Properties of OLS estimators: Consistency(3)

plimβ̂1 =
Cov(X̃1, Y)
Var(X̃1)

=
Cov(X̃1, (β0 + β1X1i + ... + βkXki + ui))

Var(X̃1)

=
Cov(X̃1, β0) + β1Cov(X̃1, X1i) + ... + βkCov(X̃1, Xki) + Cov(X̃1, ui)

Var(X̃1)

= β1 +
Cov(X̃1, ui)
Var(X̃1)

75 / 87



Properties of OLS estimators: Consistency(4)

• Based on Assumption 1: E[ui|X1i, X2i...Xki] = 0

• And X̃1i is a function of X2i...Xki

• Then
Cov(X̃1, ui) = 0

• Then we can obtain
plimβ̂1 = β1

• Identical argument works for β2, ..., βk,thus

plimβ̂j = βj where j = 1, 2, ..., k
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Recall: The Distribution of Simple OLS Estimators

• Under the least squares assumptions,the Simple OLS estimators β̂1 and β̂0, are unbiased
and consistent estimators of β1 and β0.

• In large samples, the sampling distribution of β̂1 and β̂0 is well approximated by a
bivariate normal distribution.

• Specifically, the sampling distribution of β̂1 is

β̂1
d−→ N(β1, σ2

β̂1
)

where

σ2
β̂1
=

Var[(Xi − µx)ui]
n[Var(Xi)]2
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The Distribution of Multiple OLS Estimators

• Similarly as in the simple OLS, the multiple OLS estimators are averages of the randomly
sampled data, and if the sample size is sufficiently large, the sampling distribution of
those averages becomes normal.

β̂j = βj +

(∑n
i=1 X̃ijui

)(∑n
i=1 X̃

2
ij

)
• Then we have

σ2
βj
= Var(β̂j) =

Var
(∑n

i=1 X̃
2
ijui

)
(∑n

i=1 X̃
2
i1
)2

• Here the expression of Var
(∑n

i=1 X̃
2
ijui

)
is a little bit complicated, Then best way

mathematically to handle it is using matrix algebra, the expressions for the joint
distribution of the OLS estimators are deferred to Chapter 18(SW textbook).
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Multiple OLS Regression and Causality
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Independent Variable v.s Control Variables

• Generally, we would like to pay more attention to only one independent variable(thus we
would like to call it treatment variable), though there could be many independent
variables.

• Because βj is partial (marginal) effect of Xj on Y.

βj =
∂Yi
∂Xj,i

which means that we are estimate the effect of X on Y when “other things equal”, thus the
concept of ceteris paribus.

• Therefore,other variables in the right hand of equation, we call them control variables,
which we would like to explicitly hold fixed when studying the effect of X1 or D on Y.
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Independent Variable v.s Control Variables

• In a multiple regression, OLS is a way to control observable confounding factors, which
assume the source of selection bias is only from the difference in observed
characteristics(Selection-on-Observables)

• If the multiple regression model is

Yi = β0 + β1X1,i + β2X2,i + ... + βkXk,i + ui, i = 1, ..., n

• Generally, we would like to pay more attention to only one independent variable(thus we
would like to call it treatment variable), though there could be many independent
variables.

• Other variables in the right hand of equation, we call them control variables, which we
would like to explicitly hold fixed when studying the effect of X1 on Y.
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Picking Control Variables

• Questions: Are “more controls” always better (or at least never worse)?

• Answer: It depends on.

• Irrelevant controls are variables which have a ZERO partial effect on the outcome, thus the
coefficient in the population regression function is zero.

• Relevant controls are variables which have a NONZERO partial effect on the dependent variable.

• Non-Omitted Variables
• Omitted Variables

• Highly-correlated Variables

• Multicollinearity

• We will come back soon to discuss this topic again in Lecture 8 in details.
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OLS Regression, Covariates and RCT

• More specifically,regression model turns into

Yi = β0 + β1Di + γ2C2,i + ... + γkCk,i + ui, i = 1, ..., n

• transform it into
Yi = β0 + β1Di + γ2...kC′

2...k,i + ui, i = 1, ..., n

• It turns out
Yi = α + ρDi + γC′ + ui
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OLS Regression, Covariates and RCT

• Now write out the conditional expectation of Yi for both levels of Di conditional on C

E [Yi | Di = 1, C] = E [α + ρ + γC+ ui | Di = 1, C]

= α + ρ + γ + E [ui|Di = 1, C]

E [Yi | Di = 0, C] = E [α + γC+ ui | Di = 0, C]

= α + γ + E [ui | Di = 0, C]

• Taking the difference

E [Yi | Di = 1, C] − E [Yi | Di = 0, C]

= ρ + E [ui|Di = 1, C] − E [ui | Di = 0, C]︸ ︷︷ ︸
Selection bias
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OLS Regression, Covariates and RCT

• Again, our estimate of the treatment effect (ρ) is only going to be as good as our ability to
eliminate the selection bias,thus

E [u1i|Di = 1, C] − E [u0i | Di = 0, C] ̸= 0

Conditional Independence Assumption(CIA)
”balance” covariates C then we can take the treatment D as randomized, thus

(Y1, Y0) ⊥⊥ D|C

85 / 87



OLS Regression, Covariates and RCT

• This is the equivalence of the CIA assumption, which is also equivalent to the 1st
assumption of Multiple OLS

E [u1i|Di = 1, C] − E [u0i | Di = 0, C]

= E [u1i|C] − E [u0i|C]

• Then we can eliminate the selection bias, thus making

E [u1i|Di = 1, C] = E [u0i | Di = 0, C]

• Thus
E [Yi | Di = 1, C] − E [Yi | Di = 0, C] = ρ
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Wrap up

• OLS regression is valid or can obtain a causal explanation only when least squares
assumptions are held.

• The most important assumption is
E(ui|D) = 0

or
E(ui|D, C) = E(ui|C)

• In most cases,it does not satisfy it when using nonexperimental data. Therefore,how to
make a convincing causal inference when these assumptions are not held is the key
question.
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