Lecture 5: Nonlinear Regression Functions

Introduction to Econometrics, Spring 2023

Zhaopeng Qu

Business School, Nanjing University

March 29 2023

Review of previous lecture

- 2 Nonlinear Regression Functions:
- 3 Nonlinear in Xs
- 4 Polynomials in X
- 5 Logarithms
- 6 Interactions Between Independent Variables
- 7 A Lastest and Smart Application: Jia and Ku(2019)

Review of previous lecture

OLS Regression and Hypothsis Testing

- OLS is the most basic and important tool in econometricians' toolbox.
- The OLS estimators is **unbiased**, **consistent** and **normal distributions** under *key assumptions*.
- Using the hypothesis testing and confidence interval in OLS regression, we could make a more reliable judgment about the relationship between the treatment and the outcomes.

Nonlinear Regression Functions:

• Recall the assumption of Linear Regression Model

Linear Regression Model

The observations, (Y_i, X_i) come from a random sample(i.i.d) and satisfy the linear regression equation,

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \dots + \beta_k X_{k,i} + u_i$$

• Everything what we have learned so far is under this assumption of linearity. But this linear approximation is not always a good one.

Introduction: Recall the whole picture what we want to do

 $\cdot\,$ A general formula for a population regression model may be

$$Y_i = f(X_{1,i}, X_{2,i}, ..., X_{k,i}) + u_i$$

- **Parametric methods**: assume that the function form(families) is known, we just need to assure(estimate) some unknown parameters in the function.
 - Linear
 - Nonlinear
- **Nonparametric methods**: assume that the function form is unknown or unnecessary to known.

Nonlinear Regression Functions

- How to extend linear OLS model to be nonlinear?
- 1. Nonlinear in Xs(the lecture now)
 - Polynomials,Logarithms and Interactions
 - The multiple regression framework can be extended to handle regression functions that are nonlinear in one or more X.
 - the difference from a standard multiple OLS regression is *how to explain estimating coefficients*.
- 2. Nonlinear in β or Nonlinear in Y(the next lecture)
 - · Discrete Dependent Variables or Limited Dependent Variables.
 - Linear function in Xs is not a good prediciton function or Y.
 - Need a function which parameters enter nonlinearly, such as logisitic or negative exponential functions.
 - Then the parameters can not obtained by OLS estimation any more but *Nonlinear Least Squres* or Maximum Likelyhood Estimation.

Marginal Effect of X in Nonlinear Regression

- · If our regression model is linear: $Y_i = \beta_0 + \beta_1 X_{1,i} + ... + \beta_k X_{k,i} + u_i$
 - Then the marginal effect of X, thus the effect of Y on a change in X_j by 1 (unit) is constant and equals β_j :

$$\beta_j = \frac{\partial \mathsf{Y}_i}{\partial \mathsf{X}_{ji}}$$

- But if a relation between Y and X is **nonlinear**, thus $Y_i = f(X_{1,i}, X_{2,i}, ..., X_{k,i}) + u_i$
 - Then the marginal effect of X is not constant, but depends on the value of Xs(including X_i itself or/and other X_is) because

$$\frac{\partial Y_i}{\partial X_{ji}} = \frac{\partial f(X_{1,i}, X_{2,i}, \dots, X_{k,i})}{\partial X_{ji}}$$

Nonlinear in Xs

The TestScore – STR relation looks linear (maybe)

But the TestScore - Income relation looks nonlinear

12 / 97

1. Polynomials in X

• The population regression function is approximated by a quadratic, cubic, or higher-degree polynomial.

2. Logarithmic transformations

- Y and/or X is transformed by taking its logarithm
- this gives a *percentages* interpretation that makes sense in many applications

3. Interactions

- \cdot the effect X on Y depends on the value of another independent variable
- very often used in the analysis of hetergenous effects, some time used as analysis(channel).

Population Regression Functions with Different Slopes

In Figure 8.1a, the population regression function has a constant slope. In Figure 8.1b, the slope of the population regression function depends on the value of X_1 . In Figure 8.1c, the slope of the population regression function

The Effect on Y of a Change in X in Nonlinear Functions

The Expected Change on Y of a Change in X_1 in the Nonlinear Regression Model (8.3)

The expected change in Y, ΔY , associated with the change in X_1 , ΔX_1 , holding X_2, \ldots, X_k constant, is the difference between the value of the population regression function before and after changing X_1 , holding X_2, \ldots, X_k constant. That is, the expected change in Y is the difference:

$$\Delta Y = f(X_1 + \Delta X_1, X_2, \dots, X_k) - f(X_1, X_2, \dots, X_k).$$
(8.4)

The estimator of this unknown population difference is the difference between the predicted values for these two cases. Let $\hat{f}(X_1, X_2, \ldots, X_k)$ be the predicted value of Y based on the estimator \hat{f} of the population regression function. Then the predicted change in Y is

$$\Delta \hat{Y} = \hat{f}(X_1 + \Delta X_1, X_2, \dots, X_k) - \hat{f}(X_1, X_2, \dots, X_k).$$
(8.5)

15 / 97

KEY CONCEPT

8.1

Polynomials in X

Example: the TestScore-Income relation

- If a straight line is NOT an adequate description of the relationship between district income and test scores, what is?
- Two options
 - Quadratic specification:

TestScore_i =
$$\beta_0 + \beta_1$$
Income_i + β_2 (Income_i)² + u_i

Cubic specification:

$$TestScore_i = \beta_0 + \beta_1 Income_i + \beta_2 (Income_i)^2 + \beta_3 (Income_i)^3 + u_i$$

- How to estimate these models?
 - We can see **quadratic** and **cubic** terms as two independent variables.
 - $\cdot \,$ Then the model turns into a special form of a multiple OLS regression model.

Estimation of the quadratic specification in R

```
##
## Call.
     felm(formula = testscr ~ avginc + I(avginc<sup>2</sup>), data = ca)
##
##
## Residuals:
##
      Min
               10 Median
                               30
                                      Max
## -44.416 -9.048 0.440 8.348 31.639
##
## Coefficients:
##
               Estimate Robust s.e t value Pr(>|t|)
## (Intercept) 607.30174 2.90175 209.288 <2e-16 ***
## avginc 3.85100 0.26809 14.364 <2e-16 ***
## I(avginc<sup>2</sup>) -0.04231 0.00478 -8.851 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.72 on 417 degrees of freedom
## Multiple R-squared(full model): 0.5562 Adjusted R-squared: 0.554
## Multiple R-squared(proj model): 0.5562 Adjusted R-squared: 0.554
## F-statistic(full model *iid*).261 3 on 2 and 417 DF p-value. < 2 2e-16
```

Estimation of the cubic specification in R

```
##
## Call.
     felm(formula = testscr ~ avginc + I(avginc^2) + I(avginc3), data = ca)
##
##
## Residuals:
##
     Min
             10 Median 30
                                 Max
## -44.28 -9.21 0.20 8.32 31.16
##
## Coefficients:
##
                Estimate Robust s.e t value Pr(>|t|)
## (Intercept) 6.001e+02 5.102e+00 117.615 < 2e-16 ***
## avginc 5.019e+00 7.074e-01 7.095 5.61e-12 ***
## I(avginc<sup>2</sup>) -9.581e-02 2.895e-02 -3.309 0.00102 **
## I(avginc3) 6.855e-04 3.471e-04 1.975 0.04892 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.71 on 416 degrees of freedom
## Multiple R-squared(full model): 0.5584 Adjusted R-squared: 0.5552
## Multiple B-squared(proj model), 0 5584 Adjusted B-squared, 0 5552
```

TestScore and Income: OLS Regression Results

Table 1

	Dependent Variable: Test Score		
	(1)	(2)	(3)
avginc	1.879***	3.851***	5.019***
	(0.113)	(0.267)	(0.704)
I(avginc^2)		-0.042***	-0.096***
		(0.005)	(0.029)
I(avginc^3)			0.001**
			(0.0003)
Constant	625.384***	607.302***	600.079***
	(1.863)	(2.891)	(5.078)
Observations	420	420	420
Adjusted R ²	0.506	0.554	0.555
Residual Std. Error	13.387	12.724	12.707
F Statistic	430.830***	261.278***	175.352***

ala a state a sub-state a sub-

Figure: Linear and Quadratic Regression

Quadratic vs Linear

- Question: Is the quadratic model better than the linear model?
- We can test the null hypothesis that the regression function is linear against the alternative hypothesis that it is quadratic:

$$H_0: \beta_2 = 0$$
 and $H_1: \beta_2 \neq 0$

the t-statistic

$$t = \frac{(\hat{\beta}_2 - 0)}{SE(\hat{\beta}_2)} = \frac{-0.0423}{0.0048} = -8.81$$

- Since 8.81 > 2.58, we reject the null hypothesis (the linear model) at a 1% significance level.
- · Based on the F-test, we can also reject the null hypothesis

$$F - statistic_{q=2,d=417} = 261.3, p - value \cong 0.00$$

Interpreting the estimated quadratic regression function

- What is the marginal effect of X on Y in a quadratic regression function.
- The regression model now is

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + u_i$$

• The marginal effect of X on Y

$$\frac{\partial Y_i}{\partial X_i} = \beta_1 + 2\beta_2 X_i$$

• It means that the marginal effect of X on Y depends on the specific value of X_i

Interpreting the estimated quadratic regression function

 \cdot The estimated regression function with a quadratic term of income is

$$\widehat{\text{TestScore}}_{i} = \underset{(2.90)}{607.3} + \underset{(0.27)}{3.85} \times income_{i} - \underset{(0.0048)}{0.0423} \times income_{i}^{2}.$$

- Suppose the effect of an \$1000 increase on average income on test scores
- A group: from \$10,000 per capita to \$11,000 per capita:

$$\Delta TestScore = 607.3 + 3.85 \times 11 - 0.0423 \times (11)^{2}$$
$$- [607.3 + 3.85 \times 10 - 0.0423 \times (10)^{2}]$$
$$= 2.96$$

• B group: from \$40,000 per capita to \$41,000 per capita:

$$\Delta TestScore = 607.3 + 3.85 \times 41 - 0.0423 \times (41)^{2} - [607.3 + 3.85 \times 40 - 0.0423 \times (40)^{2}] = 0.42$$

Figure: Cubic and Quadratic Regression

Quadratic vs Cubic

- Question: Is the cubic model better than the quadratic model?
- **Answer**: testing the null hypothesis that the regression function is *quadratic* against the alternative hypothesis that it is *cubic*:

$$H_0: \beta_3 = 0$$
 and $H_1: \beta_3 \neq 0$

the t-statistic

$$t = \frac{(\hat{\beta}_3 - 0)}{SE(\hat{\beta}_3)} = \frac{-0.001}{0.0003} = -3.33$$

- Since 3.33 > 2.58, we reject the null hypothesis (the linear model) at a 1% significance level.
- the F-test also reject

$$F$$
 - statistic_{q=3,d=416} = 175.35, p - value \cong 0.00

Interpreting the estimated cubic regression function

• The regression model now is

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \beta_3 X_i^3 + u_i$$

• The marginal effect of X on Y

$$\frac{\partial Y_i}{\partial X_i} = \beta_1 + 2\beta_2 X_i + 3\beta_3 X_i^2$$

Interpreting the estimated regression function

• The estimated cubic model is

$$\widehat{\text{TestScore}_{i}} = \underbrace{600.1}_{(5.83)} + \underbrace{5.02}_{(0.86)} \times income - \underbrace{0.96}_{(0.03)} \times income^{2} - \underbrace{0.00069}_{(0.00047)} \times income^{3}.$$

• A group: from \$10,000 per capita to \$11,000 per capita:

$$\Delta TestScore = 600.079 + 5.019 \times 11 - 0.96 \times (11)^2 + 0.001 \times (11)^3 - [600.079 + 5.019 \times 10 - 0.96 \times (10)^2 + 0.001 \times (10)^3]$$

• **B group**: from \$40,000 per capita to \$41,000 per capita:

$$\begin{split} \Delta \textit{TestScore} &= 600.079 + 5.019 \times 41 - 0.96 \times (41)^2 + 0.001 \times (41)^3 \\ &- [600.079 + 5.019 \times 40 - 0.96 \times (40)^2 + 0.001 \times (40)^3] \end{split}$$

• Approximate the population regression function by a polynomial:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X^2 \dots + \beta_r X_i^r + u_i$$

- This is just the multiple linear regression model except that the regressors are **powers of** X!
- Estimation, hypothesis testing, etc. proceeds as in the multiple regression model using OLS.
- Although, the coefficients are difficult to interpret, the regression function itself is interpretable.

Testing the population regression function is linear

- If the population regression function is linear, then the higher-degree terms should not enter the population regression function.
- To perform hypothesis test

$$H_0: \beta_2 = 0, \beta_3 = 0, ..., \beta_r = 0$$
 and $H_1:$ at least one $\beta_i \neq 0$

• Because H_0 is a **joint null hypothesis** with q = r - 1 restrictions on the coefficients, it can be tested using the F-statistic.

- How many powers of X should be included in a polynomial regression?
- The answer balances a **trade-off** between flexibility and statistical precision. (many ML or non-parametric or semi-parametric methods work on this)
 - Increasing the degree r introduces more flexibility into the regression function and allows it to match more shapes; a polynomial of degree r can have up to r - 1 bends (that is, inflection points) in its graph.
 - But increasing r means adding more regressors, which can reduce the precision of the estimated coefficients.

- A practical way: asking whether the coefficients in the regression associated with the largest values of r are **zero**. If so, then these terms can be dropped from the regression.
- This procedure, which is called sequential hypothesis testing
 - 1. Pick a maximum value of r and estimate the polynomial regression for that r.
 - 2. Use the t-statistic to test whether the coefficient on X^r , β_r is **ZERO**.
 - 3. If reject, then the degree is r, if not then test the whether the coefficient on X^{r-1} , β_{r-1} is **ZERO**.
 - 4. ...continue this procedure until the coefficient on the highest power in your polynomial is statistically significant.

- The **initial degree** *r* of the polynomial is still missing.
- In many applications involving economic data, the nonlinear functions are smooth, that is, they do not have sharp jumps, or "spikes."
- If so, then it is appropriate to choose a small maximum degree for the polynomial, such as 2, 3, or 4.

- There are also several formal testing to determine the degree.
 - The F-statistic approach
 - The Akaike Information Criterion(AIC)
 - The Bayes Information Criterion(BIC)
- We will introduce them later on.

- The nonlinear functions in Polynomials in Xs are just a special form of Multiple OLS Regression.
- If the true relationship between X and Y is nonlinear in polynomials in Xs, then a fully linear regression is misspecified the functional form is wrong.
- The estimator of the effect on Y of X is biased(a special case of OVB).
- Estimation, hypothesis testing, etc. proceeds as in the multiple regression model using OLS, which can also help us to tell the degrees of polynomial functions.
- The big difference is how to explained the estimate coefficients and make the predicted change in Y with a change in Xs.

Logarithms
- Another way to specify a nonlinear regression model is to use the natural logarithm of Y and/or X.
- Ln(x) = the natural logarithm of x is the inverse function of the exponential function e^x , here e = 2.71828.

$$x = ln(e^x)$$

Review of the Basic Logarithmic functions

• If X and a are variables, then we have

$$ln(1/x) = -ln(x)$$

$$ln(ax) = ln(a) + ln(x)$$

$$ln(x/a) = ln(x) - ln(a)$$

$$ln(x^{a}) = aln(x)$$

Logarithms and percentages

• Because

$$ln(x + \Delta x) - ln(x) = ln\left(\frac{x + \Delta x}{x}\right)$$
$$\cong \frac{\Delta x}{x} \text{ (when } \frac{\Delta x}{x} \text{ is very small)}$$

• For example:

$$ln(1+0.01) = ln(101) - ln(100) = 0.00995 \cong 0.01$$

• Thus,logarithmic transforms permit modeling relations in **percentage** terms (like elasticities), rather than linearly.

The three log regression specifications:

Case	Population regression function	
I.linear-log	$Y_i = \beta_0 + \beta_1 ln(X_i) + u_i$	
II.log-linear	$ln(Y_i) = \beta_0 + \beta_1 X_i + u_i$	
III.log-log	$ln(Y_i) = \beta_0 + \beta_1 ln(X_i) + u_i$	

- The interpretation of the slope coefficient differs in each case.
- The interpretation is found by applying the general "before and after" rule: "figure out the change in Y for a given change in X."(Key Concept 8.1 in S.W.pp301)

I. Linear-log population regression function

• Regression Model:

$$Y_i = \beta_0 + \beta_1 ln(X_i) + u_i$$

 \cdot Change X Δ X:

$$\Delta Y = [\beta_0 + \beta_1 \ln(X + \Delta X)] - [\beta_0 + \beta_1 \ln(X)]$$
$$= \beta_1 [\ln(X + \Delta X) - \ln(X)]$$
$$\cong \beta_1 \frac{\Delta X}{X}$$

• Note $100 \times \frac{\Delta X}{X} = percentage change in X$, and

$$\beta_1 \cong \frac{\Delta Y}{\frac{\Delta X}{X}}$$

• Interpretation of β_1 : a 1 percent increase in X (multiplying X by 1.01 or $100 \times \frac{\Delta X}{X}$) is associated with a $0.01\beta_1$ or $\frac{\beta_1}{100}$ change in Y.

Example: the TestScore – log(Income) relation

• The OLS regression of ln(Income) on Testscore yields

$$\widehat{\text{TestScore}} = 557.8 + 36.42 \times \ln(\text{Income})$$

(3.8) (1.4)

- Interpretation of β_1 : a **1%** increase in Income is associated with an increase in TestScore of **0.3642** points on the test.

Test scores: linear-log function

Case II. Log-linear population regression function

• Regression model:

 $ln(Y_i) = \beta_0 + \beta_1 X_i + u_i$

• Change X:

$$ln(\Delta Y + Y) - ln(Y) = [\beta_0 + \beta_1(X + \Delta X)] - [\beta_0 + \beta_1 X]$$
$$ln(1 + \frac{\Delta Y}{Y}) = \beta_1 \Delta X$$
$$\Rightarrow \frac{\Delta Y}{Y} \cong \beta_1 \Delta X$$

• So $100\frac{\Delta Y}{Y} = percentage$ change in Y and

$$\beta_1 = \frac{\frac{\Delta Y}{Y}}{\Delta X}$$

• Then a change in X by one unit is associated with a $\beta_1 \times 100$ percent change in Y.

Mincer Earning Function: log-linear functions

- Example: Age(working experience) and Earnings
- The OLS regression of age on earnings yields

 $ln(\widehat{Earnings}) = 2.811 + 0.0096Age$ (0.018) (0.0004)

 $\cdot\,$ According to this regression, when one more year old, earnings are predicted to increase by 100 $\times\,0.0096=0.96\%$

Case III. Log-log population regression function

• the regression model is

$$ln(Y_i) = \beta_0 + \beta_1 ln(X_i) + u_i$$

• Change X:

$$ln(\Delta Y + Y) - ln(Y) = [\beta_0 + \beta_1 ln(X + \Delta X)] - [\beta_0 + \beta_1 ln(X)]$$
$$ln(1 + \frac{\Delta Y}{Y}) = \beta_1 ln(1 + \frac{\Delta X}{X})$$
$$\Rightarrow \frac{\Delta Y}{Y} \cong \beta_1 \frac{\Delta X}{X}$$

• Now $100\frac{\Delta Y}{Y} = percentage$ change in Y and $100\frac{\Delta X}{X} = percentage$ change in X

• Therefore a 1% change in X by one unit is associated with a β_1 % change in Y,thus β_1 has the interpretation of an **elasticity**.

Test scores and income: log-log specifications

$$ln(TestScore) = 6.336 + 0.055 \times ln(Income)$$

(0.006) (0.002)

 $\cdot\,$ A 1% increase in Income is associated with an increase of 0.055% in TestScore.

Test scores: The log-linear and log-log functions

48 / 97

Test scores: The linear-log and cubic functions

49 / 97

Logarithmic and cubic functions

Table 3

	Depen	Dependent Variable: Test Score			
	testscr	log.testscr	testscr		
	(1)	(2)	(3)		
loginc	36.420***	0.055***			
		(0.002)			
avginc			5.019***		
			(0.704)		
l(avginc^2)			-0.096***		
			(0.029)		
l(avginc^3)			0.001**		
			(0.0003)		
Constant	557.832***	6.336***	600.079***		
	(5.078)	(0.006)	(5.078)		
Observations	420	420	420		
Adjusted D2	0 5 6 1	0 5 5 7			

50 / 97

Choice of specification should be guided

- The two estimated regression functions are quite similar. So how to choose?
- The general rules:
 - By economic logic or theories(which interpretation makes the most sense in your application?).
 - There are several formal tests, while seldom used in reality. Actually t-test and F-test are enough.
 - Plotting predicted values and use $\overline{R^2}$ or SER can help to make further judgment.

- We can add polynomial terms of any significant variables to a model and to perform a single and joint test of significance. If the additional quadratics are significant, they can be added to the model.
- We can also change the variables values into logarithms to capture the nonlinear relationships.
- In reality, it can be difficult to pinpoint the precise reason for functional form misspecification.
- Fortunately, using **logarithms** of certain variables and adding **quadratic** or **cubic** functions are **sufficient** for detecting many(almost) important nonlinear relationships in Xs in economics.

Interactions Between Independent Variables

- The product of two variables is called an interaction term.
- Try to answer how the effect on Y of a change in an independent variable depends on the value of another independent variable.
- Consider three cases:
 - 1. Interactions between **two binary** variables.
 - 2. Interactions between a binary and a continuous variable.
 - 3. Interactions between two continuous variables.

Interactions Between Two Binary Variables

- · Assume we would like to study the earnings of worker in the labor market
- The population linear regression of Y_i is

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + u_i$$

- Dependent Variable: **log earnings**(Y_i ,where $Y_i = ln(Earnings)$)
- Independent Variables: two binary variables
 - $\cdot D_{1i} = 1$ if the person graduate from college
 - $\cdot D_{2i} = 1$ if the worker's gender is female
- So β_1 is the effect on log earnings of having a college degree, holding gender constant, and β_2 is the effect of being female, holding schooling constant.

Interactions Between Two Binary Variables

- The effect of having a college degree in this specification, holding constant gender, is the **same** for men and women. No reason that this must be so.
- the effect on Y_i of D_{1i} , holding D_{2i} constant, could depend on the value of D_{2i}
- there could be an interaction between having a college degree and gender so that the value in the job market of a degree is different for men and women.
- The new regression model of Y_i is

$$Y_{i} = \beta_{0} + \beta_{1}D_{1i} + \beta_{2}D_{2i} + \beta_{3}(D_{1i} \times D_{2i}) + u_{i}$$

• The new regressor, the product $D_{1i} \times D_{2i}$, is called an **interaction term** or an interacted regressor,

Interactions Between Two Binary Variables:

• The regression model of Y_i now is

$$Y_{i} = \beta_{0} + \beta_{1}D_{1i} + \beta_{2}D_{2i} + \beta_{3}(D_{1i} \times D_{2i}) + u_{i}$$

• Then the conditional expectation of Yi for $D_{1i} = 0$, given a certain value of D_{2i} , d_2

$$E(Y_i|D_{1i} = 0, D_{2i} = d_2) = \beta_0 + \beta_1 \times 0 + \beta_2 d_2 + \beta_3 (0 \times d_2) = \beta_0 + \beta_2 d_2$$

• Then the conditional expectation of Yi for $D_{1i} = 1$, given a certain value of D_{2i} , d_2

$$E(Y_i|D_{1i} = 1, D_{2i} = d_2) = \beta_0 + \beta_1 \times 1 + \beta_2 d_2 + \beta_3 (1 \times d_2)$$
$$= \beta_0 + \beta_1 + \beta_2 d_2 + \beta_3 d_2$$

Interactions Between Two Binary Variables:

• The effect of this change is the difference of expected values, which is

$$E(Y_i|D_{1i} = 1, D_{2i} = d_2) - E(Y_i|D_{1i} = 0, D_{2i} = d_2) = \beta_1 + \beta_3 d_2$$

- In the binary variable interaction specification, the effect of acquiring a college degree (a unit change in D_{1i}) depends on the person's gender.
 - If the person is male, thus $D_{2i} = d_2 = 0$, then the effect is β_1
 - If the person is female, thus $D_{2i} = d_2 = 1$, then the effect is $\beta_1 + \beta_3$
- So the coefficient β_3 is the difference in the effect of acquiring a college degree for women versus men.

Application: the STR and the English learners

- Let *HiSTR_i* be a binary variable for STR
 - $HiSTR_i = 1$ if the STR > 20
 - $HiSTR_i = 0$ otherwise
- Let *HiEL_i* be a binary variable for the share of English learners
 - $HiEL_i = 1$ if the $el_{pct} > 10$ percent
 - $HiEL_i = 0$ otherwise

Application: the STR and the English learners

• the OLS regression result is

$$\widehat{\text{restScore}} = 664.1 - 1.9 \text{HiSTR} - 18.2 \text{HiEL} - 3.5(\text{HiSTR} \times \text{HiEL})$$

(1.4) (1.9) (2.3) (3.1)

- The value of β₃ here(3.5) means that performance gap in test scores between large class(STR > 20) and small class(STR ≤ 20) varies between the "higher-share-immigrant" class and the "lower-share immigrants" class.
- More precisely, the gap of test scores is positively related with the "higher-share-immigrant" class though insignificantly.

Interactions: a Continuous and a Binary Variable

- **Binary Variable**: eg, whether the worker has a college degree (D_i)
- **Continuous Variable**: eg, the individual's years of work experience (X_i)
- In this case, we can have three specifications:
 - 1. No interaction

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + u_i$$

2. a interaction and only one independent variable

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 (D_i \times X_i) + u_i$$

3. Interaction and two independent variables

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 (D_i \times X_i) + u_i$$

A Continuous and a Binary Variable: Three Cases

Interactions of binary variables and continuous variables can produce three different population regression functions: (a) $\beta_0 + \beta_1 X + \beta_2 D$ allows for different intercepts but has the same slope, (b) $\beta_0 + \beta_1 X + \beta_2 D + \beta_3 (X \times D)$ allows

A Continuous and a Binary Variable: Three Specifications

- · All three specifications are just different versions of the multiple regression model.
- Different specifications are based on different assumptions of the relationships of X on Y depending on D.
- The Model 3 is preferred, because it allows for both different intercepts and different slops.

Application: the STR and the English learners

- HiEL; is still a binary variable for English learner
- The estimated interaction regression

$$\widehat{\text{TestScore}} = 682.2 - 0.97STR + 5.6HiEL - 1.28(STR \times HiEL)$$
(11.9) (0.59) (19.5) (0.97)
$$\overline{R^2} = 0.305$$

- For districts with a low fraction of English learners, the estimated regression line is 682.2 - 0.97STR_i
- For districts with a high fraction of English learners, the estimated regression line is $682.2 + 5.6 0.97STR_i 1.28STR_i = 687.8 2.25STR_i$
- The difference between these two effects, 1.28 points, is the coefficient on the interaction term.

Application: the STR and the English learners

- The value of β_3 here(-1.28) means that the effect of class size on test scores varies between the "higher-share-immigrant" class and the "lower-share immigrants or more native" class.
- More precisely, negatively related with the "higher-share-immigrant" class though insignificantly.

Hypotheses Testing

1. High fraction is the same as low fraction, thus the two line are in fact the same

• computing the **F-statistic** testing the joint hypothesis

$$\beta_2 = \beta_3 = 0$$

- This F-statistic is 89.9, which is significant at the 1% level.
- 2. The effects between two groups is the same,thus two lines have the same slope
- testing whether the coefficient on the interaction term is zero, which can be tested by using a **t-statistic**
- This t-statistic is -1.32, which is insignificant at the 10% level.

- 3. the lines have the same intercept
- Testing that the population coefficient on *HiEL* is zero,which can be tested by using a **t-statistic**.
- This t-statistic is 0.29, which is insignificant even at the 10% level.
- The reason is that the regressors, *HiEL* and *STR* * *HiEL*, are highly correlated. Then large standard errors on the individual coefficients.
- Even though it is impossible to tell which of the coefficients is nonzero, there is strong evidence against the hypothesis that both are zero.

Interactions Between Two Continuous Variables

- Now suppose that both independent variables $(X_{1i} \text{ and } X_{2i})$ are continuous.
 - X_{1i} is his or her years of work experience
 - X_{2i} is the number of years he or she went to school.
- there might be an interaction between these two variables so that the effect on wages of an additional year of experience depends on the number of years of education.
- the population regression model

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \beta_{3}(X_{1i} \times X_{2i}) + u_{i}$$

Interactions Between Two Continuous Variables

• Thus the effect on Y of a change in X_1 , holding X_2 constant, is

$$\frac{\Delta Y}{\Delta X_1} = \beta_1 + \beta_3 X_2$$

• A similar calculation shows that the effect on Y of a change ΔX_1 in X_2 , holding X_1 constant, is

$$\frac{\Delta Y}{\Delta X_2} = \beta_2 + \beta_3 X_1$$

 \cdot That is, if X₁ changes by Δ X₁ and X₂ changes by Δ X₂, then the expected change in Y

$$\Delta Y = (\beta_1 + \beta_3 X_2) \Delta X_1 + (\beta_2 + \beta_3 X_1) \Delta X_2 + \beta_3 \Delta X_1 \Delta X_2$$

 \cdot The estimated interaction regression

$$In(\widehat{TestScore}) = 686.3 - 1.12STR - 0.67PctEL + 0.0012(STR \times PctEL)$$
(11.8) (0.059) (0.037) (0.019)

- The value of β_3 here means how the effect of class size on test scores varies along with the share of English learners in the class.
- More precisely, *increase 1 unit of the share of English learners* make the effect of class size on test scores increase extra 0.0012 scores.

Application: the STR and the English learners

• when the percentage of English learners is at the median(PctEL = 8.85), the slope of the line relating test scores and the STR is

$$\frac{\Delta Y}{\Delta X_1} = \beta_1 + \beta_3 X_2 = -1.12 + 0.0012 \times 8.85 = -1.11$$

• when the percentage of English learners is at the **75th percentile**(PctEL = 23.0), the slope of the line relating test scores and the STR is

$$\frac{\Delta Y}{\Delta X_1} = \beta_1 + \beta_3 X_2 = -1.12 + 0.0012 \times 23.0 = -1.09$$

- The difference between these estimated effects is not statistically significant.Because?
 - The t-statistic testing whether the coefficient on the interaction term is zero t = 0.0012/0/019 = 0.06

Application: STR and Test Scores in a Summary

- Although these nonlinear specifications extend our knowledge about the relationship between STR and Testscore, it must be augmented with control variables such as economic background to avoid OVB bias.
- Two measures of the economic background of the students:
 - 1. the percentage of students eligible for a subsidized lunch
 - 2. the logarithm of average district income.
Application: STR and Test Scores in a Summary

- · Then three specific questions about test scores and the student-teacher ratio.
 - 1. After controlling for differences in economic characteristics, does the effect on test scores of STR depend on the fraction of English learners?
 - 2. Does this effect depend on the value of the student-teacher ratio(STR)?
 - 3. Most important, after taking economic factors and nonlinearities into account, what is the estimated effect on test scores of reducing the student-teacher ratio by 2 students per teacher?

	(1)	(2)	(3)	score	(5)	(6)	(7)
	(1)	(2)	(3)	(4)	(5)	(0)	(7)
str	-1.00***	-0.73**	-0.97	-0.53	64.34**	83.70**	65.29**
	(0.27)	(0.26)	(0.59)	(0.34)	(24.86)	(28.50)	(25.26)
l(str^2)					-3.42**	-4.38**	-3.47**
					(1.25)	(1.44)	(1.27)
l(str^3)					0.06**	0.07**	0.06**
					(0.02)	(0.02)	(0.02)
str:HiEL			-1.28	-0.58		-123.28*	
			(0.97)	(0.50)		(50.21)	
l(str^2):HiEL						6.12*	
						(2.54)	
l(str^3):HiEL						-0.10*	
						(0.04)	
english	-0.12***	-0.18***					-0.17***
0	(0.03)	(0.03)					(0.03)
HIEL			5.64	5.50		816.08*	
			(19.51)	(9.80)	(1.03)	(327.67)	
lunch	-0.55***	-0.40***		-0.41***	-0.42***	-0.42***	-0.40***
	(0.02)	(0.03)		(0.03)	(0.03)	(0.03)	(0.03)
log(income)		11.57***		12.12***	11.75***	11.80***	11.51***
		(1.82)		(1.80)	(1.77)	(1.78)	(1.81)
Constant	700.15***	658.55***	682.25***	653.67***	252.05	122.35	244.81
	(5.57)	(8.64)	(11.87)	(9.87)	(163.63)	(185.52)	(165.72)
N	420	420	420	420	420	420	420
Adjusted R ²	0.77	0.79	0.31	0.79	0.80	0.80	0.80

 $^{*}p < .05; ^{**}p < .01; ^{***}p < .001$

	(1)	(2)	(3)	score (4)	(5)	(6)	(7)
str	-1.00***	-0.73** (0.26)	-0.97	-0.53	64.34** (24.86)	83.70** (28.50)	65.29** (25.26)
l(str^2)	(0.27)	(0.2.0)	(0.55)	(0.04)	-3.42**	-4.38**	-3.47**
l(str^3)					(1.25) 0.06** (0.02)	(1.44) 0.07** (0.02)	(1.27) 0.06** (0.02)
str:HiEL			-1.28	-0.58	(0.02)	-123.28*	(0.02)
l(str^2):HiEL			(0.97)	(0.50)		(50.21) 6.12*	
l(str^3):HiEL						(2.54) -0.10^* (0.04)	
english	-0.12*** (0.03)	-0.18 ^{***} (0.03)				(0.04)	-0.17*** (0.03)
HIEL			5.64 (19.51)	5.50 (9.80)		816.08* (327.67)	
lunch	-0.55***	-0.40***		-0.41***	-0.42***	-0.42***	-0.40***
log(income)	(0.02)	(0.03) 11.57***		(0.03) 12.12 ^{***}	(0.03) 11.75***	(0.03) 11.80 ^{***}	(0.03) 11.51***
Constant	700 15***	(1.82)	692 25***	(1.80) 653.67***	(1.77)	(1.78)	(1.81)
Constant	(5.57)	(8.64)	(11.87)	(9.87)	(163.63)	(185.52)	(165.72)
Ν	420	420	420	420	420	420	420
Adjusted R ²	0.77	0.79	0.31	0.79	0.80	0.80	0.80

p < .05; p < .01; p < .01; p < .001

				score			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
str	-1.00***	-0.73**	-0.97	-0.53	64.34**	83.70**	65.29**
	(0.27)	(0.26)	(0.59)	(0.34)	(24.86)	(28.50)	(25.26)
l(str^2)					-3.42**	-4.38**	-3.47**
					(1.25)	(1.44)	(1.27)
l(str^3)					0.06**	0.07**	0.06**
					(0.02)	(0.02)	(0.02)
str:HiEL			- 1.28	-0.58		-123.28*	
			(0.97)	(0.50)		(50.21)	
l(str^2):HiEL						6.12*	
						(2.54)	
l(str^3):HiEL						-0.10*	
						(0.04)	
english	-0.12***	-0.18***					-0.17***
	(0.03)	(0.03)					(0.03)
HiEL			5.64	5.50		816.08*	
			(19.51)	(9.80)	(1.03)	(327.67)	
lunch	-0.55***	-0.40***		-0.41***	-0.42***	-0.42***	-0.40***
	(0.02)	(0.03)		(0.03)	(0.03)	(0.03)	(0.03)
log(income)		11.57***		12.12***	11.75***	11.80***	11.51***
		(1.82)		(1.80)	(1.77)	(1.78)	(1.81)
Constant	700.15***	658.55***	682.25***	653.67***	252.05	122.35	244.81
	(5.57)	(8.64)	(11.87)	(9.87)	(163.63)	(185.52)	(165.72)
Ν	420	420	420	420	420	420	420
Adjusted R ²	0.77	0.79	0.31	0.79	0.80	0.80	0.80

* p < .05; ** p < .01; *** p < .001

	(.)	(-)	(-)	score	(-)	(-)	(-)
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
str	-1.00***	-0.73**	-0.97	-0.53	64.34**	83.70**	65.29**
	(0.27)	(0.26)	(0.59)	(0.34)	(24.86)	(28.50)	(25.26)
l(str^2)					-3.42**	-4.38**	-3.47**
					(1.25)	(1.44)	(1.27)
l(str^3)					0.06**	0.07**	0.06**
					(0.02)	(0.02)	(0.02)
str:HiEL			-1.28	-0.58		-123.28*	
			(0.97)	(0.50)		(50.21)	
l(str^2):HiEL						6.12*	
						(2.54)	
l(str^3):HiEL						-0.10*	
						(0.04)	
english	-0.12***	-0.18***					-0.17***
	(0.03)	(0.03)					(0.03)
HIEL			5.64	5.50	-5.47***	816.08*	
			(19.51)	(9.80)	(1.03)	(327.67)	
lunch	-0.55***	-0.40***		-0.41***	-0.42***	-0.42***	-0.40***
	(0.02)	(0.03)		(0.03)	(0.03)	(0.03)	(0.03)
log(income)		11.57***		12.12***	11.75***	11.80***	11.51***
		(1.82)		(1.80)	(1.77)	(1.78)	(1.81)
Constant	700.15***	658.55***	682.25***	653.67***	252.05	122.35	244.81
	(5.57)	(8.64)	(11.87)	(9.87)	(163.63)	(185.52)	(165.72)
Ν	420	420	420	420	420	420	420
Adjusted R ²	0.77	0.79	0.31	0.79	0.80	0.80	0.80

 $^{*}p < .05; ^{**}p < .01; ^{***}p < .001$

	(1)	(2)	(3)	score (4)	(5)	(6)	(7)
str	-1.00***	-0.73**	-0.97	-0.53	64.34**	83.70**	65.29**
	(0.27)	(0.26)	(0.59)	(0.34)	(24.86)	(28.50)	(25.26)
l(str~2)					-3.42^{++}	-4.38***	-3.47**
(-+-^>)					(1.25)	(1.44)	(1.27)
(Str 3)					0.06	(0.02)	(0.02)
str:HiFl			-128	-0.58	(0.02)	(0.02)	(0.02)
Juli Mee			(0.97)	(0.50)		(50.21)	
(str^2):HiEL			(0.577)	(0.50)		6.12*	
						(2.54)	
(str^3):HiEL						-0.10*	
						(0.04)	
english	-0.12***	-0.18***					-0.17***
	(0.03)	(0.03)					(0.03)
HiEL			5.64	5.50	<u> </u>	816.08*	
			(19.51)	(9.80)	(1.03)	(327.67)	
lunch	-0.55***	-0.40***		-0.41***	<u>-0.42***</u>	-0.42***	-0.40***
	(0.02)	(0.03)		(0.03)	(0.03)	(0.03)	(0.03)
log(income)		11.57***		12.12***	11.75***	11.80***	11.51***
		(1.82)		(1.80)	(1.77)	(1.78)	(1.81)
Constant	700.15***	658.55***	682.25***	653.67***	252.05	122.35	244.81
	(5.57)	(8.64)	(11.87)	(9.87)	(163.63)	(185.52)	(165.72)
Ν	420	420	420	420	420	420	420
Adjusted R ²	0.77	0.79	0.31	0.79	0.80	0.80	0.80

p < .05; p < .01; p < .01; p < .001

	(1)	(2)	(2)	score	(E)	(6)	(7)
	(1)	(2)	(3)	(4)	(3)	(0)	(7)
str	-1.00***	-0.73**	-0.97	-0.53	64.34**	83.70**	65.29**
	(0.27)	(0.26)	(0.59)	(0.34)	(24.86)	(28.50)	(25.26)
l(str^2)					-3.42**	-4.38 ^{**}	-3.47**
					(1.25)	(1.44)	(1.27)
l(str^3)					0.06**	0.07**	0.06**
					(0.02)	(0.02)	(0.02)
str:HiEL			-1.28	-0.58		-123.28*	
			(0.97)	(0.50)		(50.21)	
l(str^2):HiEL						6.12*	
						(2.54)	
l(str^3):HiEL						-0.10*	
						(0.04)	
english	-0.12***	-0.18***					-0.17***
3	(0.03)	(0.03)					(0.03)
HIEL	()	()	5.64	5.50		816.08*	()
			(19.51)	(9.80)	(1.03)	(327.67)	
lunch	-0.55***	-0.40***	()	-0.41***	-0.42***	-0.42***	-0.40***
	(0.02)	(0.03)		(0.03)	(0.03)	(0.03)	(0.03)
log(income)	()	11.57***		12.12***	11.75***	11.80***	11.51***
j.		(1.82)		(1.80)	(1.77)	(1.78)	(1.81)
Constant	700.15***	658.55***	682.25***	653.67***	252.05	122.35	244.81
	(5.57)	(8,64)	(11.87)	(9.87)	(163.63)	(185.52)	(165.72)
N	420	420	420	420	420	420	420
Adjusted R ²	0.77	0.79	0.31	0.79	0.80	0.80	0.80

* p < .05; ** p < .01; *** p < .001

				score			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
str	-1.00***	-0.73**	-0.97	-0.53	64.34**	83.70**	65.29**
	(0.27)	(0.26)	(0.59)	(0.34)	(24.86)	(28.50)	(25.26)
I(str^2)					-3.42**	-4.38**	-3.47**
					(1.25)	(1.44)	(1.27)
l(str^3)					0.06**	0.07**	0.06**
					(0.02)	(0.02)	(0.02)
str:HiEL			-1.28	-0.58		-123.28*	
			(0.97)	(0.50)		(50.21)	
l(str^2):HiEL						6.12*	
						(2.54)	
l(str^3):HiEL						-0.10*	
						(0.04)	
english	-0.12***	-0.18***					- 0.17 ^{***}
	(0.03)	(0.03)					(0.03)
HIEL			5.64	5.50	— 5.47 ^{***}	816.08*	
			(19.51)	(9.80)	(1.03)	(327.67)	
lunch	-0.55***	-0.40***		-0.41***	-0.42***	-0.42***	<u> </u>
	(0.02)	(0.03)		(0.03)	(0.03)	(0.03)	(0.03)
log(income)		11.57***		12.12***	11.75***	11.80***	11.51***
		(1.82)		(1.80)	(1.77)	(1.78)	(1.81)
Constant	700.15***	658.55***	682.25***	653.67***	252.05	122.35	244.81
	(5.57)	(8.64)	(11.87)	(9.87)	(163.63)	(185.52)	(165.72)
Ν	420	420	420	420	420	420	420
Adjusted R ²	0.77	0.79	0.31	0.79	0.80	0.80	0.80

p < .05; p < .01; p < .01; p < .001

Three Regressions on graph

Interaction on graph

Student-Teacher Ratio

A Lastest and Smart Application: Jia and Ku(2019)

- Ruixue Jia and Hyejin Ku, "Is China's Pollution the Culprit for the Choking of South Korea?Evidence from the Asian Dust",The Economic Journal.
- **Main Question**: Whether the air pollution spillover from China to South Korea and affect the health of South Koreans?

- A naive strategy:
 - Dependent variable: Deaths in South Korea(respiratory and cardiovascular mortality)
 - Independt variable: Chinese pollution(Air Quality Index)
- Because the observed or measured air quality (i.e., pollution concentration) in Seoul or Tokyo increases in periods when China is more polluted does not mean that the pollution must have **originated from China**.

Jia and Ku(2019): Asian Dust as a carrier of pollutants

- Asian Dust (also yellow dust, yellow sand, yellow wind or China dust storms) is a meteorological phenomenon which affects much of East Asia year round but especially during the spring months.
 - The dust originates in China, the deserts of Mongolia, and Kazakhstan where high-speed surface winds and intense dust storms kick up dense clouds of fine, dry soil particles.
 - These clouds are then carried eastward by prevailing winds and pass over China, North and South Korea, and Japan, as well as parts of the Russian Far East.
 - In recent decades, Asian dust brings with it China's man-made pollution as well as its by-products.

Jia and Ku(2019): Asian Dust

- 1. A clear directional aspect in that the wind which transport Chinese pollutants to Korea but not vice versa.
- 2. Exogenous to South Korea's local activities. And wind patterns and topography generate rich spatial and temporal variation in the incidence.
- 3. The occurrence of Asian dust is monitored and recorded station by station in South Korea.(because of its visual salience)

Econometric Method: OLS Regressions with an interaction term

- **Dependent variable**: *Deaths in South Korea*(respiratory and cardiovascular mortality of South Koreans)
- Treatment variable: Chinese pollution(Air Quality Index in China)
- Interaction Variable: Asian dust(the number of Asian dust days in South Korea)
- · Control Variables: Time, Regions, Weather,Local Economic Conditions...

• The impact of Chinese pollution on district-level mortality that operates via Asian dust

 $\begin{aligned} \text{Mortality}_{ijk} &= \beta_0 + \beta_1 \text{AsianDust}_{ijk} + \beta_2 \text{ChinesePollution}_{jk} \\ &+ \beta_3 \text{AsianDust}_{ijk} \times \text{ChinesePollution}_{jk} \\ &+ \delta_1 X_{ijk} + u_{ijk} \end{aligned}$

• Main coefficient of interest is β_3 , which measures the effect of Chinese pollution in year *j* and month *k* on mortality in district *i* of South Korea.

	Table 2: Tl	ne Impact o	of Dust*C	hina's Po	llution or	n Mortality	Rates in S	outh Korea	a
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
				Baseline				Place	bo Tests
		Mortality	rates: Res	spiratory a	nd Cardio	vascular		Cancers	Accidents
Mean Dependent Var.				12.23				16.30	4.21
#Dust*China's Mean AQI				0.038**	0.033*	0.043**	0.040**	-0.008	0.007
-				(0.016)	(0.018)	(0.018)	(0.019)	(0.020)	(0.009)
#Dust	0.076***		0.039	-0.251*	-0.214	-0.313**	0.072	0.525*	-0.102
	(0.025)		(0.032)	(0.131)	(0.142)	(0.149)	(0.240)	(0.275)	(0.119)
China's Mean AQI		0.265***	0.193*	0.117	0.138	0.202*	0.200*	-0.080	0.005
		(0.081)	(0.104)	(0.105)	(0.107)	(0.110)	(0.111)	(0.121)	(0.060)
District FE*Year FE	Y	Y	Y	Y	Y	Y	Y	Y	Y
Province FE*Month FE	Y	Y	Y	Y	Y	Y	Y	Y	Y
Weather (cubic polynomial)					Y	Y	Y	Y	Y
Local Prod (export, energy)						Y	Y	Y	Y
Local Prod*Dust							Y	Y	Y
Observations	29,464	29,464	29,464	29,464	28,952	28,024	28,024	28,024	28,024
R-squared	0.695	0.695	0.695	0.696	0.703	0.717	0.717	0.718	0.473

	Table 2: Tl	he Impact o	of Dust*C	hina's Po	llution or	n Mortality	Rates in S	outh Korea	1
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
				Baseline				Place	bo Tests
		Mortality	rates: Res	spiratory a	nd Cardio	vascular		Cancers	Accidents
Mean Dependent Var.				12.23				16.30	4.21
#Dust*China's Mean AQI				0.038**	0.033*	0.043**	0.040**	-0.008	0.007
-				(0.016)	(0.018)	(0.018)	(0.019)	(0.020)	(0.009)
#Dust	0.076***		0.039	-0.251*	-0.214	-0.313**	0.072	0.525*	-0.102
	(0.025)		(0.032)	(0.131)	(0.142)	(0.149)	(0.240)	(0.275)	(0.119)
China's Mean AQI		0.265***	0.193*	0.117	0.138	0.202*	0.200*	-0.080	0.005
		(0.081)	(0.104)	(0.105)	(0.107)	(0.110)	(0.111)	(0.121)	(0.060)
District FE*Year FE	Y	Y	Y	Y	Y	Y	Y	Y	Y
Province FE*Month FE	Y	Y	Y	Y	Y	Y	Y	Y	Y
Weather (cubic polynomial)					Y	Y	Y	Y	Y
Local Prod (export, energy)						Y	Y	Y	Y
Local Prod*Dust							Y	Y	Y
Observations	29,464	29,464	29,464	29,464	28,952	28,024	28,024	28,024	28,024
R-squared	0.695	0.695	0.695	0.696	0.703	0.717	0.717	0.718	0.473

	Table 2: Th	ne Impact o	of Dust*C	hina's Po	llution or	n Mortality	Rates in S	outh Korea	a
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
				Baseline				Place	bo Tests
		Mortality	rates: Res	spiratory a	nd Cardio	vascular		Cancers	Accidents
Mean Dependent Var.				12.23				16.30	4.21
#Dust*China's Mean AQI				0.038**	0.033*	0.043**	0.040**	-0.008	0.007
-				(0.016)	(0.018)	(0.018)	(0.019)	(0.020)	(0.009)
#Dust	0.076***		0.039	-0.251*	-0.214	-0.313**	0.072	0.525*	-0.102
	(0.025)		(0.032)	(0.131)	(0.142)	(0.149)	(0.240)	(0.275)	(0.119)
China's Mean AQI		0.265***	0.193*	0.117	0.138	0.202*	0.200*	-0.080	0.005
		(0.081)	(0.104)	(0.105)	(0.107)	(0.110)	(0.111)	(0.121)	(0.060)
District FE*Year FE	Y	Y	Y	Y	Y	Y	Y	Y	Y
Province FE*Month FE	Y	Y	Y	Y	Y	Y	Y	Y	Y
Weather (cubic polynomial)					Y	Y	Y	Y	Y
Local Prod (export, energy)						Y	Y	Y	Y
Local Prod*Dust							Y	Y	Y
Observations	29,464	29,464	29,464	29,464	28,952	28,024	28,024	28,024	28,024
R-squared	0.695	0.695	0.695	0.696	0.703	0.717	0.717	0.718	0.473

	Table 2: Th	ne Impact o	of Dust*C	hina's Po	llution or	n Mortality	Rates in S	outh Korea	a
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
				Baseline				Place	bo Tests
		Mortality	rates: Res	spiratory a	nd Cardio	vascular		Cancers	Accidents
Mean Dependent Var.				12.23				16.30	4.21
#Dust*China's Mean AOI				0.038**	0.033*	0.043**	0.040**	-0.008	0.007
				(0.016)	(0.018)	(0.018)	(0.019)	(0.020)	(0.009)
#Dust	0.076***		0.039	-0.251*	-0.214	-0.313**	0.072	0.525*	-0.102
	(0.025)		(0.032)	(0.131)	(0.142)	(0.149)	(0.240)	(0.275)	(0.119)
China's Mean AQI		0.265***	0.193*	0.117	0.138	0.202*	0.200*	-0.080	0.005
		(0.081)	(0.104)	(0.105)	(0.107)	(0.110)	(0.111)	(0.121)	(0.060)
District FE*Year FE	Y	Y	Y	Y	Y	Y	Y	Y	Y
Province FE*Month FE	Y	Y	Y	Y	Y	Y	Y	Y	Y
Weather (cubic polynomial)					Y	Y	Y	Y	Y
Local Prod (export, energy)						Y	Y	Y	Y
Local Prod*Dust							Y	Y	Y
Observations	29,464	29,464	29,464	29,464	28,952	28,024	28,024	28,024	28,024
R-squared	0.695	0.695	0.695	0.696	0.703	0.717	0.717	0.718	0.473

Jia and Ku(2019): Placebo Test

	Table 2: Tl	ne Impact o	of Dust*C	hina's Po	llution or	n Mortality	Rates in S	South Korea	1
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
				Baseline				Place	bo Tests
		Mortality	rates: Res	spiratory a	nd Cardio	vascular		Cancers	Accidents
Mean Dependent Var.				12.23				16.30	4.21
#Dust*China's Mean AQI				0.038**	0.033*	0.043**	0.040**	-0.008	0.007
_				(0.016)	(0.018)	(0.018)	(0.019)	(0.020)	(0.009)
#Dust	0.076***		0.039	-0.251*	-0.214	-0.313**	0.072	0.525*	-0.102
	(0.025)		(0.032)	(0.131)	(0.142)	(0.149)	(0.240)	(0.275)	(0.119)
China's Mean AQI		0.265***	0.193*	0.117	0.138	0.202*	0.200*	-0.080	0.005
		(0.081)	(0.104)	(0.105)	(0.107)	(0.110)	(0.111)	(0.121)	(0.060)
District FE*Year FE	Y	Y	Y	Y	Y	Y	Y	Y	Y
Province FE*Month FE	Y	Y	Y	Y	Y	Y	Y	Y	Y
Weather (cubic polynomial)					Y	Y	Y	Y	Y
Local Prod (export, energy)						Y	Y	Y	Y
Local Prod*Dust							Y	Y	Y
Observations	29,464	29,464	29,464	29,464	28,952	28,024	28,024	28,024	28,024
R-squared	0.695	0.695	0.695	0.696	0.703	0.717	0.717	0.718	0.473

Summary

- We extend our multiple ols model form linear to nonlinear in Xs(the independent variables)
 - Polynomials,Logarithms and Interactions
 - The multiple regression framework can be extended to handle regression functions that are nonlinear in one or more X.
 - the difference between a standard multiple OLS regression and a nonlinear OLS regression model in Xs is how to explain estimating coefficients.
- All are very useful and common tools with OLS regressions. You had better understand it very clear.