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Review of previous lecture
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OLS Regression and Hypothsis Testing

• OLS is the most basic and important tool in econometricians’ toolbox.

• The OLS estimators is unbiased, consistent and normal distributions under key
assumptions.

• Using the hypothesis testing and confidence interval in OLS regression, we could make a
more reliable judgment about the relationship between the treatment and the outcomes.
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Nonlinear Regression Functions:
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Introduction

• Recall the assumption of Linear Regression Model

Linear Regression Model
The observations, (Yi, Xi) come from a random sample(i.i.d) and satisfy the linear regression
equation,

Yi = β0 + β1X1,i + ... + βkXk,i + ui

• Everything what we have learned so far is under this assumption of linearity. But this
linear approximation is not always a good one.

6 / 97



Introduction: Recall the whole picture what we want to do

• A general formula for a population regression model may be

Yi = f(X1,i, X2,i, ..., Xk,i) + ui

• Parametric methods: assume that the function form(families) is known, we just need to
assure(estimate) some unknown parameters in the function.

• Linear
• Nonlinear

• Nonparametric methods: assume that the function form is unknown or unnecessary to
known.
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Nonlinear Regression Functions

• How to extend linear OLS model to be nonlinear?

1. Nonlinear in Xs(the lecture now)
• Polynomials,Logarithms and Interactions
• The multiple regression framework can be extended to handle regression functions that are
nonlinear in one or more X.

• the difference from a standard multiple OLS regression is how to explain estimating
coefficients.

2. Nonlinear in β or Nonlinear in Y(the next lecture)
• Discrete Dependent Variables or Limited Dependent Variables.
• Linear function in Xs is not a good prediciton function or Y.
• Need a function which parameters enter nonlinearly, such as logisitic or negative exponential
functions.

• Then the parameters can not obtained by OLS estimation any more but Nonlinear Least
Squres or Maximum Likelyhood Estimation.
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Marginal Effect of X in Nonlinear Regression

• If our regression model is linear: Yi = β0 + β1X1,i + ... + βkXk,i + ui
• Then the marginal effect of X, thus the effect of Y on a change in Xj by 1 (unit) is constant and
equals βj:

βj =
∂Yi
∂Xji

• But if a relation between Y and X is nonlinear, thus Yi = f(X1,i, X2,i, ..., Xk,i) + ui
• Then the marginal effect of X is not constant, but depends on the value of
Xs(including Xi itself or/and other Xjs) because

∂Yi
∂Xji

=
∂f(X1,i, X2,i, ..., Xk,i)

∂Xji
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Nonlinear in Xs
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The TestScore – STR relation looks linear (maybe)

TestScore^ = c(698.9) − c(−2.28)*STR
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But the TestScore – Income relation looks nonlinear

TestScore^ = c(625.4) + c(1.88)*Avginc
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• overestimate the true relationship when income is very high or very low and
underestimates it for the middle income group.
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Three Complementary Approaches:

1. Polynomials in X
• The population regression function is approximated by a quadratic, cubic, or higher-degree
polynomial.

2. Logarithmic transformations
• Y and/or X is transformed by taking its logarithm
• this gives a percentages interpretation that makes sense in many applications

3. Interactions
• the effect X on Y depends on the value of another independent variable
• very often used in the analysis of hetergenous effects, some time used as analysis(channel).
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Population Regression Functions with Different Slopes
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The Effect on Y of a Change in X in Nonlinear Functions
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Polynomials in X
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Example: the TestScore-Income relation

• If a straight line is NOT an adequate description of the relationship between district
income and test scores, what is?

• Two options
• Quadratic specification:

TestScorei = β0 + β1Incomei + β2(Incomei)2 + ui

• Cubic specification:

TestScorei = β0 + β1Incomei + β2(Incomei)2 + β3(Incomei)3 + ui

• How to estimate these models?
• We can see quadratic and cubic terms as two independent variables.
• Then the model turns into a special form of a multiple OLS regression model.
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Estimation of the quadratic specification in R

##
## Call:
## felm(formula = testscr ~ avginc + I(avginc^2), data = ca)
##
## Residuals:
## Min 1Q Median 3Q Max
## -44.416 -9.048 0.440 8.348 31.639
##
## Coefficients:
## Estimate Robust s.e t value Pr(>|t|)
## (Intercept) 607.30174 2.90175 209.288 <2e-16 ***
## avginc 3.85100 0.26809 14.364 <2e-16 ***
## I(avginc^2) -0.04231 0.00478 -8.851 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.72 on 417 degrees of freedom
## Multiple R-squared(full model): 0.5562 Adjusted R-squared: 0.554
## Multiple R-squared(proj model): 0.5562 Adjusted R-squared: 0.554
## F-statistic(full model, *iid*):261.3 on 2 and 417 DF, p-value: < 2.2e-16
## F-statistic(proj model): 428.5 on 2 and 417 DF, p-value: < 2.2e-16
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Estimation of the cubic specification in R

##
## Call:
## felm(formula = testscr ~ avginc + I(avginc^2) + I(avginc3), data = ca)
##
## Residuals:
## Min 1Q Median 3Q Max
## -44.28 -9.21 0.20 8.32 31.16
##
## Coefficients:
## Estimate Robust s.e t value Pr(>|t|)
## (Intercept) 6.001e+02 5.102e+00 117.615 < 2e-16 ***
## avginc 5.019e+00 7.074e-01 7.095 5.61e-12 ***
## I(avginc^2) -9.581e-02 2.895e-02 -3.309 0.00102 **
## I(avginc3) 6.855e-04 3.471e-04 1.975 0.04892 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.71 on 416 degrees of freedom
## Multiple R-squared(full model): 0.5584 Adjusted R-squared: 0.5552
## Multiple R-squared(proj model): 0.5584 Adjusted R-squared: 0.5552
## F-statistic(full model, *iid*):175.4 on 3 and 416 DF, p-value: < 2.2e-16
## F-statistic(proj model): 270.2 on 3 and 416 DF, p-value: < 2.2e-16
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TestScore and Income: OLS Regression Results

Table 1

Dependent Variable: Test Score

(1) (2) (3)

avginc 1.879∗∗∗ 3.851∗∗∗ 5.019∗∗∗

(0.113) (0.267) (0.704)
I(avginĉ 2) −0.042∗∗∗ −0.096∗∗∗

(0.005) (0.029)
I(avginĉ 3) 0.001∗∗

(0.0003)
Constant 625.384∗∗∗ 607.302∗∗∗ 600.079∗∗∗

(1.863) (2.891) (5.078)

Observations 420 420 420
Adjusted R2 0.506 0.554 0.555
Residual Std. Error 13.387 12.724 12.707
F Statistic 430.830∗∗∗ 261.278∗∗∗ 175.352∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust S.E. are shown in the parentheses
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Figure: Linear and Quadratic Regression
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Quadratic vs Linear

• Question: Is the quadratic model better than the linear model?

• We can test the null hypothesis that the regression function is linear against the
alternative hypothesis that it is quadratic:

H0 : β2 = 0 and H1 : β2 ̸= 0

• the t-statistic

t =
(β̂2 − 0)

SE(β̂2)
=

−0.0423
0.0048

= −8.81

• Since 8.81 > 2.58, we reject the null hypothesis (the linear model) at a 1% significance
level.

• Based on the F-test, we can also reject the null hypothesis

F − statisticq=2,d=417 = 261.3, p − value ∼= 0.00
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Interpreting the estimated quadratic regression function

• What is the marginal effect of X on Y in a quadratic regression function.

• The regression model now is

Yi = β0 + β1Xi + β2X2i + ui

• The marginal effect of X on Y
∂Yi
∂Xi

= β1 + 2β2Xi

• It means that the marginal effect of X on Y depends on the specific value of Xi
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Interpreting the estimated quadratic regression function

• The estimated regression function with a quadratic term of income is

̂TestScorei = 607.3
(2.90)

+ 3.85
(0.27)

× incomei − 0.0423
(0.0048)

× income2i .

• Suppose the effect of an $1000 increase on average income on test scores
• A group: from $10,000 per capita to $11,000 per capita:

∆TestScore = 607.3+ 3.85 × 11 − 0.0423 × (11)2

− [607.3+ 3.85 × 10 − 0.0423 × (10)2]

= 2.96

• B group: from $40,000 per capita to $41,000 per capita:

∆TestScore = 607.3+ 3.85 × 41 − 0.0423 × (41)2

− [607.3+ 3.85 × 40 − 0.0423 × (40)2]

= 0.42
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Figure: Cubic and Quadratic Regression
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Quadratic vs Cubic

• Question: Is the cubic model better than the quadratic model?

• Answer: testing the null hypothesis that the regression function is quadratic against the
alternative hypothesis that it is cubic:

H0 : β3 = 0 and H1 : β3 ̸= 0

• the t-statistic

t =
(β̂3 − 0)

SE(β̂3)
=

−0.001
0.0003

= −3.33

• Since 3.33 > 2.58, we reject the null hypothesis (the linear model) at a 1% significance
level.

• the F-test also reject

F − statisticq=3,d=416 = 175.35, p − value ∼= 0.00
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Interpreting the estimated cubic regression function

• The regression model now is

Yi = β0 + β1Xi + β2X2i + β3X3i + ui

• The marginal effect of X on Y

∂Yi
∂Xi

= β1 + 2β2Xi + 3β3X2i
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Interpreting the estimated regression function

• The estimated cubic model is

̂TestScorei = 600.1
(5.83)

+ 5.02
(0.86)

× income − 0.96
(0.03)

× income2 − 0.00069
(0.00047)

× income3.

• A group: from $10,000 per capita to $11,000 per capita:

∆TestScore = 600.079+ 5.019 × 11 − 0.96 × (11)2 + 0.001 × (11)3

− [600.079+ 5.019 × 10 − 0.96 × (10)2 + 0.001 × (10)3]

• B group: from $40,000 per capita to $41,000 per capita:

∆TestScore = 600.079+ 5.019 × 41 − 0.96 × (41)2 + 0.001 × (41)3

− [600.079+ 5.019 × 40 − 0.96 × (40)2 + 0.001 × (40)3]
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Polynomials in X Regression Function

• Approximate the population regression function by a polynomial:

Yi = β0 + β1Xi + β2X2... + βrXri + ui

• This is just the multiple linear regression model – except that the regressors are powers of
X!

• Estimation, hypothesis testing, etc. proceeds as in the multiple regression model using OLS.

• Although, the coefficients are difficult to interpret, the regression function itself is
interpretable.
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Testing the population regression function is linear

• If the population regression function is linear, then the higher-degree terms should not
enter the population regression function.

• To perform hypothesis test

H0 : β2 = 0, β3 = 0, ..., βr = 0 and H1 : at least one βj ̸= 0

• Because H0 is a joint null hypothesis with q = r − 1 restrictions on the coefficients, it can
be tested using the F-statistic.
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Which degree polynomial should I use?

• How many powers of X should be included in a polynomial regression?

• The answer balances a trade-off between flexibility and statistical precision. (many ML or
non-parametric or semi-parametric methods work on this)

• Increasing the degree r introduces more flexibility into the regression function and allows it to
match more shapes; a polynomial of degree r can have up to r - 1 bends (that is, inflection
points) in its graph.

• But increasing r means adding more regressors, which can reduce the precision of the
estimated coefficients.
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Which degree polynomial should I use?

• A practical way: asking whether the coefficients in the regression associated with the
largest values of r are zero. If so, then these terms can be dropped from the regression.

• This procedure, which is called sequential hypothesis testing
1. Pick a maximum value of r and estimate the polynomial regression for that r.
2. Use the t-statistic to test whether the coefficient on Xr,βr is ZERO.
3. If reject, then the degree is r; if not then test the whether the coefficient on Xr−1,βr−1 is ZERO.
4. …continue this procedure until the coefficient on the highest power in your polynomial is

statistically significant.
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Which degree polynomial should I use?

• The initial degree r of the polynomial is still missing.

• In many applications involving economic data, the nonlinear functions are smooth, that is,
they do not have sharp jumps, or “spikes.”

• If so, then it is appropriate to choose a small maximum degree for the polynomial, such as
2, 3, or 4.
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Which degree polynomial should I use?

• There are also several formal testing to determine the degree.
• The F-statistic approach
• The Akaike Information Criterion(AIC)
• The Bayes Information Criterion(BIC)

• We will introduce them later on.
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Wrap Up

• The nonlinear functions in Polynomials in Xs are just a special form of Multiple OLS
Regression.

• If the true relationship between X and Y is nonlinear in polynomials in Xs, then a fully
linear regression is misspecified – the functional form is wrong.

• The estimator of the effect on Y of X is biased(a special case of OVB).

• Estimation, hypothesis testing, etc. proceeds as in the multiple regression model using
OLS, which can also help us to tell the degrees of polynomial functions.

• The big difference is how to explained the estimate coefficients and make the predicted
change in Y with a change in Xs.
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Logarithms
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Logarithmic functions of Y and/or X

• Another way to specify a nonlinear regression model is to use the natural logarithm of Y
and/or X.

• Ln(x) = the natural logarithm of x is the inverse function of the exponential function ex,
here e = 2.71828.

x = ln(ex)
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Review of the Basic Logarithmic functions

• If X and a are variables, then we have

ln(1/x) = −ln(x)

ln(ax) = ln(a) + ln(x)

ln(x/a) = ln(x) − ln(a)

ln(xa) = aln(x)
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Logarithms and percentages

• Because

ln(x+∆x) − ln(x) = ln
(
x+∆x

x

)
∼=

∆x
x

(when
∆x
x

is very small)

• For example:
ln(1+ 0.01) = ln(101) − ln(100) = 0.00995 ∼= 0.01

• Thus,logarithmic transforms permit modeling relations in percentage terms (like
elasticities), rather than linearly.
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The three log regression specifications:

Case Population regression function

I.linear-log Yi = β0 + β1ln(Xi) + ui
II.log-linear ln(Yi) = β0 + β1Xi + ui
III.log-log ln(Yi) = β0 + β1ln(Xi) + ui

• The interpretation of the slope coefficient differs in each case.
• The interpretation is found by applying the general “before and after” rule: “figure out the
change in Y for a given change in X.”(Key Concept 8.1 in S.W.pp301)
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I. Linear-log population regression function

• Regression Model:
Yi = β0 + β1ln(Xi) + ui

• Change X ∆X:

∆Y = [β0 + β1ln(X+∆X)] − [β0 + β1ln(X)]

= β1[ln(X+∆X) − ln(X)]

∼= β1
∆X
X

• Note 100 × ∆X
X = percentage change in X, and

β1 ∼=
∆Y
∆X
X

• Interpretation of β1: a 1 percent increase in X (multiplying X by 1.01 or 100 × ∆X
X ) is associated with

a 0.01β1 or
β1
100 change in Y.

41 / 97



Example: the TestScore – log(Income) relation

• The OLS regression of ln(Income) on Testscore yields

̂TestScore =557.8+ 36.42 × ln(Income)

(3.8) (1.4)

• Interpretation of β1: a 1% increase in Income is associated with an increase in TestScore of
0.3642 points on the test.
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Test scores: linear-log function

linear−log
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Case II. Log-linear population regression function

• Regression model:
ln(Yi) = β0 + β1Xi + ui

• Change X:

ln(∆Y+ Y) − ln(Y) = [β0 + β1(X+∆X)] − [β0 + β1X]

ln(1+
∆Y
Y
) = β1∆X

⇒ ∆Y
Y

∼= β1∆X

• So 100∆Y
Y = percentage change in Y and

β1 =
∆Y
Y
∆X

• Then a change in X by one unit is associated with a β1 × 100 percent change in Y.
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Mincer Earning Function: log-linear functions

• Example: Age(working experience) and Earnings

• The OLS regression of age on earnings yields

̂ln(Earnings) =2.811+ 0.0096Age

(0.018) (0.0004)

• According to this regression, when one more year old, earnings are predicted to increase by
100 × 0.0096 = 0.96%
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Case III. Log-log population regression function

• the regression model is
ln(Yi) = β0 + β1ln(Xi) + ui

• Change X:

ln(∆Y+ Y) − ln(Y) = [β0 + β1ln(X+∆X)] − [β0 + β1ln(X)]

ln(1+
∆Y
Y
) = β1ln(1+

∆X
X
)

⇒ ∆Y
Y

∼= β1
∆X
X

• Now 100∆Y
Y = percentage change in Y and 100∆X

X = percentage change in X

• Therefore a 1% change in X by one unit is associated with a β1% change in Y,thus β1 has
the interpretation of an elasticity.
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Test scores and income: log-log specifications

̂ln(TestScore) =6.336+ 0.055 × ln(Income)

(0.006) (0.002)

• A 1% increase in Income is associated with an increase of 0.055% in TestScore.
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Test scores: The log-linear and log-log functions
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Test scores: The linear-log and cubic functions
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Logarithmic and cubic functions

Table 3

Dependent Variable: Test Score

testscr log.testscr testscr

(1) (2) (3)

loginc 36.420∗∗∗ 0.055∗∗∗

(0.002)
avginc 5.019∗∗∗

(0.704)
I(avginĉ 2) −0.096∗∗∗

(0.029)
I(avginĉ 3) 0.001∗∗

(0.0003)
Constant 557.832∗∗∗ 6.336∗∗∗ 600.079∗∗∗

(5.078) (0.006) (5.078)

Observations 420 420 420
Adjusted R2 0.561 0.557 0.555
Residual Std. Error 12.618 0.019 12.707
F Statistic 537.444∗∗∗ 527.238∗∗∗ 175.352∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust S.E. are shown in the parentheses
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Choice of specification should be guided

• The two estimated regression functions are quite similar. So how to choose?

• The general rules:
• By economic logic or theories(which interpretation makes the most sense in your
application?).

• There are several formal tests, while seldom used in reality. Actually t-test and F-test are
enough.

• Plotting predicted values and use R2 or SER can help to make further judgment.
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Summary

• We can add polynomial terms of any significant variables to a model and to perform a
single and joint test of significance. If the additional quadratics are significant, they can be
added to the model.

• We can also change the variables values into logarithms to capture the nonlinear
relationships.

• In reality, it can be difficult to pinpoint the precise reason for functional form
misspecification.

• Fortunately, using logarithms of certain variables and adding quadratic or cubic functions
are sufficient for detecting many(almost) important nonlinear relationships in Xs in
economics.
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Interactions Between Independent Variables
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Introduction

• The product of two variables is called an interaction term.

• Try to answer how the effect on Y of a change in an independent variable depends on the
value of another independent variable.

• Consider three cases:
1. Interactions between two binary variables.
2. Interactions between a binary and a continuous variable.
3. Interactions between two continuous variables.
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Interactions Between Two Binary Variables

• Assume we would like to study the earnings of worker in the labor market

• The population linear regression of Yi is

Yi = β0 + β1D1i + β2D2i + ui

• Dependent Variable: log earnings(Yi,where Yi = ln(Earnings))

• Independent Variables: two binary variables
• D1i = 1 if the person graduate from college
• D2i = 1 if the worker’s gender is female

• So β1 is the effect on log earnings of having a college degree, holding gender constant, and
β2 is the effect of being female, holding schooling constant.
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Interactions Between Two Binary Variables

• The effect of having a college degree in this specification, holding constant gender, is the
same for men and women. No reason that this must be so.

• the effect on Yi of D1i, holding D2i constant, could depend on the value of D2i

• there could be an interaction between having a college degree and gender so that the
value in the job market of a degree is different for men and women.

• The new regression model of Yi is

Yi = β0 + β1D1i + β2D2i + β3(D1i × D2i) + ui

• The new regressor, the product D1i × D2i, is called an interaction term or an interacted
regressor,
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Interactions Between Two Binary Variables:

• The regression model of Yi now is

Yi = β0 + β1D1i + β2D2i + β3(D1i × D2i) + ui

• Then the conditional expectation of Yi for D1i = 0, given a certain value of D2i,d2

E(Yi|D1i = 0, D2i = d2) = β0 + β1 × 0+ β2d2 + β3(0 × d2) = β0 + β2d2

• Then the conditional expectation of Yi for D1i = 1, given a certain value of D2i,d2

E(Yi|D1i = 1, D2i = d2) = β0 + β1 × 1+ β2d2 + β3(1 × d2)

= β0 + β1 + β2d2 + β3d2
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Interactions Between Two Binary Variables:

• The effect of this change is the difference of expected values,which is

E(Yi|D1i = 1, D2i = d2) − E(Yi|D1i = 0, D2i = d2) = β1 + β3d2

• In the binary variable interaction specification, the effect of acquiring a college degree (a
unit change in D1i) depends on the person’s gender.

• If the person is male,thus D2i = d2 = 0,then the effect is β1

• If the person is female,thus D2i = d2 = 1,then the effect is β1 + β3

• So the coefficient β3 is the difference in the effect of acquiring a college degree for women
versus men.
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Application: the STR and the English learners

• Let HiSTRi be a binary variable for STR
• HiSTRi = 1 if the STR > 20
• HiSTRi = 0 otherwise

• Let HiELi be a binary variable for the share of English learners
• HiELi = 1 if the elpct > 10percent
• HiELi = 0 otherwise
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Application: the STR and the English learners

• the OLS regression result is

̂TestScore =664.1 − 1.9HiSTR − 18.2HiEL − 3.5(HiSTR × HiEL)

(1.4) (1.9) (2.3) (3.1)

• The value of β3 here(3.5) means that performance gap in test scores between large
class(STR > 20) and small class(STR ≤ 20) varies between the “higher-share-immigrant”
class and the “lower-share immigrants” class.

• More precisely,the gap of test scores is positively related with the “higher-share-immigrant”
class though insignificantly.
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Interactions: a Continuous and a Binary Variable

• Binary Variable: eg, whether the worker has a college degree (Di)

• Continuous Variable: eg, the individual’s years of work experience (Xi)

• In this case, we can have three specifications:
1. No interaction

Yi = β0 + β1Xi + β2Di + ui

2. a interaction and only one independent variable

Yi = β0 + β1Xi + β2(Di × Xi) + ui

3. Interaction and two independent variables

Yi = β0 + β1Xi + β2Di + β3(Di × Xi) + ui
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A Continuous and a Binary Variable: Three Cases
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A Continuous and a Binary Variable: Three Specifications

• All three specifications are just different versions of the multiple regression model.

• Different specifications are based on different assumptions of the relationships of X on Y
depending on D.

• The Model 3 is preferred, because it allows for both different intercepts and different slops.

63 / 97



Application: the STR and the English learners

• HiELi is still a binary variable for English learner

• The estimated interaction regression

̂TestScore = 682.2 − 0.97STR+ 5.6HiEL − 1.28(STR × HiEL)

(11.9) (0.59) (19.5) (0.97)

R2 = 0.305

• For districts with a low fraction of English learners,the estimated regression line is
682.2 − 0.97STRi

• For districts with a high fraction of English learners,the estimated regression line is
682.2+ 5.6 − 0.97STRi − 1.28STRi = 687.8 − 2.25STRi

• The difference between these two effects, 1.28 points, is the coefficient on the interaction
term.
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Application: the STR and the English learners

• The value of β3 here(-1.28) means that the effect of class size on test scores varies between
the “higher-share-immigrant” class and the “lower-share immigrants or more native” class.

• More precisely,negatively related with the “higher-share-immigrant” class though
insignificantly.
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Hypotheses Testing

1. High fraction is the same as low fraction, thus the two line are in fact the same

• computing the F-statistic testing the joint hypothesis

β2 = β3 = 0

• This F-statistic is 89.9, which is significant at the 1% level.

2. The effects between two groups is the same,thus two lines have the same slope

• testing whether the coefficient on the interaction term is zero, which can be tested by
using a t-statistic

• This t-statistic is -1.32, which is insignificant at the 10% level.
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Hypotheses Testing

3. the lines have the same intercept

• Testing that the population coefficient on HiEL is zero,which can be tested by using a
t-statistic.

• This t-statistic is 0.29, which is insignificant even at the 10% level.

• The reason is that the regressors, HiEL and STR ∗ HiEL, are highly correlated. Then large
standard errors on the individual coefficients.

• Even though it is impossible to tell which of the coefficients is nonzero, there is strong
evidence against the hypothesis that both are zero.
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Interactions Between Two Continuous Variables

• Now suppose that both independent variables (X1i and X2i) are continuous.
• X1i is his or her years of work experience
• X2i is the number of years he or she went to school.

• there might be an interaction between these two variables so that the effect on wages of
an additional year of experience depends on the number of years of education.

• the population regression model

Yi = β0 + β1X1i + β2X2i + β3(X1i × X2i) + ui
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Interactions Between Two Continuous Variables

• Thus the effect on Y of a change in X1, holding X2 constant, is

∆Y
∆X1

= β1 + β3X2

• A similar calculation shows that the effect on Y of a change ∆X1 in X2, holding X1 constant,
is

∆Y
∆X2

= β2 + β3X1

• That is, if X1 changes by ∆X1 and X2 changes by ∆X2, then the expected change in Y

∆Y = (β1 + β3X2)∆X1 + (β2 + β3X1)∆X2 + β3∆X1∆X2
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Application: the STR and the English learners

• The estimated interaction regression

̂ln(TestScore) =686.3 − 1.12STR − 0.67PctEL+ 0.0012(STR × PctEL)

(11.8) (0.059) (0.037) (0.019)

• The value of β3 here means how the effect of class size on test scores varies along with the
share of English learners in the class.

• More precisely, increase 1 unit of the share of English learners make the effect of class size
on test scores increase extra 0.0012 scores.
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Application: the STR and the English learners

• when the percentage of English learners is at the median(PctEL = 8.85), the slope of the
line relating test scores and the STR is

∆Y
∆X1

= β1 + β3X2 = −1.12+ 0.0012 × 8.85 = −1.11

• when the percentage of English learners is at the 75th percentile(PctEL = 23.0), the slope
of the line relating test scores and the STR is

∆Y
∆X1

= β1 + β3X2 = −1.12+ 0.0012 × 23.0 = −1.09

• The difference between these estimated effects is not statistically significant.Because?
• The t-statistic testing whether the coefficient on the interaction term is zero
t = 0.0012/0/019 = 0.06
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Application: STR and Test Scores in a Summary

• Although these nonlinear specifications extend our knowledge about the relationship
between STR and Testscore, it must be augmented with control variables such as economic
background to avoid OVB bias.

• Two measures of the economic background of the students:
1. the percentage of students eligible for a subsidized lunch
2. the logarithm of average district income.
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Application: STR and Test Scores in a Summary

• Then three specific questions about test scores and the student–teacher ratio.
1. After controlling for differences in economic characteristics, does the effect on test scores of

STR depend on the fraction of English learners?
2. Does this effect depend on the value of the student–teacher ratio(STR)?
3. Most important, after taking economic factors and nonlinearities into account,what is the

estimated effect on test scores of reducing the student–teacher ratio by 2 students per
teacher?
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score
(1) (2) (3) (4) (5) (6) (7)

str −1.00∗∗∗ −0.73∗∗ −0.97 −0.53 64.34∗∗ 83.70∗∗ 65.29∗∗

(0.27) (0.26) (0.59) (0.34) (24.86) (28.50) (25.26)
I(str̂ 2) −3.42∗∗ −4.38∗∗ −3.47∗∗

(1.25) (1.44) (1.27)
I(str̂ 3) 0.06∗∗ 0.07∗∗ 0.06∗∗

(0.02) (0.02) (0.02)
str:HiEL −1.28 −0.58 −123.28∗

(0.97) (0.50) (50.21)
I(str̂ 2):HiEL 6.12∗

(2.54)
I(str̂ 3):HiEL −0.10∗

(0.04)
english −0.12∗∗∗ −0.18∗∗∗ −0.17∗∗∗

(0.03) (0.03) (0.03)
HiEL 5.64 5.50 −5.47∗∗∗ 816.08∗

(19.51) (9.80) (1.03) (327.67)
lunch −0.55∗∗∗ −0.40∗∗∗ −0.41∗∗∗ −0.42∗∗∗ −0.42∗∗∗ −0.40∗∗∗

(0.02) (0.03) (0.03) (0.03) (0.03) (0.03)
log(income) 11.57∗∗∗ 12.12∗∗∗ 11.75∗∗∗ 11.80∗∗∗ 11.51∗∗∗

(1.82) (1.80) (1.77) (1.78) (1.81)
Constant 700.15∗∗∗ 658.55∗∗∗ 682.25∗∗∗ 653.67∗∗∗ 252.05 122.35 244.81

(5.57) (8.64) (11.87) (9.87) (163.63) (185.52) (165.72)
N 420 420 420 420 420 420 420
Adjusted R2 0.77 0.79 0.31 0.79 0.80 0.80 0.80

∗p < .05; ∗∗p < .01; ∗∗∗p < .001
Robust S.E. are shown in the parentheses 74 / 97
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Three Regressions on graph
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Interaction on graph
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A Lastest and Smart Application: Jia and Ku(2019)

83 / 97



Jia and Ku(2019)

• Ruixue Jia and Hyejin Ku, “Is China’s Pollution the Culprit for the Choking of South
Korea?Evidence from the Asian Dust”,The Economic Journal.

• Main Question: Whether the air pollution spillover from China to South Korea and affect
the health of South Koreans?
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Empirical Strategy

• A naive strategy:
• Dependent variable: Deaths in South Korea(respiratory and cardiovascular mortality)
• Independt variable: Chinese pollution(Air Quality Index)

• Because the observed or measured air quality (i.e., pollution concentration) in Seoul or
Tokyo increases in periods when China is more polluted does not mean that the pollution
must have originated from China.
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Jia and Ku(2019): Asian Dust as a carrier of pollutants

• Asian Dust (also yellow dust, yellow sand, yellow wind or China dust storms) is a
meteorological phenomenon which affects much of East Asia year round but especially
during the spring months.

• The dust originates in China, the deserts of Mongolia, and Kazakhstan where high-speed
surface winds and intense dust storms kick up dense clouds of fine, dry soil particles.

• These clouds are then carried eastward by prevailing winds and pass over China, North and
South Korea, and Japan, as well as parts of the Russian Far East.

• In recent decades,Asian dust brings with it China’s man-made pollution as well as its
by-products.
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Jia and Ku(2019): Asian Dust
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Jia and Ku(2019): Asian Dust

1. A clear directional aspect in that the wind which transport Chinese pollutants to Korea but
not vice versa.

2. Exogenous to South Korea’s local activities. And wind patterns and topography generate
rich spatial and temporal variation in the incidence.

3. The occurrence of Asian dust is monitored and recorded station by station in South
Korea.(because of its visual salience)
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Econometric Method: OLS Regressions with an interaction term

• Dependent variable: Deaths in South Korea(respiratory and cardiovascular mortality of
South Koreans)

• Treatment variable: Chinese pollution(Air Quality Index in China)

• Interaction Variable: Asian dust(the number of Asian dust days in South Korea)

• Control Variables: Time, Regions, Weather,Local Economic Conditions…
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Jia and Ku(2019)：Estimation Strategy

• The impact of Chinese pollution on district-level mortality that operates via Asian dust

Mortalityijk = β0 + β1AsianDustijk + β2ChinesePollutionjk

+ β3AsianDustijk × ChinesePollutionjk

+ δ1Xijk + uijk

• Main coefficient of interest is β3, which measures the effect of Chinese pollution in year j
and month k on mortality in district i of South Korea.
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Jia and Ku(2019): the result of interaction terms
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Jia and Ku(2019): the result of interaction terms
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Jia and Ku(2019): the result of interaction terms
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Jia and Ku(2019): the result of interaction terms
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Jia and Ku(2019): Placebo Test
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Summary
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Wrap up

• We extend our multiple ols model form linear to nonlinear in Xs(the independent
variables)

• Polynomials,Logarithms and Interactions
• The multiple regression framework can be extended to handle regression functions that are
nonlinear in one or more X.

• the difference between a standard multiple OLS regression and a nonlinear OLS regression
model in Xs is how to explain estimating coefficients.

• All are very useful and common tools with OLS regressions. You had better understand it
very clear.
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