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Review of the last lecture
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Nonlinear Regression Functions

• How to extend linear OLS model to be nonlinear? Two categories based on which is
nonlinear?

1. Nonlinear in Xs(the previous lecture)
• Polynomials,Logarithms and Interactions
• The multiple regression framework can be extended to handle regression functions that are
nonlinear in one or more X.

• the difference from a standard multiple OLS regression is how to explain estimating
coefficients.

• So far the dependent variable (Y) has been continuous:
• testscore
• average hourly earnings
• GDP growth rate

• What if the outcome variables(Y) is discrete or limited.
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Nonlinear Regression Functions

2. Nonlinear in β or Nonlinear in Y

• Discrete(or Categorical) dependent variables
• employment status: full-time,part-time,or none
• ways to commute to work:by bus, car or walking
• occupation(or sector) choices…

• Linear function is not a good prediction function. Need a certain function which
parameters enter nonlinearly, such as logistic function.

• OLS is not our first choice to estimate the model but the Maximum Likelihood
Estimation(MLE) with the cost of pre-assumption about the known distribution families.

• Interpreting the results more difficult for the nonlinearity.
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Discrete and Limited Dependent Variable Models

• Discrete Models:
• Binary outcomes: (LPM,logit and probit)
• Multinomial outcomes: Multiple responses or choices without orders (multi-logit and
multi-probit)

• Ordered outcomes: Ordered Response Models(ordered probit and logit)
• Count outcomes: The outcomes is a nonnegative integer or a count (possion model)
• Duration data(spell lengths or transitions): Duration model or hazard model

• Limited Dependent Variable
• Censored data: The information on the dependent variable of some observations is lost,but
not data on the regressors.

• Truncated data: Both dependent variable and independent variables of some observations
are missing for some reasons.

• Sample selection: The sample are not randomly selected but based in part on values taken by
a dependent variable.

• Only Binary outcomes models are covered here. 6 / 110



Binary Outcome Models

• Binary outcomes
• Y= get into college, or not; X = parental income.
• Y= person smokes, or not; X = cigarette tax rate, income.
• Y= mortgage application is accepted, or not; X = race, income, house characteristics, marital
status …

• Binary outcomes models:
• Logit Probability Model(LPM)
• Logit model
• Probit model
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The Linear Probability Model(LPM)
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The Conditional Expectation

• If a outcome variable Y is binary, thus

Y =

{
1 if D = 1
0 if D = 0

• The expectation of Y is

E[Y] = 1 × Pr(Y = 1) + 0 × Pr(Y = 0) = Pr(Y = 1)

which is the probability of Y = 1.

• Then we can extend it to the conditional expectation of Y equals to the the probability of
Y = 1 conditional on Xs,thus

E[Y|X1i, ..., Xki] = Pr(Y = 1|X1i, ..., Xki)
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Multiple OLS Regression

• Suppose our regression model is

Yi = β0 + β1X1i + β2X2i + ... + βkXki + ui

• Based on Assumption 1, thus
E[ui|X1i, ..., Xki] = 0

• Then

E[Y|X1i, ..., Xki] = β0 + β1X1i + β2X2i + ... + βkXki
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The Linear Probability Model

• The conditional expectation equals the probability that Yi = 1 conditional on X1i, ..., Xki

E[Y|X1i, ..., Xki] = Pr(Y = 1|X1i, ..., Xki)

= β0 + β1X1i + β2X2i + ... + βkXki

• Now a Linear Probability Model can be defined as following

Pr(Y = 1|X1i, ..., Xki) = β0 + β1X1i + β2X2i + ... + βkXki
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The Linear Probability Model

• The model does not change essentially.

Yi = β0 + β1X1i + β2X2i + ... + βkXki + ui

• The different part is the interpretation the coefficient.Now the population coefficient βj

∂Pr(Yi = 1|X1i, ..., Xki)
∂Xj

= βj

• βj can be explained as the change in the probability that Y = 1 associated with a unit
change in Xj
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LPM and Multiple OLS

• Almost all of the tools of Multiple OLS regression can carry over to the LPM model.
• Assumptions are the same as for general multiple regression model.
• The coefficients can be also estimated by OLS.
• Both t-statistic and F-statistic can be constructed as before.
• The errors of the LPM are always heteroskedastic, so it is essential that
heteroskedasticity-robust s.e. be used for inference.

• One difference is that both original R2 and adjusted-R2 are not meaningful statistics now.
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An Example: Mortgage Applications

• Most individuals who want to buy a house apply for a mortgage at a bank. Not all mortgage
applications are approved.

• Question: What determines whether or not a mortgage application is approved or denied?
• Boston HMDA data: a data set on mortgage applications collected by the Federal Reserve
Bank in Boston.

Variable Description Mean SD

deny = 1 if application is denied 0.120 0.325
pi_ratio monthly loan payments / monthly income 0.331 0.107
black = 1 if applicant is black 0.142 0.350

• Our linear probability model is

Pr(Y = 1|X1i, X2i) = β0 + β1X1i + β2X2i
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An Example: Mortgage Applications

• Does the payment to income ratio affect whether or not a mortgage application is denied?

d̂eny = −0.080+ 0.604 P/I ratio

(0.032)(0.098)

• The estimated OLS coefficient on the payment to income ratio

β̂1 = 0.604

• The estimated coefficient is significantly different from 0 at a 1% significance level.(the
t-statistic is over 6)
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An Example: Mortgage Applications

• How should we interpret β̂1 ?
• An original one: payments/monthly income ratio increase 1,then probability being denied will
also increase 0.6

• Another more reasonable one: payments/monthly income ratio increase 10%(0.1),then
probability being denied will also increase 6%(0.06).

• Question: Does the effect matter? Or the magnitude of the effect is large enough.

• Answer: compare with the mean value of dependent variable. Here deny rate = 0.12
means that the deny ratio will increase 0.06/0.12 × 100% = 50% if PI Ratio increases 10%.
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An Example: Mortgage Applications

• What is the effect of race on the probability of denial, holding constant the P/I ratio?

• the differences between black applicants and white applicants.

d̂eny = −0.091+ 0.559 P/I ratio+ 0.177black

(0.029) (0.089) (0.025)

• The coefficient on black, 0.177, indicates that an African American applicant has a 17.7%
higher probability of having a mortgage application denied than a white applicant, holding
constant their payment-to-income ratio.

• This coefficient is significant at the 1% level (the t-statistic is 7.11).
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LPM: Similar to an OLS Regression

• Assumptions are the same as for general multiple regression model:
1.
2.
3.
4.

• Advantages of the linear probability model:
• Easy to estimate and inference
• Coefficient estimates are easy to interpret
• Very useful under some circumstances like using IV.
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LPM: Heteroskedasticity

• Then conditional variance of the error term ui is always heteroskedasticity.

Var (ui | X1i, · · · , Xki) ̸= σ2
u

• Always use heteroskedasticity robust standard errors when estimating a linear probability
model!
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LPM: Predicted values

• More serious problem: the predicted probability can be below 0 or above 1!
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Nonlinear Probability Models
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Introduction

• Intuition: Probabilities should not be less than 0 or greater than 1

• To address this problem,consider a nonlinear probability models

Pr(Yi = 1|X1, ...Xk) = G(Z)

= G(β0 + β1X1,i + β2X2,i + ... + βkXk,i)

where Z = β0 + β1X1,i + β2X2,i + ... + βkXk,i

• And the function have to satisfy the conditions:
• 0 ≤ G(Z) ≤ 1
• monotonicity and continuity

• The key is whether we could find a proper function G(x) which can limit the prediction
value less than 1 and greater than 0.

• The cumulative distribution function(c.d.f)
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Math Review: The cumulative distribution function (c.d.f)

• The cumulative distribution function (c.d.f) of a random variable X at a given value x is
defined as the probability that X is smaller than x

FX(x) = Pr(X ≤ x)

• If X is a discrete r.v. with with possible outcomesX and the probability mass function is
fX(x), then the c.d.f is the

FX(x) =
∑
t∈X
t≤x

fX(t)

• If X is a discrete and the probability mass function is fX(x), then the p.d.f is the

FX(x) =
∫ x

−∞
fX(t)dt

• More importantly,the c.d.f satisfies
• 0 ≤ FX(x) ≤ 1
• monotonicity and continuity 23 / 110



Logit and Probit functions

• Two common nonlinear functions
1. Probit Model

G(Z) = Φ(Z) =
∫ Z

−∞
ϕ(Z)dZ =

1√
2π

∫ Z

−∞
e− t2

2 dt

which is the standard normal cumulative distribution function
2. Logit Model

G(Z) =
1

1+ e−Z =
eZ

1+ eZ

which is the logistic cumulative distribution function.

• where
Z = β0 + β1X1i + β2X2i + ... + βkXki

• Several reasons why these two are chosen:
• good shapes, thus the predictions make more senses.
• relatively easy to use and interprete them.
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Probit Model

• Probit regression models the probability that Y = 1

Pr(Yi = 1|X1, ...Xk) = Φ(β0 + β1X1,i + β2X2,i + ... + βkXk,i)

• where Φ(Z) is the standard normal c.d.f, then we have

0 ≤ Φ(Z) ≤ 1

• Then it make sure that the predicted probabilities of the probit model are between 0 and 1.
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Probit Model: Prediction Value
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Probit Model: Explaination to the Coefficient

• How should we interpret β̂1 ?
• Recall Z = β0 + β1X1,i + β2X2,i + ... + βkXk,i
• The coefficient βj is the change in the Z-value rather than the probability arising from a unit
change in Xj, holding constant other Xi.

• The effect on the predicted probability of a change in a regressor should be computed by
the general formula in the nonlinear regression model(Key concept 8.3)

1. computing the predicted probability for the initial value of the regressors,
2. computing the predicted probability for the new or changed value of the regressors,
3. taking their difference.
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Probit Model: Explaination to the Coefficient

28 / 110



The Predicted Probability: one regressor

• Suppose the probit population regression model with only one regressors, X1

Pr(Y = 1|X1) = Φ(Z) = Φ(β0 + β1X1)

• Suppose the estimate result is β̂0 = −2 and β̂1 = 3,which means

Z = −2+ 3X1

• How to compute the probability change of X1 with a change from 0.4 to 0.5?
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The Predicted Probability: one regressor

• The probability that Y = 1 when X1 = 0.4, then z = −2+ 3 × 0.4 = −0.8, then the
predicted probability is

Pr(Y = 1|X1 = 0.4) = Pr(z ≤ −0.8) = Φ(−0.8)

• Likewise the probability that Y = 1 when X1 = 0.5, then z = −2+ 3 × 0.5 = −0.5,the
predicted probability is

Pr(Y = 1|X1 = 0.5) = Pr(z ≤ −0.5) = Φ(−0.5)

• Then the difference is

Pr(Y = 1|X1 = 0.5) − Pr(Y = 1|X1 = 0.4)

= Φ(−.5) − Φ(−.8) = 0.3085 − 0.2119 = 0.097
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The Predicted Probability: one regressor
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Example: Mortgage Applications

• The probit model:
Pr(Y = 1|X1) = Φ(Z) = Φ(β0 + β1X1)

• Does the payment to income ratio affect whether or not a mortgage application is denied?

̂Pr(deny = 1|P/I ratio) = Φ(−2.19+ 2.97P/I ratio)

(0.16) (0.47)
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Example: Mortgage Applications

• What is the change in the predicted probability that an application will be denied if P/I
ratio increases from 0.3 to 0.4?

• The probability of denial when P/I ratio = 0.3

Φ(−2.19+ 2.97 × 0.3) = Φ(−1.3) = 0.097

• The probability of denial when P/I ratio = 0.4

Φ(−2.19+ 2.97 × 0.4) = Φ(−1.0) = 0.159

• The estimated change in the probability of denial is 0.159 − 0.097 = 0.062, which means
that the P/I ratio increase from from 0.3 to 0.4, the denial probability increase 6.2%.
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Effect of a Change in X: When X is continous

• Marginal Effects for Xj

∂Pr(Y = 1|X1, ...Xk)
∂Xj

= ϕ(β0 + β1X1,i + β2X2,i + ... + βkXk,i) × βj

• Where ϕ(·) is the probability distribution function(p.d.f) of the standard normal c.d.f.

• Hence, the effect of a change in X depends on the starting value of X and other Xs like
other nonlinear functions.
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Effect of a Change in X: Marginal Effects

• Then the Marginal Effects varies with the point of evaluation
• Marginal Effect at a Representative Value (MER):ME at X = X∗ (at representative values of the
regressors)

• Marginal Effect at Mean (MEM): ME at X = X̄(at the sample mean of the regressors)
• Average Marginal Effect (AME): average of ME at each X = Xi (at sample values and then
average)
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Example: Mortgage Applications

• The Marginal Effect

∂Pr(deny = 1|P/I ratio)
∂P/I ratio

= ϕ(−2.19+ 2.97P/I ratio) × 2.97

• Then Marginal Effect at Mean (MEM):(at the sample mean of the regressors:
P/I ratiomean = 0.331

∂Pr(deny = 1|P/I ratio)
∂P/I ratio at mean

= ϕ(−2.19+ 2.97 × 0.331) × 2.97

= ϕ(−1.21) × 2.97

• The the effect of P/I ratio change 10%(0.1) on the probability of deny is 3.36%(0.0336)
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Discrete Explanatory Variable

• If Xj is a discrete variable, then we should not rely on calculus in evaluating the effect on
the response probability.

• Assume X2 is a dummy variable, then partial effect of X2 changing from 0 to 1:

G(β0 + β1X1,i + β2 × 1+ ... + βkXk,i) − G(β0 + β1X1,i + β2 × 0+ ... + βkXk,i)
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Example: Race in Mortgage Applications

• Mortgage denial (deny) and the payment-income ratio (P/I ratio) and race

̂Pr(deny = 1|P/I ratio) = Φ(−2.26+ 2.74P/I ratio+ 0.71black)

(0.16) (0.44) (0.083)

• The probability of denial when black = 0,thus whites(non-blacks) is

Φ(−2.26+ 2.74 × 0.3+ 0.71 × 0) = Φ(−1.43) = 0.075

• The probability of denial when black = 1,thus blacks is

Φ(−2.26+ 2.74 × 0.3+ 0.71 × 1) = Φ(−0.73) = 0.233

• so the difference between whites and blacks at P/Iratio = 0.3 is 0.233 − 0.075 = 0.158,
which means probability of denial for blacks is 15.8% higher than that for whites.
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Logit Model
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Logistic Function

• Using the standard logistic cumulative distribution function

Pr(Yi = 1|Z) = 1
1+ e−Z

=
eZ

1+ eZ

• As in the Probit model

Z = β0 + β1X1,i + β2X2,i + ... + βkXk,i

• Since F(z) = Pr(Z ≤ z) we have that the predicted probabilities of the logit model are also
between 0 and 1.
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Logit Model: Predicted Probabilities

• Suppose we have only one regressor X and Z = −2+ 3X1
• We want to know the probability that Y = 1 when X1 = 0.4
• Then

Z = −2+ 3 × 0.4 = −0.8

• So the probability
Pr(Y = 1|X1 = 0.4) =Pr(Z ≤ −0.8)

=F(−0.8)

=
1

1+ e−0.8

=0.31
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Logit Model: Predicted Probabilities

• Pr(Y = 1) = Pr(Z ≤ −0.8) = 1
1+e−0.8 = 0.31
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Logit Model: Explaination to the Coefficient

• How should we interpret β̂1 ?

• Similar to the Probit model,Z = β0 + β1X1,i + β2X2,i + ... + βkXk,i
• The coefficient βj can not be explained directly.
• the change in the Z-value rather than the probability arising from a unit change in Xj, holding
constant other Xi.

• Different from the Probit model
• The odds ratio
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Logit Model: the Odds Ratio

• Let p is the conditional probability of Y = 1,then

p = Pr(Yi = 1|Z) = eZ

1+ eZ

• Then 1 − p is the probability of Y = 0

1 − p = Pr(Yi = 0|Z) = 1 − eZ

1+ eZ
=

1
1+ eZ

• Then the ratio of probability of Y = 1 to the probability of Y = 0 is

p
1 − p

=
Pr(Yi = 1|Z)
Pr(Yi = 0|Z)

= ez

• the p
1−p is called as Odds Ratio.
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Logit Model: the Odds Ratio

• Then
ln
( p
1 − p

)
= Z = β0 + β1X1,i + β2X2,i + ... + βkXk,i

• Therefore β̂j can be expressed that the percentage change in odds ratio arising from a unit
change in Xj.
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Example: Mortgage Applications

• Logit Model: Mortgage denial (deny) and the payment-to-income ratio (P/I ratio)

̂Pr(deny = 1|P/I ratio) = F(−4.03+ 5.88P/I ratio)

(0.359) (1.000)

• If P/I ratio increases 10%(0.1), then odds ratio of deny to accept will be increased 58.8%.
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Marginal Effect in logit model

• Then Marginal Effect at Mean (MEM):(at the sample mean of the regressors:
P/I ratiomean = 0.331

∂Pr(deny = 1|P/I ratio)
∂P/I ratio at mean

= f(−2.19+ 2.97 × 0.331) × 2.97

= f(−1.21) × 2.97

= 0.526

• The the effect of P/I ratio change 10%(0.1) on the probability of deny is 5.26%(0.0526)
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Example: Mortgage Applications on Race

• Logit Model: Mortgage denial (deny) and the payment-to-income ratio (P/I ratio) and race

̂Pr(deny = 1|P/I ratio) = F(−4.13+ 5.37P/I ratio+ 1.27black)

(0.35) (0.96) (0.15)
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Example: Mortgage Applications on Race

• The predicted denial probability of a white applicant with P/I ratio = 0.3 is

1
1+ e−(−4.13+5.37×0.3+1.27×0) = 0.074

• The predicted denial probability of a black applicant with P/I ratio = 0.3 is

1
1+ e−(−4.13+5.37×0.3+1.27×1) = 0.222

• the difference is
0.222 − 0.074 = 0.148 = 14.8%

which indicates that the probability of denial for blacks is 14.8% higher than that for
whites when P/Iratio = 0.3.
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Estimation and Inference in Probit and Logit Model
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Estimation and Inference in Probit and Logit Model

• How to estimate β0, β1, ..., βk?

• What is the sampling distribution of the estimators?

• Logit and Probit models are nonlinear in the coefficients β0, β1, ..., βk

• These models can NOT be estimated directly by OLS, but by Nonlinear Least Squares(NLS).
• In practice,the most common method used to estimate logit and probit models is Maximum
Likelihood Estimation (MLE).
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Review: Maximum Likelihood Estimation

• The likelihood function is a joint probability distribution of the data, treated as a function
of the unknown coefficients.

• The maximum likelihood estimator (MLE) are the estimate values of the coefficients that
maximize the likelihood function.

• MLE’s logic: the most likely function is the function to have produce the data we observed.
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Review: Maximum Likelihood Estimation

• Random Variables Y1, Y2, Y3, ...Yn have a joint density function denoted

fθ(Y1, Y2, ..., Yn) = f(Y1, Y2, ..., Yn|θ)

• where θ is an unknown parameter.

• Given observed values Y1 = y1, Y2 = y2, ..., Yn = yn,the likelihood of θ is the function

likelihood(θ) = f(Y1 = y1, Y2 = y2, ..., Yn = yn|θ) = f(θ; y1, ..., yn)

• which can be considered as a function of θ.

• Then the Maximum Likelihood Estimation to θ is a solution to the question

argmax
θ̂

f(θ; Y1 = y1, ..., Yn = yn))
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Maximum Likelihood Estimation of a Binary Variable

• Suppose we flip a coin which is yields heads (Y = 1) and tails (Y = 0). We want to estimate
the probability p of heads.

• Therefore, let Yi = 1(heads) be a binary variable that indicates whether or not a heads is
observed.

Yi =

{
1 with probability p
0 with probability 1 − p

• Then the probability mass function for a single observation is a Bernoulli distribution

Pr(Yi) =

p when Yi = 1

1 − p when Yi = 0

• which can be transform into

Pr(Yi = y) = Pr(Yi = 1)y(1 − Pr(Yi = 1))1−y = py(1 − p)1−y
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Maximum Likelihood Estimation of a Binary Variable

MLE Step 1: write down the likelihood function, the joint probability distribution of the data

• Since Y1, ..., Yn are i.i.d,the joint probability distribution of the observations, thus the
Likelihood function is the product of the individual distributions

fbernouilli(p; Y1 = y1, ..., Yn = yn) = Pr(Y1 = y1, ..., Yn = yn)

= Pr(Y1 = y1) × ... × Pr(Yn = yn)

= py1(1 − p)1−y1 × ... × pyn(1 − p)1−yn

= p(y1+y2+...+yn)(1 − p)n−(y1+y2+...+yn)

= p
∑

yi(1 − p)n−
∑

yi
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Maximum Likelihood Estimation

MLE Step 2: Write down the maximization problem

• More easier to maximize the logarithm of the likelihood function

ln(fbernouilli(p; Y1 = y1, ..., Yn = yn)) =
(∑

yi
)
ln(p) +

(
n −

∑
yi
)
ln(1 − p)

• Since the logarithm is a strictly increasing function, maximizing the likelihood or the log
likelihood will give the same estimator.

• Then the maximization problem is

argmax
p̂

ln(fbernouilli(p; Y1 = y1, ..., Yn = yn))
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Maximum Likelihood Estimation

MLE Step 3: Maximize the likelihood function

• F.O.C: taking the derivative and setting it to zero.
d
dp

ln(fbernouilli(p; Y1 = y1, ..., Yn = yn)) = 0

d
dp

[(∑
yi
)
ln(p) +

(
n −

∑
yi
)
ln(1 − p)

]
= 0∑

yi
p

− n −
∑

yi
1 − p

= 0

p(n −
∑

yi) =
∑

yi(1 − p)

• Solving the equation for p yields the MLE estimator; that is, p̂MLE satisfies

p̂MLE =
1
n

∑
yi = Y

• You can prove that p̂MLE is an unbiased, consistent and normally distributed estimator of p.
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MLE of the Probit Model

• Assume our probit model is

P(Yi = 1|Xi) = Φ(β0 + β1X1i + ... + βkXki) = pi

• Step 1: write down the likelihood function

fprobit(β0, ..., βk; Y1, ..., Yn|X1i, ..., Xki, i = 1, ..., n) =

Pr(Y1 = y1, .., Yn = yn) = Pr(Y1 = y1) × ... × Pr(Yn = yn)

= py1(1 − p)1−y1 × ... × pyn(1 − p)1−yn

=

[
Φ(β0 + β1X11+... + βkXk1)y1(1 − Φ(β0 + β1X11 + ... + βkXk1))1−y1

]
×

... ×
[
Φ(β0 + β1X1n+... + βkXkn)yn(1 − Φ(β0 + β1X1n + ... + βkXkn))1−yn

]
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MLE of the Probit Model

• Step 2: Maximize the log likelihood function

ln(fprobit(β0, ..., βk; Y1, ..., Yn|X1i, ..., Xki, i = 1, ..., n)) =
n∑
i

yi × ln[Φ(β0 + β1X1i + ... + βkXki)] +
n∑
i

(1 − yi) × ln[1 − Φ(β0 + β1X1i + ... + βkXki)]

• Then the maximization problem is

argmax
β̂0,β̂1,..,β̂k

ln(fprobit(β0, β1, ..., βk; Y1 = y1, ..., Yn = yn|X1i, ..., Xki, i = 1, ..., n))
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MLE of the Logit Model

• Step 1 write down the likelihood function

Pr(Y1 = y1, ..., Yn = yn) = py1(1 − p)1−y1 × ... × pyn(1 − p)1−yn

• Similar to the Probit model but with a different function for pi

pi =
1

1+ e−(β0+β1X1i+...+βkXki)
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MLE of the Logit Model

• Step 2: Maximize the log likelihood function

ln(flogit(β0, ..., βk; Y1, ..., Yn|X1i, ..., Xki, i = 1, ..., n))

=
∑

yi × ln
(

1
1+ e−(β0+β1X1i+...+βkXki)

)
+
∑

(1 − yi) × ln
(

1
1+ e−(β0+β1X1i+...+βkXki)

)

• Then the maximization problem is

argmax
β̂0,β̂1,..,β̂k

ln(flogit(β0, ..., βk; Y1 = y1, ..., Yn = yn|X1i, ..., Xki, i = 1, ..., n))
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Computation of MLE Estimators

• In most cases the computation of maximum likelihood estimators is not easy to obtain
since the first order conditions do not have closed from solutions necessarily.

• We can still obtain the values of estimators using numerical algorithm with iterative
methods.

• One of common methods is Gradient Method based on low order Taylor series expansions.
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Math Review: Taylor Expressions

• Recall Taylor series of a function f(x) at a certain value of x,thus x0

f(x) = f(x0) +
f′(x0)
1!

(x − x0) +
f′′(x0)
2!

(x − x0)2 + ...
∞∑
n=0

f(n)(x0)
n!

(x − x0)n

• Then we can have the Taylor expression of f(x) at first and second orders

f(x) ≃ f(x0) + f′(x0)(x − x0)f(x) ≃ f(x0) + f′(x0)(x − x0) +
f′′(x0)

2
(x − x0)2
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Newton-Raphson Method

• Our objective: find the solution of x to a equation: f(x) = 0

• An alternative way: find some x make

f(x0) + f′(x0)(x − x0) = 0

• here the x0 is some initial value x0 we guess, which is close to the desired solution. And
then we obtain a better approximation x1, based on

x1 = x0 − f(x0)
f′(x0)

• We do not stop repeating this procedure until

f(xj) = 0

, here the xj is the solution to the function.
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Newton-Raphson Method
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Newton-Raphson Method

• Our objective: find the solution of x to a equation: f′(x) = 0
• Then we need the Taylor expression of f(x) at second order

f(x) ≃ f(x0) + f′(x0)(x − x0) +
f′′(x0)

2
(x − x0)2

• F.O.C for f′(x) = 0
d

d(x − x0)

[
f (x0) + f′ (x0) (x − x0) +

1
2
f′′ (x0) (x − x0)2

]
= 0

f′ (x0) + f′′ (x0) (x − x0) = 0

x = x0 − f′ (x0)
f′′ (x0)

• repeating this procedure until
f′(xj) = 0

, here the xj is the solution to the function.
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Computation of MLE estimators

• For simplicity, assume only one parameter θ, the maximum likelihood function is L(θMLE)

• Then the F.O.C for the problem of maximization is as following

∂L(θMLE)

∂θ
= 0

• A initial guess of the parameter value, which denotes as θ0. Then the MLE estimator can be
calculated by

θMLE,1 ≃ θ0 −
[

∂2L(θ0)

∂θ2

]−1 ∂L(θ0)

∂θ

• We do not stop repeating this procedure until

∂L(θ̂MLE,j)

∂θ
= 0

, here the θ̂MLE,j is the solution to the function.
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Measures of Fit

• R2 is a poor measure of fit for the linear probability model. This is also true for probit and
logit regression.

• Two measures of fit for models with binary dependent variables

1. fraction correctly predicted
• If Yi = 1 and the predicted probability exceeds 50% or if Yi = 0 and the predicted probability
is less than 50%, then Yi is said to be correctly predicted.
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Measures of Fit

2. The pseudo-R2
• The pseudo − R2 compares the value of the likelihood of the estimated model to the value of
the likelihood when none of the Xs are included as regressors.

pseudo − R2 = 1 −
ln(fmax

probit)

ln(fmax
bernoulli)

• fmax
probit is the value of the maximized probit likelihood (which includes the X’s)

• fmax
bernoulli is the value of the maximized Bernoulli likelihood (the probit model excluding all the
X’s).
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Statistical inference based on the MLE

• It can be prove that under very general conditions,the MLE estimator is
unbiased,consistent, asymptotic normally distributed in large samples.

• Because the MLE is normally distributed in large samples, statistical inference about the
probit and logit coefficients based on the MLE proceeds in the same way as inference
about the linear regression function coefficients based on the OLS estimator.

• That is, hypothesis tests are performed using the t-statistic and 95% confidence intervals
are formed as 1.96 standard errors.
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Statistical inference based on the MLE

• Testing of joint hypotheses on multiple coefficients are very similar to the F-statistic which
is discussed in multiple OLS model.

• The likelihood ratio test, it is based on comparing the log likelihood values of the
unrestricted and the restricted model. The test statistic is

LR = 2(logLur − LogLr) ∼ χ2
q

• where q is the number of restrictions being tested.
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Comparing the LPM,Probit and Logit

• All three models: linear probability, probit, and logit are just approximations to the
unknown population regression function E(Y|X) = Pr(Y = 1|X).

• LPM is easiest to use and to interpret, but it cannot capture the nonlinear nature of the true
population regression function.

• Probit and logit regressions model this nonlinearity in the probabilities, but their regression
coefficients are more difficult to interpret.

• So which should you use in practice?
• There is no one right answer, and different researchers use different models.
• Probit and logit regressions frequently produce similar results.
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Logit v.s. Probit
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Comparing the LPM,Probit and Logit

• The marginal effects and predicted probabilities are much more similar across models.

• Coefficients can be compared across models, using the following rough conversion factors
(Amemiya 1981)

β̂logit ≃ 4β̂ols

β̂probit ≃ 2.5β̂ols

β̂logit ≃ 1.6β̂probit

74 / 110



Example: Mortgage Applications(short regression)
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Sample Selection Model
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More Extensions: Limited Dependent Variables families

• Multinomial outcomes: No order, such as (multinomial-logit,probit)
• Ordered outcomes: Ordered Response Models(order probit and logit)
• Count outcomes: The outcomes is a nonnegative integer or a count. (possion model)
• Limited Dependent Variable(Censored, Tobit and Selection Models)
• Time: (Duration Model)
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Introduction to Sample Selection Model

• The classical example: wage determination of working women

Yi = β0 + β1Xi + ui

• Yi is logwage

• Xi is schooling years

• The sample selection problem arises in that the sample consists only of women who
choose to work.

• If the selection into working and not working for women is random,then OK.
• But in reality, working women probably smarter, more career-oriented, more ambitious which
can not observed or measured in the data.
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Wage determination of working women

• Sample selection will lead to a biased estimation of β
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Intro to Heckman Sample Selection Model

• A two-equation behavioral model

1. selection equation
Z∗
i = W′

iγ + ei

where Zi is a latent variable which indicates the propensity of working for a married woman

• and the error term ei satisfies
E[ei|Wi] = 0

• Then Zi is a dummy variable to represent whether a woman to work or not,thus

Zi =

1 if Z∗ > 0

0 if Z∗ ≤ 0
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Heckman Sample Selection Model

2. outcome equation
Y∗
i = X′

iβ + ui

• where the outcome(Yi) can be observed only when Zi=1 or Z∗
i > 0

Y∗
i =

Yi if Zi = 1

0 or missing if Zi = 0

• The error term ui satisfies E[ui|Xi] = 0
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Heckman Sample Selection Model

• The conditional expectation of wages on Xi is

E[Y∗
i |Xi] = X′

iβ

• The conditional expectation of wages on Xi is only for women who work(Z∗ > 0)

E[Y∗
i |Xi, Z∗

i > 0] = E[Yi|Xi, Z∗
i > 0]

= E[X′
iβ + ui|Xi, Z∗

i > 0]

= X′
iβ + E[ui|Z∗

i > 0]

= X′
iβ + E[ui|ei > −W′

iγ]
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Heckman Sample Selection Model

• If ui and ei is independent, then E[ui|ei > −W′
iγ] = 0, then

E[Y∗
i |Xi, Z∗

i > 0] = E[Y∗
i |Xi] = X′

iβ

,which means that using sample-selected data does not matter to the estimation of β

• But in reality, unobservables in the two equations, thus ui and ei, are likely to be correlated
• eg. innate ability

• Instead assume that ui and ei are jointly normal distributed, which means that(
ui
ei

)
∼ N

((
0
0

)
,

(
σ2
u σeu

σue σ2
e

))
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Math Review: Two Normal Distributed R.V.s

Two Normal Distributed R.V.s
For any two normal variables (n0, n1) with zero mean, we can write n1 = α0n0 + η, where
η ∼ N (0, ση) and E (η|n0) = 0.Then we have

α0 =
Cov(n0, n1)
Var(n0)

or

E (n1 | n0) =
Cov(n0, n1)
Var(n0)

n0

Then

n1 = E (n1 | n0) + η =
Cov(n0, n1)
Var(n0)

n0 + η

84 / 110



Heckman Sample Selection Model

• For two normal variables ui and ei with zero mean, we have

α0 =
Cov(ui, ei)
Var(ei)

=
σue

σ2
e

• Then
ui = α0ei + η =

σue

σ2
e
ei + η

where η ∼ N (0, ση) and E (η|ei) = 0
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Heckman Sample Selection Model

• Then the conditional expectation of ui

E[ui|ei > −W′
iγ] = E[

σue

σ2
e
ei + η|ei > −W′

iγ]

=
σue

σ2
e
E[ei|ei > −W′

iγ] + E[η|ei > −W′
iγ]

=
σue

σ2
e
E[ei|ei > −W′

iγ]
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Math Review: Truncated Density Function

Truncated Density Function
If a continuous random variable X has p.d.f. f(x) and c.d.f. F(x) and a is a constant, then the
conditional density function

f(x|x > a) =


f(x)

1−F(a) if x > a

0 if x ≤ a
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Math Review: Truncated Density Function

• It amounts merely to scaling the density so that it integrates to one over the range above a.
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Math Review: Truncated Density Function

Truncated Density Function
The proof follows from the definition of a conditional probability is

Pr(A|B) = Pr(AB)
Pr(B)

then,

F(x|X > c) =
Pr(X < x, X > c)

Pr(X > c)
=

Pr(c < X < x)
1 − F(c)

=
F(x) − F(c)
1 − F(c)

then,

f(x|x > c) =
d
dx

F(x|X > c) =
d
dx [F(x)] − 0
1 − F(c)

=
f(x)

1 − F(c)
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Standard Normal Truncated Density Function

• If X is distributed as standard normal, thus X ∼ N (0, 1), then the p.d.f and c.d.f are as
follow

ϕ(x) =
1√
2π

e− x2
2

Φ(x) =
1√
2π

∫ x

−∞
e− t2

2 dt

• And c is a scalar, then we can get the Truncated Density Function of an R.V. distributed in
Standard Normal

f (x | x > c) =
ϕ (x)

1 − Φ(c)
• The Expectation of in a standard normal truncated p.d.f

E(x|x > c) =
f(c)

1 − Φ(c)
≡ λ (c)

where λ (c) is called by Inverse Mills Ratio.
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Proof

E(x|x > c) =
∫ +∞

c
xf(x|x > c)dx =

∫ +∞

c
x

ϕ (x)

1 − Φ(c)
dx

=
1

1 − Φ(c)

∫ +∞

c
x

1√
2π

e− x2
2 dx

=
1

1 − Φ(c)

∫ +∞

c

1√
2π

e− x2
2 d(

x2

2
)

=
1

1 − Φ(c)

∫ +∞

c2
2

1√
2π

e−td(t)

=
1

1 − Φ(c)
× 1√

2π
− e−t |+∞

c2
2

=
1

1 − Φ(c)
× 1√

2π
e− c2

2 =
f(c)

1 − Φ(c)
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Heckman Sample Selection Model

• Then the conditional expectation of ui

E[ui|ei > −W′
iγ] =

σue

σ2
e
E[ei|ei > −W′

iγ]

=
σue

σe
E[

ei
σe

| ei
σe

>
−W′

iγ

σe
]

=
σue

σe

ϕ(−W′
iγ/σe)

1 − Φ(−W′
iγ/σe)

=
σue

σe

ϕ(W′
iγ/σe)

Φ(W′
iγ/σe)

= σλλ(W′
iγ)
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Heckman Sample Selection Model

• Then the conditional expectation of wages on Xi is only for women who work(Z∗ > 0)

E[Y∗
i |Xi, Z∗

i > 0] = E[Yi|Xi, Zi = 1] = X′
iβ + σλλ(W′

iγ)

• It means that if we could include λ(W′
iγ) as an additional regressor into the outcome

equation, thus we run
Yi = X′

iβ + σλλ(W′
iγ) + ui

then we can obtain the unbiased and consistent estimate β using a self-selected sample.

• The coefficient before λ(·) can be testing significance to indicate whether the term should
be included in the regression, in other words, whether the selection should be corrected.
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Heckit Model Estimation

1. Estimate selection equation using all observations,thus

Zi = W′
iγ + eI

• obtain estimates of parameters γ̂

• computer the Inverse Mills Ratio(IMR)
ϕ(W′

iγ)

Φ(W′
iγ)

= λ̂(W′
iγ)

2. Estimate the outcome equation using only the selected observations.

Yi = X′
iβ + σλλ̂(W′

iγ) + ui

• Note: standard error is not right, have to be adjusted because we use λ̂(W′
iγ) instead of

λ(W′
iγ) in the estimation.
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A Lastest Application: Jia,Lan and Miquel(2021)
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Jia,Lan and Miquel(2021)

• Ruixue Jia(贾瑞雪), Xiaohuan Lan(兰小欢) and Gerard Padrói Miquel, “Doing Business in
China: Parental background and government intervention determine who owns
business”,The Journal of Development Economics,Volume 151, June 2021.

• Main Question:
1. the parental determinants of entrepreneurship in China.
2. how the parental determinants of entrepreneurship vary with government intervention in the

economy.
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Jia,Lan and Miquel(2021): Data

1. Individual-level data:
• China General Social Survey (GCSS) 2006,2008,2010,2012,2013
• 31 provinces, 22801 urban respondents

2. Province-level data:
• China Statistic Yearbooks.
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Jia,Lan and Miquel(2021) Main Variables

• Independent Variables: cadre parents and entrepreneur parents
• cadre parents: “does a parent work in government or in a public organization affiliated with
the government?”

• entrepreneur parents: business owner + self-employed

• Dependent Variables: whether the respondent is
• business owner: all owners of incorporated businesses, who must pay corporation tax and
follow corporation law.

• self-employment: owners of non-incorporated small businesses.
• goverment employee: work in government or in a public organization affiliated with the
government.

• Interaction:
• Provincial Government Expenditure on Business-related activities(PGEB) as a measure of the
role of government on the private business environment.

98 / 110



Parental Background and Doing Business

• Goal: examine the difference in the probability of being in different occupations between
those with entrepreneur parents, cadre parents and others.

• Linear Probability Model:

Pr(Y = 1|X) = β1CardreParenti + β2EntreParenti + γXi + Provp × Yeart + uipt

• Yi is a dummy indicating the respondent’s occupation,all the other occupations grouped
together in the reference group.

• Xi are individual-level characteristics such as gender,age, marital status, college education or
not, and minority status.

• Provp × Yeart are the province-by-year fixed effects.
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Empirical Results: LPM

• Cadre Parents increase the probability of being government workers(11.5%).

• Entrepreneur Parents do not.
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Empirical Results: LPM

• Entrepreneur Parents increase the probability of being business owner(1.6%).

• Cadre Parents also increase the probability of being business owner(0.6%). However, the
effect will go away when controlling individual characteristics.
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Empirical Results: LPM

• Entrepreneur Parents increase the probability of being business owner(6%).

• Cadre Parents decrease the probability of self-employment(1.1%).
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Descriptive patterns: Cross-provinces
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Descriptive patterns
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Descriptive patterns
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Parental Background and Local Economic Context

• Question: Whether the association between parental occupation and business ownership
varies with the level of government intervention in the business environment.

• Linear Probability Model: Interacted with PGEB

Pr(Y = 1|X) = β1CardreParenti + β2CardreParenti × PGEBpt

+β3EntreParentsi + β4EntreParentsi × PGEBpt

+γXi + γXi × PGEBpt + Provp × Yeart + uipt
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Empirical Results: LPM+Interactions

107 / 110



Empirical Results: LPM+Interactions
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Empirical Results: LPM+Interactions
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Jia,Lan and Miquel(2021): Main Findings

1. Is there intergenerational transmission of entrepreneurship in China?
• Yes, and the magnitude is similar to findings elsewhere.

2. Do children of government officials have a higher likelihood of becoming entrepreneurs?
• Yes, in particular they have a high likelihood of owning incorporated businesses.

3. Do parental determinants depend on the role of government?
• the larger is government involvement in business-related spending, the larger the
business-ownership propensity of children of government officials, and the smaller the
propensity of children of entrepreneurs.
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