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Review the last lecture

Hypothesis Testing

Confidence Intervals

Gauss-Markov theorem and Heteroskedasticity

OLS with Multiple Regressors: Hypotheses tests

Case: Analysis of the Test Score Data Set
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Omitted Variable Bias and M-OLS

- Omitted Variable Bias(OVB) violates the first Least Squares Assumption:
E(U,“X,‘) =0

- It will make Simple OLS estimation biased and inconsistent.
- If the omitted variable can be observed and measured, then we can put it into the regression,
thus control it to eliminate the bias.

- We have to extend the Simple OLS regression to the Multiple one.
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Multiple regression model with k regressors

- The multiple regression model is

Y = By + ﬁ1X1,,’ + ,82)(27,' + ...+ ,Bka’,‘ +ui,i=1,..,n

- where
- Y; is the dependent variable
- X1, X5, ...Xy, are the independent variables(includes one treatment variable and some control
variables)
- Bi,j = 1...k are slope coefficients on X; corresponding.
- Bo is the estimate intercept, the value of Y when allX; = 0,j = 1...k
- uj is the regression error term.
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Multiple Regression: Assumptions

If the four least squares assumptions in the multiple regression model hold:

- Assumption 1: The conditional distribution of u; given Xj;, ..., Xij has mean zero,thus
E[U,"X‘“’, ...,Xm] =0

- Assumption 2: (Yi, Xqj, ..., Xgi) are i.i.d.
- Assumption 3: Large outliers are unlikely.
- Assumption 4: No perfect multicollinearity.

Then

- The OLS estimators ﬁo, Bq Bk are unbiased.
- The OLS estimators BO, B‘\ ﬁ}e are consistent.

- The OLS estimators BO, ﬂq ﬁk are normally distributed in large samples.
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Introduction: Class size and Test Score

Recall our simple OLS regression mode is
TestScore; = [y + B1STR; + u;

690 -

630~

2 %
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Class Size and Test Score

Then we got the result of a simple OLS regression

TestScore = 698.9 — 2.28 X STR, R’ = 0.051, SER = 18.6

- Don’t forget: the result are not obtained from the population but from the sample.

- How can you be sure about the result? In other words, how confident you can believe the
result from the sample inferring to the population?

- If someone believes that cutting the class size will not help boost test scores. Can you
reject the claim based your scientific evidence-based data analysis?

- This is the work of Hypothesis Testing in OLS regressions.
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Review: Hypothesis Testing

- A hypothesis is (usually) an assertion or statement about unknown population parameters
like 6.

- Suppose we want to test whether it is significantly different from a certain value pyg
- Then null hypothesis is
Ho : 0 = po

- The alternative hypothesis(two-sided) is

Hi 0 # po

- If the value pp does not lie within the calculated confidence interval, then we reject the
null hypothesis.

- If the value pyg lie within the calculated confidence interval, then we fail to reject the null
hypothesis.
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Review: Hypothesis Testing

- Most countries follow the rule of criminal trials: innocent until proven guilty(8¢SE MM TT)
- The jury or judge starts with the “null hypothesis” that the accused person is innocent.
- The prosecutor wants to prove their hypothesis that the accused person is guilty.
- In other words, they have to show strong evidence to make the jury or judge reject the “null

hypothesis”.
- Likewise, our rule in econometrics is presumption of insignificance until proven.

- At first researchers have to assume that there is zero impact of independent variable on
dependent variable.

- In order to prove the relationship between the independent variable and dependent variable,

we must provide strong enough evidence to convince readers or policy makers to “reject” the
assumption of a zero effect.
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Review: Two Type Errors(FFhégiR)

- In both cases, there is a certain risk that our conclusion is wrong

Ho is true Ha is true
Fail to reject Hp Correct Type Il error
Reject Hp Type | error Correct

- Type I and Type Il errors can not happen at the same time

- There is a trade-off between Type | and Type Il errors
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Review: Two Type Errors(FFhégiR)

- Question: Determine whether each situation belongs to Type | error or Type Il error.
CFEEE—TF, FEEME—A
CFEAME—F, FEEHR—A
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The Significance level(EZ 4K )

- The significance level or size of a test, v, is the maximum probability of the Type | Error we
tolerate.

P(Type I error) = P(reject Hy | Ho is true) = «

- In social science, the usual significance level is set at 5%. A less rigorous standard is 10%,
whereas a more stringent one is 1%.
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The Power of the Test

- The power of a test, is 1 — 3, where (3 is the maximum probability of the Type Il Error.
1 — P(Type Il error) = 1— P(reject Ho | Hy is true) =1— /3

- In social science, the usual significance level is set at 5%. A less rigorous standard is 10%,

whereas a more stringent one is 1%.
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Review: Hypothesis Testing of Population Mean

- Recall: The Student t distribution can be obtained from a standard normal and a
chi-square random variable.Let Z have a standard normal distribution, let X have a
chi-square distribution with m degrees of freedom and assume that Z and X are

independent. Then the random variable

Z
X/n

has has a t-distribution with m degrees of freedom, denoted as T ~ t,

- The shape of the t-distribution is similar to that of a standard normal distribution, except

that the t-distribution has more probability mass in the tails.
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Review: Hypothesis Testing of Population Mean

- If the standard deviation of the population is unknown,then the

Y — My c

— th—1
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Review: Hypothesis Testing of Population Mean

- Let puy ¢ is a specific value to which the population mean equals(thus we suppose)

- the null hypothesis:
Ho : E(Y) = pr.

- the alternative hypothesis(two-sided):

Hi 2 E(Y) # piv,c
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Review: Hypothesis Testing of Population Mean

- Step 1 Compute the sample mean Y

- Step 2 Compute the standard error of Y, recall
Sy
Vn

- Step 3 Compute the t-statistic actually computed

SE(Y) =

act _ Yot — Hy,c
SE(Y)
- Step 4 Compute the p-value(optional)
p-value = 2®(—|t*|)

- Step 5 See if we can Reject the null hypothesis at a certain significance level alike 5%, or
p-value is less than significance level.

|t°!| > critical value or p — value < significance level
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Simple OLS: Hypotheses Testing

- A Simple OLS regression
Yi = Bo + BiXi + uj

- This is the population regression equation and the key unknown population parameters is
.

- Then we would like to test whether 3; equals to a specific value 3; s or not
- the null hypothesis:
Ho : B = Bis

- the alternative hypothesis:

Hy : 51 7é 51,5
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A Simple OLS: Hypotheses Testing

- Step?l: Estimate Y; = By + [:Xi + u; by OLS to obtain BAW
- Step2: Compute the standard error of B1
- Step3: Construct the t-statistic

tact 61 61 c

s (B)

- Step4: Reject the null hypothesis if

| t* |>critical value

or p — value <significance level
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Recall: General Form of the t-statistics

estimator — hypothesized value

standard error of the estimator

- Now the key unknown statistic is the standard error(S.E).
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The Standard Error of 31

- Recall from the Simple OLS Regression

- if the least squares assumptions hold, then in large samples Bo and 31 have a joint normal
sampling distribution,thus B‘\

/5)1 ~ N(ﬁho-%)

- We also derived the form of the variance of the normal distribution, O’% is
1

1 Var[(X — px)ui]
SR il AN iVl 4.2
75\ n T [varOo)P (421
- The value of o is unknown and can not be obtained directly by the data.

- Var[(X; — ux)u;] and [var(X;)]? are both unknown.
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The Standard Error of 31

- Because Var(X) = EX* — (EX)?, then the numerator in the square root in (4.21) is
Var[(X; — wui] = E[(X; — woul” — (E[(X — poui])’
- Based on the Law of Iterated Expectation(L.I.E), we have
E[(x — pe)ui] = E(E[(Xi — ma)ui] X))
- Again by the 1st OLS assumption, thus E(uj|X;) = 0,
E[(Xi — ux)ui] = 0
- Then the second term in the equation above

var((X; — p)ui] = E[(X — wou]’
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The Standard Error of 31

- Because plim(X) = py, then we use X and fi; to replace py and g in (4.21)(in large sample),
then
Var[(Xi — ) ui] =E[(X — i)’

=E[(X; — )’ u]]

where n — 2 is the freedom of degree.
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The Standard Error of 31

- Because plim(sy) = o2 = Var(X;), then

var(x;) = o}

X

- Then the denominator in the square root in (4.21) is

n

Var(6)]2 = piim[~ >0~ 7
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The Standard Error of 31

- The standard error of @ is an estimator of the standard deviation of the sampling
distribution o4 thus

—= >0 (X — X)20?
(1326 —X)?)°

- Everything in the equation (5.4) are known now or can be obtained by calculation.

X

]
B n

- Then we can construct a t-statistic and then make a hypothesis test

estimator — hypothesized value

standard error of the estimator
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Application to Test Score and Class Size

. regress test_score class_size, robust

Linear regression Number of obs = 420
F(l, 418) = 19.26
Prob > F = 0.0000
R-sguared = 0.0512
Root MSE = 18.581
Robust

test_score Coef. Std. Err. t P>t [¢5% Conf. Interval]
class_size -2.279808 .5194892 -4.39 0.000 -3.300945 -1.258671
_cons 698.933 10.36436 67.44 0.000 678.5602 719.3057

- the OLS regression line
TestScore =698.9 — 22.8 x STR, R> = 0.051, SER = 18.6

(10.4) (0.52)
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Testing a two-sided hypothesis concerning j3;

- the null hypothesis Hy : 3, = 0
- It means that the class size will not affect the performance of students.

- the alternative hypothesis H; : 3; # 0

- It means that the class size do affect the performance of students (whatever positive or
negative)

- Our primary goal is to Reject the null, and then say make a conclusion:

- Class Size does matter for the performance of students.
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Testing a two-sided hypothesis concerning j3;

- Stepl: Estimate 3, = —2.28

- Step2: Compute the standard error: SE(/3;) = 0.52

- Step3: Compute the t-statistic

3, — ~228-0
act — ﬁ1 ﬁLC _ — —439

SE (/61) 0.52

- Step4: Reject the null hypothesis if

t

| 0 |=] —4.39 |> critical value = 1.96
- p — value = 0 < significance level = 0.05
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Application to Test Score and Class Size

. regress test_score class_size, robust

Linear regression Number of obs = 420
F(1, 418) = 19.26
Prob > F = 0.0000
R-sgquared = 0.0512
Root MSE = 18.581
Robust

test_score Coef. std. Err. t P>t 95% Conf. Intervall]
f_las:s_s_i.ze -2.279808 .5194892 -4.39 0.000 -3.300945 -1.258671
_cons 698.933 10.36436 67.44 0.000 678.5602 719.3057

- We can reject the null hypothesis that Hg : 8; = 0, which means 3; # 0 with a high
probability(over 95%).

It suggests that Class size matters the students’ performance in a very high chance.
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Critical Values of the t-statistic

The critical value of f-statistic depends on significance level o

0.005 0.005 0.025 QE_
258 0 2.58 -1.96 0 1.96
Large sample distribution of t-statistic Large sample distribution of t-statistic
0.05 0.05
184 0 164

Large sample distribution of t-statistic
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1% and 10% significant levels

- Step4: Reject the null hypothesis at a 10% significance level
- |t |=| —4.39 |> critical value = 1.64
- p — value = 0.00 < significance level = 0.1

- Step4: Reject the null hypothesis at a 1% significance level

- |t |=| —4.39 |> critical value = 2.58
- p — value = 0.00 < significance level = 0.01
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Two-Sided Hypotheses: (3; in a certain value

- Stepl: Estimate 3, = —2.28

- Step2: Compute the standard error: SE(/3;) = 0.52

- Step3: Compute the t-statistic

tact — /81 - /81,(_‘ —2.28 — (_2)

— = = —0.54
SE (51) 0.52
- Step4: can't reject the null hypothesis at 5% significant level because
- |t |=| —0.54 |< critical value = 1.96

- p — value = 0.59 > significance level = 0.05
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Two-Sided Hypotheses : 3, in a certain value

. lincom class_size-(-2)
(1) class_size = -2
test_score Coef. Std. Err. t P>|t]| [95% Conf. Interval]
(1) -.2798083 .5194892 -0.54 0.5%0 -1.300945 .7413286

- We cannot reject the null hypothesis that Hy : 3, = —2.

- It suggests that there is no enough evidence to support the statement:

- cutting class size in one unit will boost the test score in 2 points.
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One-sided Hypotheses Concerning 3,

- Sometimes, we want to do a one-sided Hypothesis testing
- the null hypothesis is still unchanged Hy : 51 = —2

- the alternative hypothesis is H; : 31 < —2
- The statement is that reducing(or inversely increasing) class size will boost(or lower)

student’s performance.
- More specifically,cutting class size in one unit will increase the test score in 2 points at least.

- Because the null hypothesis is the same for a one- and a two-sided hypothesis test, the

construction of the t-statistic is the same.

- The difference between the two is the critical value and p-value.
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One-sided Hypotheses Concerning 3,

- Stepl: Estimate B1 = —2.28
- Step2: Compute the standard error: SE(3;) = 0.52

- Step3: Compute the t-statistic

act __ B1 - BLO _ —2.28 — (—2)
sE (@) CE

t = —0.54
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One-sided Hypotheses Concerning 3,

Right tail test One - Tailed Test Left tail test
Hi= > /‘\ Hi= pa< Ha
/ﬁ:ceptance-
Rejectionreglon 5 % / region
J 0.85
z= 1645 z=-1.845
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One-sided Hypotheses Concerning 3,

- Step4: under the circumstance, the critical value is not the —1.96 but —1.645 at 5%
significant level.

- We can't reject the null hypothesis because
t% = —0.54 > critical value = —1.645

© The p-value is not the 2®(—|t®|) now but Pr(Z < t°) = ®(t°).

- It suggests that there is NO enough evidence to support the statement:cutting class size in
one unit will increase the test score in 2 points at least.
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One-sided Hypotheses Concerning 3,

- One-sided alternative hypotheses should be used only when there is a clear reason for
doing so.

- This reason could come from economic theory, prior empirical evidence, or both.

- However, even if it initially seems that the relevant alternative is one-sided, upon
reflection this might not necessarily be so.

- In practice, one-sided test is used much less than two-sided test.
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Wrap up

- Hypothesis tests are useful if you have a specific null hypothesis in mind (as did our angry
taxpayer).

- Being able to accept or reject this null hypothesis based on the statistical evidence
provides a powerful tool for coping with the uncertainty inherent in using a sample to
learn about the population.

- Yet, there are many times that no single hypothesis about a regression coefficient is
dominant, and instead one would like to know a range of values of the coefficient that are

consistent with the data.

- This calls for constructing a confidence interval.
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Introduction

- Because any statistical estimate of the slope 34 necessarily has sampling uncertainty, we
cannot determine the true value of 3; exactly from a sample of data.

- It is possible, however, to use the OLS estimators and its standard error to construct a
confidence interval for the slope /3,
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Cl for (3

- Method for constructing a confidence interval for a population mean can be easily
extended to constructing a confidence interval for a regression coefficient.

- Using a two-sided test, a hypothesized value for 8, will be rejected at 5% significance level
if
| % |> critical value = 1.96

- S0 B3 will be in the confidence set if | t° |< critical value = 1.96

- Thus the 95% confidence interval for 5, are within 4=1.96 standard errors of 31

3,4+ 1.96 - SE (@)
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Cl for 6Class$ize

. regress test_score class_size, robust

Linear regression Number of obs = 420
F(1l, 418) = 19.26
Prob > F = 0.0000
R-squared = 0.0512
Root MSE = 18.581
Robust

test score Coef. Std. Err. t P>t [¢5% Conf. Intervall
class size -2.279808 .5194892 -4.39 0.000 =3.300345 =1.258671
_cons 698.933 10.36436 67.44 0.000 678.5602 719.3057

- Thus the 95% confidence interval for 3; are within 4-1.96 standard errors of 31

By +1.96 - SE (,6’1> = —2.28 4 (1.96 X 0.519) = [—3.3, —1.26]
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Cl for predicted effets of changing X

- Consider changing X by a given amount,AX. The predicted change in Y associated with this
change in X is B A.
- the 95% confidence interval for 81 AX is

BAX £1.96 - SE (@) x AX
- eg reducing the student-teacher ratio by 2. then the 95% confidence interval is

[—3.3 X 2, —1.34 X 2] = [—6.6, —2.68]
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Introduction

- Recall we discussed the properties of Y in Chapter 2.

- an unbiased estimator of py
- a consistent estimator of py
- an approximate normal sampling distribution for large n
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The Efficiency of Y

- the fourth properties of Y in Chapter 3.

- the Best Linear Unbiased Estimator(BLUE): Y is the most efficient estimator of [y among
all unbiased estimators that are weighted averages of Yy, ..., Y,, presented by
fly = % >_ajYjthus,
var(Y) < var(fiy)
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Unnecessary Assumption for Simple OLS

- Three Simple OLS Regression Assumptions

- Assumption 1
- Assumption 2
- Assumption 3

- Assumption 4: The error terms are homoskedastic
var(u; | X;) = o}

- Then BOLS is the Best Linear Unbiased Estimator(BLUE): it is the most efficient estimator of

(3, among all conditional unbiased estimators that are a linear function of Yy, Y, ..., Yy.
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Heteroskedasticity & homoskedasticity

- The error term u; is homoskedastic if the variance of the conditional distribution of u;
given X; is constant fori = 1,...n, in particular does not depend on X;.
- Otherwise, the error term is heteroskedastic.

[ m An Example of Heteroskedasticity

Like Figure 4.4, this Test score
shows the conditional 720 -
distribution of test

. 200 L Distribution of ¥ when X = 15

scores for three differ- Distribution of ' when X = 20
ent class sizes. Unlike Distribution of ¥ when X = 25
Figure 4.4, these 680 -
distributions become [
more spread out (have 660 -
a larger variance) |

. 640
for larger class sizes.
Because the variance 620l

of the distribution of |
u given X, var(u|X), 600 N N N S
depends on X, uis 1 15 20 25 30
heteroskedastic. Student—teacher ratio
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An Actual Example: the returns to schooling

0 5 10 15 20
years of education

- The spread of the dots around the line is clearly increasing with years of education X;.
- Variation in (log) wages is higher at higher levels of education.
- This implies that

var(u; | X;) # o

u
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Homoskedasticity: S.E.

- Recall the standard deviation of 3, 02, ,is
1
1 var[(Xi — px)ui]
fo= 421
7, \/ N [Var(x)] {421

- If uj is homoskedastic, thus

var(ui|X;) = o var(X;) = o,
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Homoskedasticity: S.E.

- The numerator in the square root in (4.21) can be transformed into

Var[(X; — poui] = E[(X; — wouil® — (E[(X — poui])’
= E[(X — moui]®
= E[(Xi — ) *E(u; X3)]
= E[(X — o)’ var(ui|x))]
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Homoskedasticity: S.E.

* Then the equation (4.21) turns into

1 Var[ (X —Hx var[(Xi — wui]
n chr

1 O'ZVCII’(X,')
[var(X)]?

0—2

- So if we assume that the error terms are homoskedastic, then the standard errors of the
OLS estimators B; simplify to

A s%
SEromo (/81) =.,/0% = .u -
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Homoskedasticity: S.E.

- However,in many applications homoskedasticity is NOT a plausible assumption.

- If the error terms are heteroskedastic, then you use the homoskedastic assumption to
compute the S.E. of 51. It will leads to

- The standard errors are wrong (often too small)
- The t-statistic does NOT have a N(0, 1) distribution (also not in large samples).
- But the estimating coefficients in OLS regression will not change.
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Heteroskedasticity & homoskedasticity

- If the error terms are heteroskedastic, we should use the original equation of S.E.

A
SEHeter (/61) = \/0’751 “A\ln % [% S (X _)_()2]2

- Itis called as heteroskedasticity robust-standard errors,also referred to as

Eicker-Huber-White standard errors,simply Robust-Standard Errors

- In the case, it is not difficult to find that homoskedasticity is just a special case of
heteroskedasticity.
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Heteroskedasticity & homoskedasticity

- Since homoskedasticity is a special case of heteroskedasticity, these heteroskedasticity
robust formulas are also valid if the error terms are homoskedastic.

- Hypothesis tests and confidence intervals based on above SE’s are valid both in case of
homoskedasticity and heteroskedasticity.

- In reality, since in many applications homoskedasticity is not a plausible assumption, it is
best to use heteroskedasticity robust standard errors. Using robust standard errors rather
than standard errors with homoskedasticity will lead us lose nothing.
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Heteroskedasticity & homoskedasticity

- It can be quite cumbersome to do this calculation by hand.Luckily,computer can help us do
the job.

- In Stata, the default option of regression is to assume homoskedasticity, to obtain
heteroskedasticity robust standard errors use the option “robust”:

regress y x , robust

- In R, many ways can finish the job. A convenient function named vcovHC () is part of the
package sandwich.
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Test Scores and Cla

ss Size

. regress test_score class_size

Source Ss df MS Number of cbs = 420
F(l, 418) = 22.58
Model 7794.11004 1 7794.11004 Prob > F = 0.0000
Residual 144315.484 418 345.252353 R-squared = 0.0512
Adj R-squared = 0.0490
Total 152109.594 419 363.030056 Roct MSE = 18.581

test_score Coef. 5td. Err. t B>|t] [95% Conf. Interval]
class_size -2.279808 .4798256 -4.75 0.000 -3.22298 -1.336637
_cons 698.933 9.467491 73.82 0.000 680.3231 717.5428

. regress test_score class_size, robust
Linear regression Number of obs = 420
F(l, 418) = 19.26
Prob > F = 0.0000
R-squared = 0.0512
Root MSE = 18.581
Robust

test_score Coef. Std. Err. t P>t [95% Conf. Interval]
class size -2.279808 .5194892 -4.39 0.000 -3.300945 -1.258671
_cons 698.933 10.36436 67.44 0.000 678.5602 719.3057
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Test Scores and Cla

ss Size

. regress test_score class_size

Source Ss df MS Number of cbs = 420
F(l, 418) = 22.58
Model 7794.11004 1 7794.11004 Prob > F = 0.0000
Residual 144315.484 418 345.252353 R-squared = 0.0512
Adj R-squared = 0.0490
Total 152109.594 419 363.030056 Roct MSE = 18.581

test_score Coef. 5td. Err. t B>|t] [95% Conf. Interval]
class_size -2.279808 .4798256 -4.75 0.000 -3.22298 -1.336637
_cons 698.933 9.467491 73.82 0.000 680.3231 717.5428

. regress test_score class_size, robust
Linear regression Number of obs = 420
F(l, 418) = 19.26
Prob > F = 0.0000
R-squared = 0.0512
Root MSE = 18.581
Robust

test_score Coef. Std. Err. t P>t [95% Conf. Interval]
class size -2.279808 .5194892 -4.39 0.000 -3.300945 -1.258671
_cons 698.933 10.36436 67.44 0.000 678.5602 719.3057

61/97



Wrap up: Heteroskedasticity in a Simple OLS

- If the error terms are heteroskedastic
- The fourth simple OLS assumption is violated.
- The Gauss-Markov conditions do not hold.
- The OLS estimator is not BLUE (not most efficient).

- But (given that the other OLS assumptions hold)

- The OLS estimators are still unbiased.
- The OLS estimators are still consistent.
- The OLS estimators are normally distributed in large samples
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Recall: the Multiple OLS Regression

- The multiple regression model is

Yi = Bo + BiXai + BoXo 4 o+ BrXi F Ui i =1,...,n

- Four Basic Assumptions
- Assumption 1: E[u; | Xuiy Xojeovy Xei] = O
- Assumption 2 : i.i.d sample
- Assumption 3 : Large outliers are unlikely.
- Assumption 4 : No perfect multicollinearity.

- The Sampling Distribution: the OLS estimators BA}» forj =1, ..., k are approximately
normally distributed in large samples.
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Standard Errors for the Multiple OLS Estimators

- There is nothing conceptually different between the single- or multiple-regressor cases.

- Standard Errors for a Simple OLS estimator 3

SE (,6’1) =5,

- Standard Errors for Mutiple OLS Regression estimators 3;

se(5) =5

- Remind: since now the joint distribution is not only for (V;, X;),but also for (X, Xiz).

- The formula for the standard errors in Multiple OLS regression are related with a matrix
named Variance-Covariance matrix
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Hypothesis Tests for a Single Coefficient

- the t-statistic in Simple OLS Regression

ot _ 1= B
se ()

- the t-statistic in Multiple OLS Regression

~ N(0,1)

BJ - /Bj,c

SE (B,-)

t= ~ N(0,1)
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Hypothesis testing for single coefficient

Ho : Bj = Bjc Hi: B # Bic

- Stepl: Estimate Bj, by run a multiple OLS regression

Yi = Bo 4 BiXai 4 oo+ BiXji 4 oo + BeXei + Ui

- Step2: Compute the standard error of Bj (requires matrix algebra)

- Step3: Compute the t-statistic

tact BJ BJ ¢
se(5)
- Step4: Reject the null hypothesis if

|t |> critical value
- orif p — value < significance level
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Confidence Intervals for a single coefficient

- Also the same as in a simple OLS Regression.
. Bj will be in the confidence set if | t°" |< critical value = 1.96 at the 95% confidence level.

- Thus the 95% confidence interval for 3; are within £1.96 standard errors of B,—

B +1.96 - SE (B,-)
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Test Scores and Class Size

regress test_score class_size el_pct,robust

Linear regression Number of obs = 420
F(2, 417) = 223.82
Prob > F = 0.0000
R-squared = 0.4264
Root MSE = 14.464

Robust
test_score Coef.  Std. Err. t P>|t| [95% Conf. Intervall
class_size -1.101296 .4328472 -2.54 0.011 -1.95213 -.2504616
el_pct -.6497768 .0310318 -20.94 0.000 -.710775 -.5887786
_cons 686.0322 8.728224 78.60 0.000 668.8754 703.189
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Case: Class Size and Test scores

- Does changing class size, while holding the percentage of English learners constant, have a
statistically significant effect on test scores? (using a 5% significance level)

* Ho : Belasssize = 0 H1 : Beiasssize 7 0
- Step?t: Estimate B1 = —1.10
- Step2: Compute the standard error: SE((;) = 0.43

- Step3: Compute the t-statistic

3, — ~1.10 — 0
L = —2.54

SE (/31) 0.43

- Step4: Reject the null hypothesis if

- | 9% |=| —2.54 |> critical value.1.96
- p — value = 0.011 < significance level = 0.05
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Tests of Joint Hypotheses: on 2 or more coefficients

- Can we just test one individual coefficient at a time?

- Suppose the angry taxpayer hypothesizes that neither the student-teacher ratio nor
expenditures per pupil have an effect on test scores, once we control for the percentage of

English learners.

- Therefore, we have to test a joint null hypothesis that both the coefficient on

student-teacher ratio and the coefficient on expenditures per pupil are zero?

Ho : /Sstr =0& 6expn =0,
H1 : 5str 7é 0 and/or 5expn 7é 0

/97



Testing 1 hypothesis on 2 or more coefficients

- If either ts, or teyxpn exceeds 1.96, should we reject the null hypothesis?

- Assume that ts, and teyp, are uncorrelated at first:

Pr(|tstr| > 1.96 and/or |texpn| > 1.96)
=1— Pr(Jtser] <1.96 and |texpn| < 1.96)
=1 — Pr(|tsey| < 1.96) * Pr|texpn| < 1.96)
=1—0.95 X 0.95

= 0.0975 > 0.05

- We cannot reject the null hypothesis at 5% significant level now,even the single t-test
for both variables can.
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Testing 1 hypothesis on 2 or more coefficients

- If tstr and teypn are correlated, then it is more complicated as simple t-statistic is not

enough for hypothesis testing in Multiple OLS.

- In general, a joint hypothesis is a hypothesis that imposes two or more restrictions on the

regression coefficients.

Ho : B = Bj.c, Bk = Bk,c, ---, for a total of q restrictions

Hq : one or more of q restrictions under Hq does not hold

- where j, B, ... refer to different regression coefficients.

- When the regressors are highly correlated, we use F-statisticto testing joint hypotheses.
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Unrestricted v.s Restricted model

- The unrestricted model: the model without any of the restrictions imposed. It contains all

the variables.
- The restricted model: the model on which the restrictions have been imposed.

- And we want to test that Hy : 37 = 0 and (3, = Otthen H, : 3; # 0 and/or 3, # 0 for the

regression model
Yi = Bo + BiXai + BXo,i + B3Xsi + Ui i =1,...,n

- Then restricted model is
Yi = Bo + B3X, + u;
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The F-statistic with g restrictions

- The F-statistic is computed using a simple formula based on the sum of squared residuals

from two regressions.
(SSRrestricted - SSRunrestricted)/q

SSRunrestricted/(n — k- 1)

- SSRyestricted 1S the sum of squared residuals from the restricted regression.

* SSRunrestricted 15 the sum of squared residuals from the full model.
- g is the number of restrictions under the null.

- kis the number of regressors in the unrestricted regression.
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The F-statistic and R’

- An alternative equivalent formula for the_homoskedasticity-only F-statistic_ is based on
the R2 of the two regressions:

(Rgestricted B Rﬁnrestricted)/q
1— Rﬁnrestricted/(n —k— 1)

- Only if the error terms are homoskedastic

F=

var(u; | X;) = o’

u
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Testing 1 hypothesis on 2 or more coefficients

- Suppose we want to test

Ho: 1 =0& B, =0 Hy: [y #0and/or B, #0

- Then the F-statistic can also combine the two t-statisticst; and t, as follows

(B
2 1 _pA%‘\tz

where py,, is an estimator of the correlation between the two t-statistics.
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The heteroskedasticity-robust F-statistic with g restrictions.

- Using matrix to show the form of the heteroskedasticity-robust F-statistic which is beyond
the scope of our class.
- While,under the null hypothesis,regardless of whether the errors are homoskedastic or

heteroskedastic, the F-statistic with g has a sampling distribution in large samples,
F — statistic ~ Fg.00

- where g is the number of restrictions
- Then we can compute the F-statistic, the critical values from the table of the Fy o and

obtain the p-value.
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F-Distribution

( TABLE 4 Critical Values for the F, ., Distribution

Area = Significance Level

T
0 Critical Value
Significance Level
Degrees of Freedom 10% 5% 1%
1 271 3.84 6.63
2 2.30 3.00 4.61
3 2.08 2.60
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Testing joint hypothesis with g restrictions

“ Ho : Bj = Bjos .-y Bm = Bm,o for a total of q restrictions.
- Hq:at least one of g restrictions under Hy does not hold.
- Stepl: Estimate
Yi = fo+ BiXai 4 oo 4 BiXii + oo+ BeXei + Ui
by OLS
- Step2: Compute the F-statistic
- Step3: Reject the null hypothesis if

et act
F— Statistic > F,

or
p — value = Pr[Fq o0 > F*] <= significant level
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Case: Class Size and Test Scores

- We want to test hypothesis that both the coefficient on student-teacher ratio and the
coefficient on expenditures per pupil are zero?

© Ho: Bstr =0 &Bexpn =0
© Hi:Bs #£0 and/or Bexpn #0

- The null hypothesis consists of two restrictions g = 2
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Case: Class Size and Test Scores

. regress test_score class_size expn_stu el_pct,robust

Linear regression Number of obs = 420
F(3, 416) = 147.20
Prob > F = 0.0000
R-squared = 0.4366
Root MSE = 14.353

Robust
test_score Coef. Std. Err. t P>|t| [95% Conf. Interval]
class_size -.2863992 .4820728 -0.59  0.553 -1.234002 .661203
expn_stu .0038679 .0015807 2.45 0.015 .0007607 .0069751
el_pct -.6560227 .0317844  -20.64 ©0.000 -.7185008  -.5935446
_cons 649.5779 15.45834 42.02 0.000 619.1917 679.9641

. test class_size expn_stu

(1) class_size = 0
(2) expn_stu =10

F( 2, 416) = 5.43
Prob > F = 0.0047

- It can be shown that the F-statistic with two restrictions has an approximate F; oo

distribution in large samples
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The “overall” regression F-statistic

- The “overall” F-statistic test the joint hypothesis that all the k slope coefficients are zero
“ Ho: Bj = B0, .-, Bm = Bm,o for a total of g = k restrictions.
- Hq: at least one of g = k restrictions under Hq does not hold.
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The “overall” regression F-statistic

. regress test_score class_size expn_stu el_pct,robust

Linear regression Number of obs 420
F(3, 416) 147.20

Prob > F = 0.0000

R-squared = 0.4366

Root MSE = 14.353

Robust

test_score Coef.  Std. Err. t P>|t| [95% Conf. Interval
class_size | =-.2863992 .4820728  -0.59 0.553  -1.234002 .661203
expn_stu 0038679  .0015807 2.45  0.015 0007607  .0069751
el_pct | =-.6560227 .0317844 -20.64 ©0.000  -.7185008 -.5935446
_cons 649.5779  15.45834  42.02  0.000 619.1917  679.9641

. test class_size expn_stu el_pct
(1) class_size = @
(2) expn_stu = 0

(3) el pct=0

F( 3, 416
Prob > F

147.20
0.0000

- The overall F — Statistics = 147.2 which indicates at least one coefficient can not beZERO.
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Introduction

- How to use multiple regression in order to alleviate omitted variable bias and demonstrate
how to report results.

- So far we have considered two variables that control for unobservable student
characteristics which correlate with the student-teacher ratio and are assumed to have an
impact on test scores:

- English, the percentage of English learning students
- lunch, the share of students that qualify for a subsidized or even a free lunch at school
- calworksthe percentage of students that qualify for a income assistance program
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Five different model equations:

- We shall consider five different model equations:

(1) TestScore = 3y + $1STR + u,

(2) TestScore = 3y + [B1STR + [renglish + u,

(3) TestScore = [y + [31STR + B,english + Bslunch + u,

(4) TestScore = By + (:1STR + Baenglish + Bucalworks + u,

(5) TestScore = Sy + [1STR + Baenglish + [slunch + Bycalworks + u
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Scatter Plot: English learners and Test Scores

English Learners and Test Scores
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Scatter Plot: Free lunch and Test Scores

Percentage qualifying for reduced price lunch
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Correlations between Variables

- The correlation coefficients are following.

# estimate correlation between student characteristics and test scores
cor (CASchools$testscr, CASchools$el_pct)

## [1] -0.6441237

cor (CASchools$testscr, CASchools$meal_pct)

## [1] -0.868772

cor (CASchools$testscr, CASchools$calw_pct)

## [1] -0.6268534

cor (CASchools$meal_pct, CASchools$calw_pct) 91197



Table 2

Dependent Variable: Test Score

(1) (2)
str —2.280*** —1.101**
(0.519) (0.433)
el_pct —0.650™**
(0.031)
Constant 698.933*** 686.032%**
(10.364) (8.728)
Observations 420 420
R? 0.051 0.426
Adjusted R? 0.049 0.424
F Statistic 22.575%** 155.014***
Note: *p<0.1; **p<0.05; ***p<0.01

Robust S.E. are shown in the parentheses
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Table 3

Dependent Variable: Test Score

(1) (2) (3) (4)
str —2.280™"* —1.101*" —0.998™** —1.308*"*
(0.519) (0.433) (0.270) (0.339)
el_pct —0.650*** —0.122*** —0.488***
(0.031) (0.033) (0.030)
meal_pct —0.547%**
(0.024)
calw_pct —0.790***
(0.068)
Constant 698.933*** 686.032*** 700.150*** 697.999***
(10.364) (8.728) (5.568) (6.920)
Observations 420 420 420 420
R? 0.051 0.426 0.775 0.629
Adjusted R’ 0.424 0.626

0.049

0.773
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Table 4

Dependent Variable: Test Score

(1) (2) (3) (4) (5)
str —2.280™** —1.101** —0.998™** —1.308""* —1.014™**
(0.519) (0.433) (0.270) (0.339) (0.269)
el_pct —0.650*** —0.122*** —0.488*** —0.130***
(0.031) (0.033) (0.030) (0.036)
meal_pct —0.547*** —0.529***
(0.024) (0.038)
calw_pct —0.790*** —0.048
(0.068) (0.059)
Constant 698.933*** 686.032*** 700.150*** 697.999*** 700.392***
(10.364) (8.728) (5.568) (6.920) (5.537)
Observations 420 420 420 420 420
R? 0.051 0.426 0.775 0.629 0.775
Adjusted R?

0.049

0.424

0.773

0.626

0.773
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The “Star War” and Regression Table

Dependent variable: average test score in the district.

Regressor (1) (2) (3) (4) (5)
Student-teacher ratio (X7) —2.28%* —1.10% —1.00%* —1.31* —1.01*
(0.52) (0.43) (0.27) (0.34) (0.27)
Percent English learners (X3) —0.650%* —0.122%* —0.488%* —0.130%*
(0.031) (0.033) (0.030) (0.036)
Percent eligible for subsidized lunch (X3) —0.547* —0.529*
(0.024) (0.038)
Percent on public income assistance (X) —0.790%* 0.048
(0.068) (0.059)
Intercept 698.9%= 686.0%* 700.2%* 698.0%* 700.4%:
(10.4) (8.7) (5.6) (6.9) (5.5)
Summary Statistics
SER 18.58 14.46 9.08 11.65 9.08
R? 0.049 0424 0.773 0.626 0.773
n 420 420 420 420 420

These regressions were estimated using the data on K-8 school districts in California, described in Appendix (4.1). Heteroskedasticity-
robust standard errors are given in parentheses under coefficients. The individual coefficient is statistically significant at the
*5% level or *¥1% significance level using a two-sided test.
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Warp Up

- OLS is the most basic and important tool in econometricians’ toolbox.

- The OLS estimators is unbiased, consistent and normal distributions under key

assumptions.

- Using the hypothesis testing and confidence interval in OLS regression, we could make a
more reliable judgment about the relationship between the treatment and the outcomes.
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