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Omitted Variable Bias and M-OLS

• Omitted Variable Bias(OVB) violates the first Least Squares Assumption:

E(ui|Xi) = 0

• It will make Simple OLS estimation biased and inconsistent.
• If the omitted variable can be observed and measured, then we can put it into the regression,
thus control it to eliminate the bias.

• We have to extend the Simple OLS regression to the Multiple one.
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Multiple regression model with k regressors

• The multiple regression model is

Yi = β0 + β1X1,i + β2X2,i + ... + βkXk,i + ui, i = 1, ..., n

• where
• Yi is the dependent variable
• X1, X2, ...Xk are the independent variables(includes one treatment variable and some control
variables)

• βi, j = 1...k are slope coefficients on Xi corresponding.
• β0 is the estimate intercept, the value of Y when all Xj = 0, j = 1...k
• ui is the regression error term.
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Multiple Regression: Assumptions

If the four least squares assumptions in the multiple regression model hold:

• Assumption 1: The conditional distribution of ui given X1i, ..., Xki has mean zero,thus

E[ui|X1i, ..., Xki] = 0

• Assumption 2: (Yi, X1i, ..., Xki) are i.i.d.
• Assumption 3: Large outliers are unlikely.
• Assumption 4: No perfect multicollinearity.

Then

• The OLS estimators β̂0, β̂1...β̂k are unbiased.
• The OLS estimators β̂0, β̂1...β̂k are consistent.
• The OLS estimators β̂0, β̂1...β̂k are normally distributed in large samples.
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Hypothesis Testing
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Introduction: Class size and Test Score

Recall our simple OLS regression mode is

TestScorei = β0 + β1STRi + ui (4.3)
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Class Size and Test Score

Then we got the result of a simple OLS regression

̂TestScore = 698.9 − 2.28 × STR, R2 = 0.051, SER = 18.6

• Don’t forget: the result are not obtained from the population but from the sample.

• How can you be sure about the result? In other words, how confident you can believe the
result from the sample inferring to the population?

• If someone believes that cutting the class size will not help boost test scores. Can you
reject the claim based your scientific evidence-based data analysis?

• This is the work of Hypothesis Testing in OLS regressions.
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Review: Hypothesis Testing

• A hypothesis is (usually) an assertion or statement about unknown population parameters
like θ.

• Suppose we want to test whether it is significantly different from a certain value µ0

• Then null hypothesis is
H0 : θ = µ0

• The alternative hypothesis(two-sided) is

H1 : θ ̸= µ0

• If the value µ0 does not lie within the calculated confidence interval, then we reject the
null hypothesis.

• If the value µ0 lie within the calculated confidence interval, then we fail to reject the null
hypothesis.
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Review: Hypothesis Testing

• Most countries follow the rule of criminal trials: innocent until proven guilty(疑罪从无)
• The jury or judge starts with the “null hypothesis” that the accused person is innocent.
• The prosecutor wants to prove their hypothesis that the accused person is guilty.
• In other words, they have to show strong evidence to make the jury or judge reject the “null
hypothesis”.

• Likewise, our rule in econometrics is presumption of insignificance until proven.
• At first researchers have to assume that there is zero impact of independent variable on
dependent variable.

• In order to prove the relationship between the independent variable and dependent variable,
we must provide strong enough evidence to convince readers or policy makers to “reject” the
assumption of a zero effect.
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Review: Two Type Errors(两种错误）

• In both cases, there is a certain risk that our conclusion is wrong

H0 is true HA is true

Fail to reject HO Correct Type II error
Reject HO Type I error Correct

• Type I and Type II errors can not happen at the same time

• There is a trade-off between Type I and Type II errors
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Review: Two Type Errors(两种错误）

• Question: Determine whether each situation belongs to Type I error or Type II error.
• “宁可错杀一千，不能放过一个”
• “宁可放过一千，不能错杀一个”
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The Significance level(显著性水平)

• The significance level or size of a test, α, is the maximum probability of the Type I Error we
tolerate.

P(Type I error) = P(reject H0 | H0 is true) = α

• In social science, the usual significance level is set at 5%. A less rigorous standard is 10%,
whereas a more stringent one is 1%.
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The Power of the Test

• The power of a test, is 1 − β , where β is the maximum probability of the Type II Error.

1 − P(Type II error) = 1 − P(reject H0 | H1 is true) = 1 − β

• In social science, the usual significance level is set at 5%. A less rigorous standard is 10%,
whereas a more stringent one is 1%.
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Review: Hypothesis Testing of Population Mean

• Recall: The Student t distribution can be obtained from a standard normal and a
chi-square random variable.Let Z have a standard normal distribution, let X have a
chi-square distribution with m degrees of freedom and assume that Z and X are
independent. Then the random variable

T =
Z√
X/n

has has a t-distribution with m degrees of freedom, denoted as T ∼ tn

• The shape of the t-distribution is similar to that of a standard normal distribution, except
that the t-distribution has more probability mass in the tails.
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Review: Hypothesis Testing of Population Mean

• If the standard deviation of the population is unknown,then the

Ȳ − µY,c√
s2Y/n

→ tn−1
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Review: Hypothesis Testing of Population Mean

• Let µY,c is a specific value to which the population mean equals(thus we suppose)
• the null hypothesis:

H0 : E(Y) = µY,c

• the alternative hypothesis(two-sided):

H1 : E(Y) ̸= µY,c
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Review: Hypothesis Testing of Population Mean

• Step 1 Compute the sample mean Y
• Step 2 Compute the standard error of Y, recall

SE(Y) =
sY√
n

• Step 3 Compute the t-statistic actually computed

tact =
Ȳact − µY,c

SE(Ȳ)

• Step 4 Compute the p-value(optional)

p-value = 2Φ(−|tact|)

• Step 5 See if we can Reject the null hypothesis at a certain significance level α,like 5%, or
p-value is less than significance level.

|tact| > critical value or p − value < significance level
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Simple OLS: Hypotheses Testing

• A Simple OLS regression
Yi = β0 + β1Xi + ui

• This is the population regression equation and the key unknown population parameters is
β1.

• Then we would like to test whether β1 equals to a specific value β1,s or not
• the null hypothesis:

H0 : β1 = β1,s

• the alternative hypothesis:
H1 : β1 ̸= β1,s
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A Simple OLS: Hypotheses Testing

• Step1: Estimate Yi = β0 + β1Xi + ui by OLS to obtain β̂1

• Step2: Compute the standard error of β̂1

• Step3: Construct the t-statistic

tact =
β̂1 − β1,c

SE
(
β̂1

)
• Step4: Reject the null hypothesis if

| tact |>critical value

or p − value <significance level
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Recall: General Form of the t-statistics

t =
estimator − hypothesized value
standard error of the estimator

• Now the key unknown statistic is the standard error(S.E).
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The Standard Error of β̂1

• Recall from the Simple OLS Regression
• if the least squares assumptions hold, then in large samples β̂0 and β̂1 have a joint normal
sampling distribution,thus β̂1

β̂1 ∼ N(β1, σ2
β̂1
)

• We also derived the form of the variance of the normal distribution, σ2
β̂1

is

σβ̂1
=

√
1
n
Var[(Xi − µX)ui]

[Var(Xi)]2
(4.21)

• The value of σβ̂1
is unknown and can not be obtained directly by the data.

• Var[(Xi − µX)ui] and [Var(Xi)]2 are both unknown.
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The Standard Error of β̂1

• Because Var(X) = EX2 − (EX)2, then the numerator in the square root in (4.21) is

Var[(Xi − µX)ui] = E[(Xi − µX)ui]2 − (E[(Xi − µX)ui])2

• Based on the Law of Iterated Expectation(L.I.E), we have

E[(Xi − µX)ui] = E
(
E[(Xi − µX)ui]|Xi

)
• Again by the 1st OLS assumption, thus E(ui|Xi) = 0,

E[(Xi − µX)ui] = 0

• Then the second term in the equation above

Var[(Xi − µX)ui] = E[(Xi − µX)ui]2
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The Standard Error of β̂1

• Because plim(X) = µX, then we use X and µ̂i to replace µX and µi in (4.21)(in large sample),
then

Var[(Xi − µX)ui] =E[(Xi − µX)ui]2

=E[(Xi − µX)
2u2i ]

=plim
( 1
n − 2

n∑
i=1

(Xi − X)2û2
)

where n − 2 is the freedom of degree.
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The Standard Error of β̂1

• Because plim(sx) = σ2
x = Var(Xi), then

Var(Xi) = σ2
x

= plim(sx)

= plim
(n − 1

n
(sx)

)
=

1
n

n∑
i=1

(Xi − X)2

• Then the denominator in the square root in (4.21) is

[Var(Xi)]2 = plim
[ 1
n

n∑
i=1

(Xi − X)2
]2
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The Standard Error of β̂1

• The standard error of β̂1 is an estimator of the standard deviation of the sampling
distribution σβ̂1

, thus

SE
(
β̂1

)
=
√

σ̂2
β̂1
=

√√√√ 1
n

×
1

n−2
∑
(Xi − X̄)2û2i[ 1

n
∑
(Xi − X̄)2

]2 (5.4)

• Everything in the equation (5.4) are known now or can be obtained by calculation.

• Then we can construct a t-statistic and then make a hypothesis test

t =
estimator − hypothesized value
standard error of the estimator
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Application to Test Score and Class Size

• the OLS regression line

̂TestScore =698.9 − 22.8 × STR, R2 = 0.051, SER = 18.6

(10.4) (0.52)
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Testing a two-sided hypothesis concerning β1

• the null hypothesis H0 : β1 = 0
• It means that the class size will not affect the performance of students.

• the alternative hypothesis H1 : β1 ̸= 0
• It means that the class size do affect the performance of students (whatever positive or
negative)

• Our primary goal is to Reject the null, and then say make a conclusion:
• Class Size does matter for the performance of students.
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Testing a two-sided hypothesis concerning β1

• Step1: Estimate β̂1 = −2.28

• Step2: Compute the standard error: SE(β̂1) = 0.52

• Step3: Compute the t-statistic

tact =
β̂1 − β1,c

SE
(
β̂1

) =
−2.28 − 0

0.52
= −4.39

• Step4: Reject the null hypothesis if
• | tact |=| −4.39 |> critical value = 1.96
• p − value = 0 < significance level = 0.05
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Application to Test Score and Class Size

• We can reject the null hypothesis that H0 : β1 = 0, which means β1 ̸= 0 with a high
probability(over 95%).

• It suggests that Class size matters the students’ performance in a very high chance.
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Critical Values of the t-statistic
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1% and 10% significant levels

• Step4: Reject the null hypothesis at a 10% significance level
• | tact |=| −4.39 |> critical value = 1.64
• p − value = 0.00 < significance level = 0.1

• Step4: Reject the null hypothesis at a 1% significance level
• | tact |=| −4.39 |> critical value = 2.58
• p − value = 0.00 < significance level = 0.01
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Two-Sided Hypotheses: β1 in a certain value

• Step1: Estimate β̂1 = −2.28

• Step2: Compute the standard error: SE(β̂1) = 0.52

• Step3: Compute the t-statistic

tact =
β̂1 − β1,c

SE
(
β̂1

) =
−2.28 − (−2)

0.52
= −0.54

• Step4: can’t reject the null hypothesis at 5% significant level because
• | tact |=| −0.54 |< critical value = 1.96
• p − value = 0.59 > significance level = 0.05
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Two-Sided Hypotheses : β1 in a certain value

• We cannot reject the null hypothesis that H0 : β1 = −2.

• It suggests that there is no enough evidence to support the statement:
• cutting class size in one unit will boost the test score in 2 points.
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One-sided Hypotheses Concerning β1

• Sometimes, we want to do a one-sided Hypothesis testing

• the null hypothesis is still unchanged H0 : β1 = −2

• the alternative hypothesis is H1 : β1 < −2
• The statement is that reducing(or inversely increasing) class size will boost(or lower)
student’s performance.

• More specifically,cutting class size in one unit will increase the test score in 2 points at least.

• Because the null hypothesis is the same for a one- and a two-sided hypothesis test, the
construction of the t-statistic is the same.

• The difference between the two is the critical value and p-value.
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One-sided Hypotheses Concerning β1

• Step1: Estimate β̂1 = −2.28

• Step2: Compute the standard error: SE(β̂1) = 0.52

• Step3: Compute the t-statistic

tact =
β̂1 − β1,0

SE
(
β̂1

) =
−2.28 − (−2)

0.52
= −0.54
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One-sided Hypotheses Concerning β1
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One-sided Hypotheses Concerning β1

• Step4: under the circumstance, the critical value is not the −1.96 but −1.645 at 5%
significant level.

• We can’t reject the null hypothesis because

tact = −0.54 > critical value = −1.645

• The p-value is not the 2Φ(−|tact|) now but Pr(Z < tact) = Φ(tact).

• It suggests that there is NO enough evidence to support the statement:cutting class size in
one unit will increase the test score in 2 points at least.
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One-sided Hypotheses Concerning β1

• One-sided alternative hypotheses should be used only when there is a clear reason for
doing so.

• This reason could come from economic theory, prior empirical evidence, or both.

• However, even if it initially seems that the relevant alternative is one-sided, upon
reflection this might not necessarily be so.

• In practice, one-sided test is used much less than two-sided test.
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Wrap up

• Hypothesis tests are useful if you have a specific null hypothesis in mind (as did our angry
taxpayer).

• Being able to accept or reject this null hypothesis based on the statistical evidence
provides a powerful tool for coping with the uncertainty inherent in using a sample to
learn about the population.

• Yet, there are many times that no single hypothesis about a regression coefficient is
dominant, and instead one would like to know a range of values of the coefficient that are
consistent with the data.

• This calls for constructing a confidence interval.
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Confidence Intervals
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Introduction

• Because any statistical estimate of the slope β1 necessarily has sampling uncertainty, we
cannot determine the true value of β1 exactly from a sample of data.

• It is possible, however, to use the OLS estimators and its standard error to construct a
confidence interval for the slope β1
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CI for β1

• Method for constructing a confidence interval for a population mean can be easily
extended to constructing a confidence interval for a regression coefficient.

• Using a two-sided test, a hypothesized value for β1 will be rejected at 5% significance level
if

| tact |> critical value = 1.96

• So β̂1 will be in the confidence set if | tact |≤ critical value = 1.96

• Thus the 95% confidence interval for β1 are within ±1.96 standard errors of β̂1

β̂1 ± 1.96 · SE
(
β̂1

)
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CI for βClassSize

• Thus the 95% confidence interval for β1 are within ±1.96 standard errors of β̂1

β̂1 ± 1.96 · SE
(
β̂1

)
= −2.28 ± (1.96 × 0.519) = [−3.3, −1.26]
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CI for predicted effets of changing X

• Consider changing X by a given amount,∆X. The predicted change in Y associated with this
change in X is β1∆.

• the 95% confidence interval for β1∆X is

β̂1∆X ± 1.96 · SE
(
β̂1

)
× ∆X

• eg reducing the student–teacher ratio by 2. then the 95% confidence interval is

[−3.3 × 2, −1.34 × 2] = [−6.6, −2.68]
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Gauss-Markov theorem and Heteroskedasticity
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Introduction

• Recall we discussed the properties of Ȳ in Chapter 2.
• an unbiased estimator of µY

• a consistent estimator of µY

• an approximate normal sampling distribution for large n
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The Efficiency of Ȳ

• the fourth properties of Ȳ in Chapter 3.

• the Best Linear Unbiased Estimator(BLUE): Ȳ is the most efficient estimator of µY among
all unbiased estimators that are weighted averages of Y1, ..., Yn, presented by
µ̂Y =

1
n
∑

aiYi,thus,
Var(Y) < Var(µ̂Y)
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Unnecessary Assumption for Simple OLS

• Three Simple OLS Regression Assumptions
• Assumption 1
• Assumption 2
• Assumption 3

• Assumption 4: The error terms are homoskedastic

Var(ui | Xi) = σ2
u

• Then β̂OLS is the Best Linear Unbiased Estimator(BLUE): it is the most efficient estimator of
β1 among all conditional unbiased estimators that are a linear function of Y1, Y2, ..., Yn.
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Heteroskedasticity & homoskedasticity

• The error term ui is homoskedastic if the variance of the conditional distribution of ui
given Xi is constant for i = 1, ...n, in particular does not depend on Xi.

• Otherwise, the error term is heteroskedastic.
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An Actual Example: the returns to schooling

• The spread of the dots around the line is clearly increasing with years of education Xi.

• Variation in (log) wages is higher at higher levels of education.

• This implies that
Var(ui | Xi) ̸= σ2

u
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Homoskedasticity: S.E.

• Recall the standard deviation of β1, σ2
β̂1
, is

σβ̂1
=

√
1
n
Var[(Xi − µX)ui]

[Var(Xi)]2
(4.21)

• If ui is homoskedastic, thus

Var(ui|Xi) = σ2
uVar(Xi) = σ2

u

53 / 97



Homoskedasticity: S.E.

• The numerator in the square root in (4.21) can be transformed into

Var[(Xi − µX)ui] = E[(Xi − µX)ui]2 − (E[(Xi − µX)ui])2

= E[(Xi − µX)ui]2

= E[(Xi − µX)
2E(u2i |Xi)]

= E[(Xi − µX)
2Var(ui|Xi)]

= σ2
uE[(Xi − µX)

2]
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Homoskedasticity: S.E.

• Then the equation (4.21) turns into

σβ̂1
=

√
1
n
Var[(Xi − µX)ui]

[Var(Xi)]2

=

√
1
n

σ2
uVar(Xi)

[Var(Xi)]2

=

√
1
n

σ2
u

[Var(Xi)]

• So if we assume that the error terms are homoskedastic, then the standard errors of the
OLS estimators β1 simplify to

SEHomo

(
β̂1

)
=
√

σ̂2
β̂1
=

√
s2û∑

(Xi − X̄)2

55 / 97



Homoskedasticity: S.E.

• However,in many applications homoskedasticity is NOT a plausible assumption.

• If the error terms are heteroskedastic, then you use the homoskedastic assumption to
compute the S.E. of β̂1. It will leads to

• The standard errors are wrong (often too small)
• The t-statistic does NOT have a N(0, 1) distribution (also not in large samples).
• But the estimating coefficients in OLS regression will not change.
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Heteroskedasticity & homoskedasticity

• If the error terms are heteroskedastic, we should use the original equation of S.E.

SEHeter
(
β̂1

)
=
√

σ̂2
β̂1
=

√√√√ 1
n

×
1

n−2
∑
(Xi − X̄)2û2i[ 1

n
∑
(Xi − X̄)2

]2
• It is called as heteroskedasticity robust-standard errors,also referred to as
Eicker-Huber-White standard errors,simply Robust-Standard Errors

• In the case, it is not difficult to find that homoskedasticity is just a special case of
heteroskedasticity.
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Heteroskedasticity & homoskedasticity

• Since homoskedasticity is a special case of heteroskedasticity, these heteroskedasticity
robust formulas are also valid if the error terms are homoskedastic.

• Hypothesis tests and confidence intervals based on above SE’s are valid both in case of
homoskedasticity and heteroskedasticity.

• In reality, since in many applications homoskedasticity is not a plausible assumption, it is
best to use heteroskedasticity robust standard errors. Using robust standard errors rather
than standard errors with homoskedasticity will lead us lose nothing.
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Heteroskedasticity & homoskedasticity

• It can be quite cumbersome to do this calculation by hand.Luckily,computer can help us do
the job.

• In Stata, the default option of regression is to assume homoskedasticity, to obtain
heteroskedasticity robust standard errors use the option “robust”:

regress y x , robust

• In R, many ways can finish the job. A convenient function named vcovHC() is part of the
package sandwich.
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Test Scores and Class Size
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Test Scores and Class Size
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Wrap up: Heteroskedasticity in a Simple OLS

• If the error terms are heteroskedastic
• The fourth simple OLS assumption is violated.
• The Gauss-Markov conditions do not hold.
• The OLS estimator is not BLUE (not most efficient).

• But (given that the other OLS assumptions hold)
• The OLS estimators are still unbiased.
• The OLS estimators are still consistent.
• The OLS estimators are normally distributed in large samples
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OLS with Multiple Regressors: Hypotheses tests
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Recall: the Multiple OLS Regression

• The multiple regression model is

Yi = β0 + β1X1,i + β2X2,i + ... + βkXk,i + ui, i = 1, ..., n

• Four Basic Assumptions
• Assumption 1 : E[ui | X1i, X2i..., Xki] = 0
• Assumption 2 : i.i.d sample
• Assumption 3 : Large outliers are unlikely.
• Assumption 4 : No perfect multicollinearity.

• The Sampling Distribution: the OLS estimators β̂j for j = 1, ..., k are approximately
normally distributed in large samples.
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Standard Errors for the Multiple OLS Estimators

• There is nothing conceptually different between the single- or multiple-regressor cases.
• Standard Errors for a Simple OLS estimator β1

SE
(

β̂1

)
= σ̂β̂1

• Standard Errors for Mutiple OLS Regression estimators βj

SE
(
β̂j

)
= σ̂β̂j

• Remind: since now the joint distribution is not only for (Yi, Xi),but also for (Xij, Xik).

• The formula for the standard errors in Multiple OLS regression are related with a matrix
named Variance-Covariance matrix
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Hypothesis Tests for a Single Coefficient

• the t-statistic in Simple OLS Regression

tact =
β̂1 − β1,c

SE
(
β̂1

) ∼ N(0, 1)

• the t-statistic in Multiple OLS Regression

t =
β̂j − βj,c

SE
(
β̂j

) ∼ N(0, 1)
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Hypothesis testing for single coefficient

• H0 : βj = βj,c H1 : β1 ̸= βj,c

• Step1: Estimate β̂j, by run a multiple OLS regression

Yi = β0 + β1X1i + ... + βjXji + ... + βkXki + ui

• Step2: Compute the standard error of β̂j (requires matrix algebra)

• Step3: Compute the t-statistic

tact =
β̂j − βj,c

SE
(
β̂j

)
• Step4: Reject the null hypothesis if

• | tact |> critical value
• or if p − value < significance level
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Confidence Intervals for a single coefficient

• Also the same as in a simple OLS Regression.

• β̂j will be in the confidence set if | tact |≤ critical value = 1.96 at the 95% confidence level.

• Thus the 95% confidence interval for βj are within ±1.96 standard errors of β̂j

β̂j ± 1.96 · SE
(
β̂j

)
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Test Scores and Class Size
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Case: Class Size and Test scores

• Does changing class size, while holding the percentage of English learners constant, have a
statistically significant effect on test scores? (using a 5% significance level)

• H0 : βClassSize = 0 H1 : βClassSize ̸= 0

• Step1: Estimate β̂1 = −1.10

• Step2: Compute the standard error: SE(β̂1) = 0.43

• Step3: Compute the t-statistic

tact =
β̂1 − β1,c

SE
(
β̂1

) =
−1.10 − 0

0.43
= −2.54

• Step4: Reject the null hypothesis if
• | tact |=| −2.54 |> critical value.1.96
• p − value = 0.011 < significance level = 0.05
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Tests of Joint Hypotheses: on 2 or more coefficients

• Can we just test one individual coefficient at a time?

• Suppose the angry taxpayer hypothesizes that neither the student–teacher ratio nor
expenditures per pupil have an effect on test scores, once we control for the percentage of
English learners.

• Therefore, we have to test a joint null hypothesis that both the coefficient on
student–teacher ratio and the coefficient on expenditures per pupil are zero?

H0 : βstr = 0 & βexpn = 0,

H1 : βstr ̸= 0 and/or βexpn ̸= 0
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Testing 1 hypothesis on 2 or more coefficients

• If either tstr or texpn exceeds 1.96, should we reject the null hypothesis?

• Assume that tstr and texpn are uncorrelated at first:

Pr(|tstr| > 1.96 and/or |texpn| > 1.96)

= 1 − Pr(|tstr| ≤ 1.96 and |texpn| ≤ 1.96)

= 1 − Pr(|tstr| ≤ 1.96) ∗ Pr |texpn| ≤ 1.96)

= 1 − 0.95 × 0.95

= 0.0975 > 0.05

• We cannot reject the null hypothesis at 5% significant level now,even the single t-test
for both variables can.
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Testing 1 hypothesis on 2 or more coefficients

• If tstr and texpn are correlated, then it is more complicated as simple t-statistic is not
enough for hypothesis testing in Multiple OLS.

• In general, a joint hypothesis is a hypothesis that imposes two or more restrictions on the
regression coefficients.

H0 : βj = βj,c, βk = βk,c, ..., for a total of q restrictions

H1 : one or more of q restrictions under H0 does not hold

• where βj, βk, ... refer to different regression coefficients.

• When the regressors are highly correlated, we use F-statisticto testing joint hypotheses.
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Unrestricted v.s Restricted model

• The unrestricted model: the model without any of the restrictions imposed. It contains all
the variables.

• The restricted model: the model on which the restrictions have been imposed.

• And we want to test that H0 : β1 = 0 and β2 = 0,then H1 : β1 ̸= 0 and/or β2 ̸= 0 for the
regression model

Yi = β0 + β1X1,i + β2X2,i + β3X3,i + ui, i = 1, ..., n

• Then restricted model is
Yi = β0 + β3X3,i + ui
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The F-statistic with q restrictions

• The F-statistic is computed using a simple formula based on the sum of squared residuals
from two regressions.

F =
(SSRrestricted − SSRunrestricted)/q

SSRunrestricted/(n − k − 1)

• SSRrestricted is the sum of squared residuals from the restricted regression.

• SSRunrestricted is the sum of squared residuals from the full model.

• q is the number of restrictions under the null.

• k is the number of regressors in the unrestricted regression.
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The F-statistic and R2

• An alternative equivalent formula for the_homoskedasticity-only F-statistic_ is based on
the R2 of the two regressions:

F =
(R2

restricted − R2
unrestricted)/q

1 − R2
unrestricted/(n − k − 1)

- Only if the error terms are homoskedastic

Var(ui | Xi) = σ2
u
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Testing 1 hypothesis on 2 or more coefficients

• Suppose we want to test

H0 : β1 = 0 & β2 = 0 H1 : β1 ̸= 0 and/or β2 ̸= 0

• Then the F-statistic can also combine the two t-statisticst1 and t2 as follows

F =
1
2

(
t21 + t22 − 2ρ̂t1t2 t1t2

1 − ρ̂2
t1t2

)

where ρ̂t1t2 is an estimator of the correlation between the two t-statistics.
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The heteroskedasticity-robust F-statistic with q restrictions.

• Using matrix to show the form of the heteroskedasticity-robust F-statistic which is beyond
the scope of our class.

• While,under the null hypothesis,regardless of whether the errors are homoskedastic or
heteroskedastic, the F-statistic with q has a sampling distribution in large samples,

F − statistic ∼ Fq,∞

• where q is the number of restrictions

• Then we can compute the F-statistic, the critical values from the table of the Fq,∞ and
obtain the p-value.
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F-Distribution
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Testing joint hypothesis with q restrictions

• H0 : βj = βj,0, ..., βm = βm,0 for a total of q restrictions.

• H1:at least one of q restrictions under H0 does not hold.

• Step1: Estimate
Yi = β0 + β1X1i + ... + βjXji + ... + βkXki + ui

by OLS

• Step2: Compute the F-statistic

• Step3 : Reject the null hypothesis if

F − Statistic > Factq,∞

or
p − value = Pr[Fq,∞ > Fact] <= significant level
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Case: Class Size and Test Scores

• We want to test hypothesis that both the coefficient on student–teacher ratio and the
coefficient on expenditures per pupil are zero?

• H0 : βstr = 0 &βexpn = 0
• H1 : βstr ̸= 0 and/or βexpn ̸= 0

• The null hypothesis consists of two restrictions q = 2
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Case: Class Size and Test Scores

• It can be shown that the F-statistic with two restrictions has an approximate F2,∞
distribution in large samples

Fact = 5.43 > F2,∞ = 4.61 at 1% significant level

• This implies that we reject H0 at a 1% significance level.
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The “overall” regression F-statistic

• The “overall” F-statistic test the joint hypothesis that all the k slope coefficients are zero
• H0 : βj = βj,0, ..., βm = βm,0 for a total of q = k restrictions.
• H1: at least one of q = k restrictions under H0 does not hold.
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The “overall” regression F-statistic

• The overall F − Statistics = 147.2 which indicates at least one coefficient can not beZERO.
84 / 97



Case: Analysis of the Test Score Data Set
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Introduction

• How to use multiple regression in order to alleviate omitted variable bias and demonstrate
how to report results.

• So far we have considered two variables that control for unobservable student
characteristics which correlate with the student-teacher ratio and are assumed to have an
impact on test scores:

• English, the percentage of English learning students
• lunch, the share of students that qualify for a subsidized or even a free lunch at school
• calworks,the percentage of students that qualify for a income assistance program
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Five different model equations:

• We shall consider five different model equations:

(1) TestScore =β0 + β1STR+ u,

(2) TestScore =β0 + β1STR+ β2english+ u,

(3) TestScore =β0 + β1STR+ β2english+ β3lunch+ u,

(4) TestScore =β0 + β1STR+ β2english+ β4calworks+ u,

(5) TestScore =β0 + β1STR+ β2english+ β3lunch+ β4calworks+ u
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Scatter Plot: English learners and Test Scores
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Scatter Plot: Free lunch and Test Scores
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Scatter Plot: Income assistant and Test Scores
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Correlations between Variables

• The correlation coefficients are following.

# estimate correlation between student characteristics and test scores
cor(CASchools$testscr, CASchools$el_pct)

## [1] -0.6441237

cor(CASchools$testscr, CASchools$meal_pct)

## [1] -0.868772

cor(CASchools$testscr, CASchools$calw_pct)

## [1] -0.6268534

cor(CASchools$meal_pct, CASchools$calw_pct)

## [1] 0.7394218
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Table 2

Dependent Variable: Test Score

(1) (2)

str −2.280∗∗∗ −1.101∗∗

(0.519) (0.433)
el_pct −0.650∗∗∗

(0.031)
Constant 698.933∗∗∗ 686.032∗∗∗

(10.364) (8.728)

Observations 420 420
R2 0.051 0.426
Adjusted R2 0.049 0.424
F Statistic 22.575∗∗∗ 155.014∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust S.E. are shown in the parentheses 92 / 97



Table 3

Dependent Variable: Test Score

(1) (2) (3) (4)

str −2.280∗∗∗ −1.101∗∗ −0.998∗∗∗ −1.308∗∗∗

(0.519) (0.433) (0.270) (0.339)
el_pct −0.650∗∗∗ −0.122∗∗∗ −0.488∗∗∗

(0.031) (0.033) (0.030)
meal_pct −0.547∗∗∗

(0.024)
calw_pct −0.790∗∗∗

(0.068)
Constant 698.933∗∗∗ 686.032∗∗∗ 700.150∗∗∗ 697.999∗∗∗

(10.364) (8.728) (5.568) (6.920)

Observations 420 420 420 420
R2 0.051 0.426 0.775 0.629
Adjusted R2 0.049 0.424 0.773 0.626
F Statistic 22.575∗∗∗ 155.014∗∗∗ 476.306∗∗∗ 234.638∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust S.E. are shown in the parentheses
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Table 4

Dependent Variable: Test Score

(1) (2) (3) (4) (5)

str −2.280∗∗∗ −1.101∗∗ −0.998∗∗∗ −1.308∗∗∗ −1.014∗∗∗

(0.519) (0.433) (0.270) (0.339) (0.269)
el_pct −0.650∗∗∗ −0.122∗∗∗ −0.488∗∗∗ −0.130∗∗∗

(0.031) (0.033) (0.030) (0.036)
meal_pct −0.547∗∗∗ −0.529∗∗∗

(0.024) (0.038)
calw_pct −0.790∗∗∗ −0.048

(0.068) (0.059)
Constant 698.933∗∗∗ 686.032∗∗∗ 700.150∗∗∗ 697.999∗∗∗ 700.392∗∗∗

(10.364) (8.728) (5.568) (6.920) (5.537)

Observations 420 420 420 420 420
R2 0.051 0.426 0.775 0.629 0.775
Adjusted R2 0.049 0.424 0.773 0.626 0.773
F Statistic 22.575∗∗∗ 155.014∗∗∗ 476.306∗∗∗ 234.638∗∗∗ 357.054∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust S.E. are shown in the parentheses
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The “Star War” and Regression Table
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Warp Up

• OLS is the most basic and important tool in econometricians’ toolbox.

• The OLS estimators is unbiased, consistent and normal distributions under key
assumptions.

• Using the hypothesis testing and confidence interval in OLS regression, we could make a
more reliable judgment about the relationship between the treatment and the outcomes.
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Appendix
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