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Causal Inference and RCT

• Causality is our main goal in the studies of empirical social science.

• The existence of selection biasmakes social science more difficult than science.

• Although RCTs is a powerful tool for economists, every project or topic canNOT

be carried on by it.

• This is the reason whymodern econometrics exists and develops. Themain job

of econometrics is using non-experimental data to making convincing causal

inference.
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Furious SevenWeapons（七种武器）

• To build a reasonable counterfactual world or to find a proper control group is the

core of econometric methods.
1. Randomized controlled trial(RCTs)
2. Regression(回归)
3. Matching and Propensity Score(匹配与倾向得分)
4. Instrumental Variable（工具变量）
5. Regression Discontinuity（断点回归）
6. Panel Data and Difference in Differences（双差分或倍差法)
7. Synthetic Control Method（合成控制法）

• Themost fundamental of these tools is regression. It compares treatment and

control subjects with the same observable characteristics in a generalized

manner.

• It paves the way for the more elaborate tools used in the class that follow.

• Let’s start our exciting journey from it.
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OLS Estimation: Simple Regression
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Question: Class Size and Student’s Performance

• Specific Question:

• What is the effect on district test scores if we would increase district average class
size by 1 student (or one unit of Student-Teacher’s Ratio)

• If we could know the full relationship between two variables which can be

summarized by a real value function,f(·)

Testscore = f(ClassSize)

• Unfortunately, the function form is always unknown.
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Question: Class Size and Student’s Performance

• Two basic methods to describe the function.

• non-parametric: we don’t care the specific form of the function, unless we know all
the values of two variables, which actually are thewhole distributions of class size
and test scores.

• parametric: we have to suppose the basic form of the function, then to find values
of some unknown parameters to determine the specific function form.

• Bothmethods need to use samples to inference populations in our random and

unknown world.
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Question: Class Size and Student’s Performance

• Suppose we choose parametricmethod, then we just need to know the real value

of a parameter β1 to describe the relationship between Class Size and Test Scores

β1 = ∆Testscore

∆ClassSize

• Next step, we have to suppose specific forms of the functionf(·), still two
categories: linear and non-linear

• And we start to use the simplest function form: a linear equation, which is

graphically a straight line, to summarize the relationship between two variables.

Test score = β0 + β1 × Class size

where β1 is actually the the slope and β0 is the intercept of the straight line.
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Class Size and Student’s Performance

• BUT the average test score in district i does not only depend on the average class

size

• It also depends on other factors such as
• Student background
• Quality of the teachers
• School’s facilitates
• Quality of text books
• Random deviation��

• So the equation describing the linear relation between Test score and Class size

is betterwritten as

Test scorei = β0 + β1 × Class sizei + ui

where ui lumps together all other factors that affect average test scores.
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Terminology for Simple RegressionModel

• The linear regressionmodel with one regressor is denoted by

Yi = β0 + β1Xi + ui

• Where

• Yi is the dependent variable(Test Score)
• Xi is the independent variable or regressor(Class Size or Student-Teacher Ratio)
• β0 + β1Xi is the population regression line or the population regression function
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Population Regression: relationship in average

• The linear regressionmodel with one regressor is denoted by

Yi = β0 + β1Xi + ui

• Both side to conditional on X , then

E[Yi|Xi] = β0 + β1Xi + E[ui|Xi]

• Suppose E[ui|Xi] = 0 then

E[Yi|Xi] = β0 + β1Xi

• Population regression function is the relationship that holds between Y and X

on average over the population.
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Terminology for Simple RegressionModel

• The intercept β0 and the slope β1 are the coefficients of the population

regression line, also known as the parameters of the population regression line.

• ui is the error termwhich contains all the other factors besides X that

determine the value of the dependent variable, Y , for a specific observation, i.
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Graphics for Simple RegressionModel
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How to find the “best” fitting line?

• In general we don’t know β0 and β1 which are parameters of population

regression function but have to calculate them using a bunch of data: the

sample.

• So how to find the line that fits the data best? 15 / 99



The Ordinary Least Squares Estimator (OLS)

The OLS estimator

• Chooses the best regression coefficients so that the estimated regression line is

as close as possible to the observed data, where closeness is measured by the

sum of the squaredmistakesmade in predicting Y given X.

• Let b0 and b1 be estimators of β0 and β1,thus b0 ≡ β̂0,b1 ≡ β̂1

• The predicted value of Yi given Xi using these estimators is b0 + b1Xi, or

β̂0 + β̂1Xi formally denotes as Ŷi, thus

Ŷi = β̂0 + β̂1Xi
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The Ordinary Least Squares Estimator (OLS)

The OLS estimator

• The predictionmistake is the difference between Yi and Ŷi,which denotes as ûi

ûi = Yi − Ŷi = Yi − (b0 + b1Xi)

• The estimators of the slope and intercept thatminimize the sum of the squares of

ûi,thus

arg min
b0,b1

n∑
i=1

û2
i = min

b0,b1

n∑
i=1

(Yi − b0 − b1Xi)2

are called the ordinary least squares (OLS) estimators of β0 and β1.
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The Ordinary Least Squares Estimator (OLS)

• OLSminimizes sum of squared predictionmistakes:

min
b0,b1

n∑
i=1

û2
i =

n∑
i=1

(Yi − b0 − b1Xi)2

• Solve the problem by F.O.C(the first order condition)

• Step 1 for β0:
∂

∂b0

n∑
i=1

(Yi − b0 − b1Xi)2 = 0

• Step 2 for β1:
∂

∂b1

n∑
i=1

(Yi − b0 − b1Xi)2 = 0
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Step 1: OLS estimator of β0

• Recall the sample mean of Yi is

Y =
n∑

i=1
Yi

• Optimization

∂

∂b0

n∑
i=1

û2
i = −2

n∑
i=1

(Yi − b0 − b1Xi) = 0

⇒
n∑

i=1
Yi −

n∑
i=1

b0 −
n∑

i=1
b1Xi = 0

⇒ 1
n

n∑
i=1

Yi − 1
n

n∑
i=1

b0 − b1
1
n

n∑
i=1

Xi = 0

⇒Y − b0 − b1X = 0
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Step 1: OLS estimator of β0

OLS estimator of β0:

b0 ≡ β̂0 = Y − b1X
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Step 2: OLS estimator of β1

∂

∂b1

n∑
i=1

û2
i = −2

n∑
i=1

Xi(Yi − b0 − b1Xi) = 0

⇒
n∑

i=1
Xi[Yi − (Y − b1X) − b1Xi] = 0

⇒
n∑

i=1
Xi[(Yi − Y ) − b1(Xi − X)] = 0

⇒
n∑

i=1
Xi(Yi − Y ) − b1

n∑
i=1

Xi(Xi − X) = 0
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Step 2: OLS estimator of β1

• Some Algebraic Facts
n∑

i=1
(Xi − X)(Yi − Y )

=
n∑

i=1
XiYi −

n∑
i=1

XiY −
n∑

i=1
XYi +

n∑
i=1

XY

=
n∑

i=1
XiYi −

n∑
i=1

XiY − nX( 1
n

n∑
i=1

Yi) + nXY

=
n∑

i=1
Xi(Yi − Y )

• By a similar reasoning, we could obtain
n∑

i=1
(Xi − X)(Xi − X) =

n∑
i=1

Xi(Xi − X) =
n∑

i=1
(Xi − X)Xi

n∑
i=1

(Xi − X)(ui − u) =
n∑

i=1
Xi(ui − u) =

n∑
i=1

(Xi − X)ui
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Step 2: OLS estimator of β1

• Thus

∂

∂b1

n∑
i=1

û2
i

=
n∑

i=1
(Xi − X)(Yi − Y ) − b1

n∑
i=1

(Xi − X)(Xi − X) = 0

OLS estimator of β1:

b1 ≡ β̂1 =
∑n

i=1(Xi − X)(Yi − Y )∑n
i=1(Xi − X)(Xi − X)
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Some Algebraic of ûi

• Recall the F.O.C

∂

∂b0

n∑
i=1

(Yi − b0 − b1Xi)2 = 0

∂

∂b1

n∑
i=1

(Yi − b0 − b1Xi)2 = 0

• We obtain two intermediate formulas

n∑
i=1

(Yi − b0 − b1Xi) = 0

n∑
i=1

Xi(Yi − b0 − b1Xi) = 0
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Some Algebraic of ûi

• Recall the OLS predicted values Ŷi and residuals ûi are:

Ŷi = β̂0 + β̂1Xi

ûi = Yi − Ŷi

• Then we have(prove them by yourself,Appendix 4.3 in SW,pp184-185)

n∑
i=1

ûi = 0 and
n∑

i=1
ûiXi = 0

n∑
i=1

ûi = 0 and
n∑

i=1
ûiXi = 0

n∑
i=1

ûiŶi = 0 and
n∑

i=1
ûiŶi = 0
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ûiŶi = 0 and
n∑

i=1
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The Estimated Regression Line

• Obtain the values of OLS estimator for a certain data,

β̂1 = −2.28 and β̂0 = 698.9

• Then the regression line is
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Measures of Fit: The R2

• Because the variation of Y can be summarized by a statistic: Variance,so the

total variation of Yi, which are also called as the total sum of squares (TSS), is:

TSS =
n∑

i=1
(Yi − Y )2

• Because Yi can be decomposed into the fitted value plus the residual:

Yi = Ŷi + ûi,then likewise Yi, we can obtain

TSS = ESS + SSR

• The explained sum of squares (ESS): ESS =
∑n

i=1(Ŷi − Y )2

• The sum of squared residuals (SSR):
∑n

i=1(Ŷi − Yi)2 =
∑n

i=1 û2
i
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Measures of Fit: The R2

Proof of TSS = ESS + SSR

TSS =
n∑

i=1
(Yi − Y )2

=
n∑

i=1
(Ŷi + ûi − Y )2

=
n∑

i=1
(Ŷi − Y )2 +

n∑
i=1

û2
i + 2

n∑
i=1

ûi(Ŷi − Y )

=
n∑

i=1
(Ŷi − Y )2 +

n∑
i=1

û2
i

= ESS + SSR
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ûi(Ŷi − Y )

=
n∑

i=1
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Measures of Fit: The R2

R2 or the coefficient of determination

R2 or the coefficient of determination, is the fraction of the sample variance of Yi

explained/predicted by Xi

R2 = ESS

TSS
= 1 − SSR

TSS

• So 0 ≤ R2 ≤ 1, it measures that howmuch can the variations of Y be explained

by the variations of Xi in share.

• Question: If R-squares is bigger, is the regression better?

• Answer: Not necessarily,especially when wemake causal inference in

cross-sectional data.
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The Least Squares Assumptions
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The Linear RegressionModel

• In order to investigate the statistical properties of OLS, we need to make some

statistical assumptions

Linear RegressionModel

Two random variables Yi and Xi, their relationship can satisfy the linear regression

equation, thus

Yi = β0 + β1Xi + ui

• This is not a required assumption. We will extend the model to be nonlinear

later on.
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Assumption 1: Conditional Mean is Zero
Assumption 1: Zero conditional mean of the errors given X

The error,ui has expected value of 0 given any value of the independent variable

E[ui | Xi = x] = 0

Implications of Assumption 1

With the Iterated Expectation Law, we can obtain an extra implicit assumption

about ui, thus

E(ui) = E(E(ui|Xi)) = 0

• It seems that the assumption is too strong, but given that the linear regression

model have a intercept β0, whichmeans that we could always make the

assumption true by redefining the intercept.
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Assumption 1: Conditional Mean is Zero

• Anweaker condition that ui and Xi are uncorrelated:

Cov[ui, Xi] = E[uiXi] = 0

Covariance and Conditional Mean

Although Cov[ui, Xi] = 0 ⇏ E[Yi|Xi], we have

Cov[ui, Xi] ̸= 0 ⇒ E[ui|Xi] ̸= 0

• if ui and Xi are correlated, then Assumption 1 is violated.

• Equivalently, the population regression line is the conditional mean of Yi given

Xi , thus

E[Yi|Xi] = β0 + β1Xi
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Assumption 1: Conditional Mean is Zero
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Assumption 2: Random Sample

Assumption 2: Random Sample

We have a i.i.d random sample of size , {(Xi, Yi), i = 1, ..., n} from the population

regressionmodel above.

• This is an implication of random sampling. Then we have such as

Cov(Xi, Xj) = 0
Cov(Yi, Xj) = 0
Cov(ui, Xj) = 0

• And it generally won’t hold in other data structures.

• time-series, cluster samples and spatial data.
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Assumption 3: Large outliers are unlikely

Assumption 3: Large outliers are unlikely

It states that observations with values of Xi, Yi or both that are far outside the usual

range of the data(Outlier) are unlikely. Mathematically, it assume that X and Y have

nonzero finite fourthmoments.

• Large outliers canmake OLS regression results misleading.

• One source of large outliers is data entry errors, such as a typographical error or

incorrectly using different units for different observations.

• Data entry errors aside, the assumption of finite kurtosis is a plausible one in

many applications with economic data.
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Assumption 3: Large outliers are unlikely
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Underlying Assumptions of OLS

• The OLS estimator is unbiased, consistent and has asymptotically normal

sampling distribution if

1. Random sampling.
2. Large outliers are unlikely.
3. The conditional mean of ui given Xi is zero.
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Underlying assumptions of OLS

• OLS is an estimator: it is a machine that we plug data into and we get out

estimates.

• It has a sampling distribution, with a sampling variance/standard error, etc.

like the sample mean, sample difference inmeans, or the sample variance.

• Let’s discuss these characteristics of OLS in the next section.
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Properties of the OLS Estimators
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The OLS estimators

• Question of interest: What is the effect of a change in Xi(Class Size) on Yi(Test

Score)

Yi = β0 + β1Xi + ui

• We derived the OLS estimators of β0 andβ1:

β̂0 = Ȳ − β̂1X̄

β̂1 =
∑

(Xi − X̄)(Yi − Ȳ )∑
(Xi − X̄)(Xi − X̄)
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Least Squares Assumptions

1. Assumption 1: Conditional Mean is Zero

2. Assumption 2: Random Sample

3. Assumption 3: Large outliers are unlikely

• If the 3 least squares assumptions hold the OLS estimators will be

• unbiased
• consistent
• normal sampling distribution
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Properties of the OLS estimator: unbiasedness

• Recall:

β̂0 = Y − β̂1X

• take expectation to β0 :

E[β̂0] = Ȳ − E[β̂1]X̄

• Then we have: if β1 is unbiased, then β0 is also unbiased.
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Properties of the OLS estimator: unbiasedness

• Continued

E[β̂1] = E

[∑(Xi − X̄)(β0 + β1Xi + ui − (β0 + β1X + u))∑
(Xi − X̄)(Xi − X̄)

]

= E

[∑(Xi − X̄)(β1(Xi − X) + (ui − u))∑
(Xi − X̄)(Xi − X̄)

]

= E

[
β1
∑

(Xi − X̄)(Xi − X)∑
(Xi − X̄)(Xi − X̄)

]
+ E

[ (Xi − X)(ui − u)∑
(Xi − X̄)(Xi − X̄)

]

= β1 + E

[ ∑(Xi − X̄)(ui − u)∑
(Xi − X̄)(Xi − X̄)

]
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Review: Conditional Expectation Function(CEF)

• Expectation(for a continuous r.v.)

E(y) =
∫

yf(y)dy

• Conditional probability density function

fY |X(y|x) = fX,Y (x, y)
fX(x)

• Conditional Expectation Function: the Expectation of Y conditional on X is

E(y|x) =
∫

yfY |X(y|x)dy
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Review: Properties of CEF

Let X, Y, Z are random variables; a, b ∈ R; g(·) is a real valued function, then we have

• E[a | Y ] = a

• E[(aX + bZ) | Y ] = aE[X | Y ] + bE[Z | Y ]
• If X and Y are independent, then E[Y | X] = E[Y ]
• E[Y g(X) | X] = g(X)E[Y | X]. In particular, E[g(Y ) | Y ] = g(Y )
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Review: the Law of Iterated Expectations(LIE)

the Law of Iterated Expectations

It states that an unconditional expectation can be written as the unconditional

average of conditional expectation function.

E(Yi) = E[E(Yi|Xi)]

and it can easily extend to

E(g(Xi)Yi) = E[E(g(Xi)Yi|Xi)] = E[g(Xi)E(Yi|Xi)]
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Proof: the Law of Iterated Expectation(LIE)

• Prove it by a continuous variable way

Proof

E[E(Y |X)] =

∫
E(Y |X = u)fX(u)du

=
∫ [ ∫

tfY (t|X = u)dt
]
fX(u)du

=
∫ ∫

tfY (t|X = u)fX(u)dtdu

=
∫

t
[ ∫

fY (t|X = u)fX(u)du
]
dt

=
∫

t
[ ∫

fXY (u, t)du
]
dt

=
∫

tfy(t)dt

= E(Y )
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Conditional Expectation and Covariance

• Please prove if E(Y |X) = 0 ⇒ Cov(X, Y ) = 0

Proof

Cov(XY ) = E(XY ) − E(X)E(Y )

= E[E(XY |X)] − E(X)E[E(Y |X)]
= E[XE(Y |X)]
= 0
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Properties of the OLS estimator: unbiasedness

• Because
∑

(Xi − X̄)(ui − u) =
∑

(Xi − X̄)ui, so

E[β̂1] = β1 + E

[ ∑
(Xi − X)ui∑

(Xi − X)(Xi − X)

]
= β1 + E

[∑
g(Xi)ui

]
∵ g(Xi) = (Xi − X)

(Xi − X)(Xi − X)
= β1 +

∑
E
[
g(Xi)ui

]
∵ our sample is i.i.d,

= β1 +
∑

E
[
g(Xi)E[ui|Xi]

]
∵ LIE

• Then we can obtain

E
[
β̂1
]

= β1 if E[ui|Xi] = 0

• Both β0 and β1 are unbiased on the condition of Assumption 1.
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Properties of the OLS estimator: Consistency

• Notation: β̂1
p−→ β1 or plimβ̂1 = β1, so

plimβ̂1 = plim

[ ∑(Xi − X̄)(Yi − Ȳ )∑
(Xi − X̄)(Xi − X̄)

]
• Then we could obtain

plimβ̂1 = plim

[ 1
n−1

∑
(Xi − X̄)(Yi − Ȳ )

1
n−1

∑
(Xi − X̄)(Xi − X̄)

]
= plim

(
sxy

s2
x

)
where sxy and s2

x are sample covariance and sample variance.

Recall: Sample Variance and Sample Covariance

s2
x = 1

n − 1
∑

(Xi − X̄)2

sxy = 1
n − 1

∑
(Xi − X̄)(Yi − Ȳ )
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Math Review: ContinuousMapping Theorem

• ContinuousMapping Theorem: For every continuous function g(t) and random
variable X :

plim(g(X)) = g(plim(X))

• Example:

plim(X + Y ) = plim(X) + plim(Y )

plim(X

Y
) = plim(X)

plim(Y )
if plim(Y ) ̸= 0
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Properties of the OLS estimator: Consistency

• Base on L.L.N(the law of large numbers) and random sample(i.i.d)

s2
X

p−→ σ2
X = V ar(X)

sxy
p−→ σXY = Cov(X, Y )

• Combining with ContinuousMapping Theorem,then we obtain the OLS

estimator β̂1,when n −→ ∞

plimβ̂1 = plim

(
sxy

s2
x

)
= Cov(Xi, Yi)

V ar(Xi)
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Properties of the OLS estimator: Consistency

plimβ̂1 = Cov(Xi, Yi)
V ar(Xi)

= Cov(Xi, (β0 + β1Xi + ui))
V ar(Xi)

= Cov(Xi, β0) + β1Cov(Xi, Xi) + Cov(Xi, ui)
V ar(Xi)

= β1 + Cov(Xi, ui)
V ar(Xi)

• Then we could obtain

plimβ̂1 = β1 if E[ui|Xi] = 0
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Wrap Up: Unbiasedness vs Consistency

• Unbiasedness & Consistency both rely on E[ui|Xi] = 0
• Unbiasedness implies that E

[
β̂1
]

= β1 for a certain sample size n.(“small

sample”)

• Consistency implies that the distribution of β̂1 becomesmore andmore tightly

distributed around β1 if the sample size n becomes larger and larger.(“large

sample” “)

• Additionally,you could prove that β̂0 is likewiseUnbiased and Consistent on the

condition of Assumption 1.
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Sampling Distribution of β̂0 and β̂1: Recalll of Y

• Firstly, Let’s recall: Sampling Distribution of Y

• Because Y1, ..., Yn are i.i.d. and µY is the mean of the population,then for

L.L.N,we have

E(Y ) = µY

• Based on the Central Limit theorem(C.L.T) and the σ2
Y is the variance of the

population, the sample distribution in a large sample can approximates to a

normal distribution, thus

Y ∼ N(µY ,
σ2

Y

n
)

• Therefore, the OLS estimators β̂0 and β̂1 could have similar sample distributions

when three least squares assumptions hold.
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Sampling Distribution of β̂0 and β̂1: Expectation

• Likewise as Ȳ ,the sample distribution of β1 or β0 in a large sample can also

approximates to a normal distribution based on the Central Limit theorem(C.L.T)

β̂1 ∼ N(β1, σ2
β̂1

)

β̂0 ∼ N(β0, σ2
β̂0

)

• The expectation of the OLS estimators is by the unbiasedness of the OLS

estimators.It implies that

E
[
β̂1
]

= β1 and E
[
β̂0
]

= β0
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Sampling Distribution of β̂1 and β̂0: Variance

• Likewise as Ȳ ,the sample distribution of β1 or β0 in a large sample can also

approximates to a normal distribution based on the Central Limit theorem(C.L.T)

β̂1 ∼ N(β1, σ2
β̂1

)

β̂0 ∼ N(β0, σ2
β̂0

)

• The variance of the OLS estimators can be shown as follows:

σ2
β̂1

= 1
n

V ar[(Xi − µx)ui]
[V ar(Xi)]2

)

σ2
β̂0

= 1
n

V ar(Hiui)
(E[H2

i ])2 )

Where Hi = 1 − [ µx

E[Xi] ]Xi

• Please prove it by yourself(Hint: refer to Appendix)
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Sampling Distribution β̂1 in large-sample

• We have shown that

σ2
β̂1

= 1
n

V ar[(Xi − µx)ui]
[V ar(Xi)]2

)

• An intuition:The variation of Xi is very important.

• Because if V ar(Xi) is small, it is difficult to obtain an accurate estimate of the
effect of X on Y which implies that V ar(β̂1) is large.
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Variation of X

• Whenmore variation in Xi, then there is more information in the data that you

can use to fit the regression line.
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In a Summary

Under 3 least squares assumptions, the OLS estimators will be

• unbiased

• consistent

• normal sampling distribution

• more variation in X, more accurate estimation
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Simple OLS and RCT
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OLS Regression and RCT

• We learned RCT is the “golden standard” for causal inference.Because it can

naturally eliminate selection bias.

• So far, we did not discuss the relationship between RCT and OLS regression,

whichmeans that we can not be sure that the result from an OLS regression can

be explained as “causal”.

• Instead of using a continuous regressor X , the regression where Di is a binary

variable, a so-called dummy variable, will help us to unveil the relationship

between RCT and OLS regression.

64 / 99



Regression when X is a Binary Variable

• For example, wemay define Di as follows:

Di =

1 if STR in ith school district < 20

0 if STR in ith school district ≥ 20
(4.2)

• The regression can be written as

Yi = β0 + β1Di + ui (4.1)
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Regression when X is a Binary Variable

• More precisely, the regressionmodel now is

TestScorei = β0 + β1Di + ui (4.3)

• With D as the regressor, it is not useful to think of β1 as a slope parameter.
• Since Di ∈ {0, 1}, i.e., we only observe two discrete values instead of a continuum
of regressor values.

• There is no continuous line depicting the conditional expectation function

E(TestScorei|Di) since this function is solely defined for x-positions 0 and 1.
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Class Size and STR
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Regression when X is a Binary Variable

• Therefore, the interpretation of the coefficients in this regressionmodel is as

follows:

• E(Yi|Di = 0) = β0, so β0 is the expected test score in districts where Di = 0 where
STR is below 20.

• E(Yi|Di = 1) = β0 + β1 where STR is above 20

• Thus, β1 is the difference in group specific expectations, i.e., the difference in

expected test score between districts with STR < 20 and those with STR ≥ 20,

β1 = E(Yi|Di = 1) − E(Yi|Di = 0)

.
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Causality and OLS

• Let us recall, the individual treatment effect

ICE = Y1i − Y0i = δi ∀i

• The ATE is the average of the ICE and ATT is the average of the ICE for the

treated group.

ρ = E(δi) or ρ = E(δi|D = 1)

• Either way, the treatment effect is a constant, i.e., it does not depend on the

individual.

• Our OLS regression function is to estimate a constant treatment effect ρ, thus

Yi = α︸︷︷︸
E[Y0i]

+Di ρ︸︷︷︸
Y1i−Y0i

+ ηi︸︷︷︸
Y0i−E[Y0i]
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Causality and OLS

• Nowwrite out the conditional expectation of Yi for both levels of Di

E [Yi | Di = 1] = E [α + ρ + ηi | Di = 1] = α + ρ + E [ηi|Di = 1]

E [Yi | Di = 0] = E [α + ηi | Di = 0] = α + E [ηi | Di = 0]

• Take the difference

E [Yi | Di = 1] − E [Yi | Di = 0] = ρ + E [ηi|Di = 1] − E [ηi | Di = 0]︸ ︷︷ ︸
Selection bias
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Causality and OLS

• Again, our estimate of the treatment effect (ρ) is only going to be as good as our
ability to shut down the selection bias.

• Selection bias in regression model: E [ηi|Di = 1] − E [ηi | Di = 0]
• There is something in our disturbance ηi that is affecting Yi and is also

correlated with Di.

72 / 99



Simple OLS Regression v.s. RCT

• In a simple regressionmodel, OLS estimators are just a generalizing continuous

version of RCT when least squares assumptions are hold.

• Ideally,regression is a way to control observable confounding factors, which

assume the source of selection bias is only from the difference in observed

characteristics.
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Simple OLS Regression v.s. RCT

• But in contrast to RCT, in observational studies, researchers cannot control the

assignment of treatment into a treatment group versus a control group,which

means that the two groups are incomparable.

• To make two groups comparable, we need to keep treatment and control group

“other thing equal”in observed characteristics and unobserved characteristics.

• OLS regression is valid only when least squares assumptions are hold.

• Inmost cases,it is not easy to obtain. We have to know how tomake a convincing

causal inference when these assumptions are not hold.
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Make ComparisonMake Sense

75 / 99



Case: Smoke andMortality

• Criticisms from Ronald A. Fisher

• No experimental evidence to incriminate smoking as a cause of lung cancer or
other serious disease.

• Correlation between smoking andmortality may be spurious due to biased
selection of subjects.

Z

MS

• Confounder, Z, creates backdoor path between smoking andmortality
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Case: Smoke andMortality(Cochran 1968)

Table 1: Death rates(死亡率) per 1,000 person-years

Smoking group Canada U.K. U.S.

Non-smokers(不吸烟) 20.2 11.3 13.5

Cigarettes(香烟) 20.5 14.1 13.5

Cigars/pipes(雪茄/烟斗) 35.5 20.7 17.4

• It seems that taking cigars is more hazardous than others to the health?
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Case: Smoke andMortality(Cochran 1968)

Table 2: Non-smokers and smokers differ in age

Smoking group Canada U.K. U.S.

Non-smokers(不吸烟) 54.9 49.1 57.0

Cigarettes(香烟) 50.5 49.8 53.2

Cigars/pipes(雪茄/烟斗) 65.9 55.7 59.7

• Older people die at a higher rate, and for reasons other than just smoking cigars.

• Maybe cigar smokers higher observed death rates is because they’re older on

average.
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Case: Smoke andMortality(Cochran 1968)

• The problem is that the age are not balanced, thus their mean values differ for

treatment and control group.

• let’s try to balance them, whichmeans to compare mortality rates across the

different smoking groupswithin age groups so as to neutralize age imbalances

in the observed sample.

• It naturally relates to the concept of Conditional Expectation Function.
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Case: Smoke andMortality(Cochran 1968)

How to balance?

1. Divide the smoking group samples into age groups.

2. For each of the smoking group samples, calculate the mortality rates for the age

group.

3. Construct probability weights for each age group as the proportion of the

sample with a given age.

4. Compute theweighted averages of the age groups mortality rates for each

smoking group using the probability weights.
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Case: Smoke andMortality(Cochran 1968)

Death rates Number of

Pipe-smokers Pipe-smokers Non-smokers

Age 20-50 0.15 11 29

Age 50-70 0.35 13 9

Age +70 0.5 16 2

Total 40 40

• Question: What is the average death rate for pipe smokers?

0.15 ·
(11

40

)
+ 0.35 ·

(13
40

)
+ 0.5 ·

(16
40

)
= 0.355
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Case: Smoke andMortality(Cochran 1968)

Table 3: Non-smokers and smokers differ in mortality and age

Smoking group Canada U.K. U.S.

Non-smokers(不吸烟) 20.2 11.3 13.5

Cigarettes(香烟) 28.3 12.8 17.7

Cigars/pipes(雪茄/烟斗) 21.2 12.0 14.2

• Conclusion: It seems that taking cigarettes is most hazardous, and taking pipes

is not different from non-smoking.
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Formalization: Covariates

Definition: Covariates

Variable X is predetermined with respect to the treatment D if for each individual i,

X0
i = X1

i , i.e., the value of Xi does not depend on the value of Di. Such

characteristics are called covariates.

• Covariates are often time invariant (e.g., sex, race), but time invariance is not a

necessary condition.
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Identification under Independence

• Recall that randomization in RCTs implies

(Y0i, Y1i) ⊥⊥ D

and therefore:

E[Y |D = 1] − E[Y |D = 0] = E[Y1i|D = 1] − E[Y0i|D = 0]︸ ︷︷ ︸
by the switching equation

= E[Y1i|D = 1] − E[Y0i|D = 1]︸ ︷︷ ︸
by independence

= E[Y1i − Y0i|D = 1]︸ ︷︷ ︸
ATT

= E[Y1i − Y0i]︸ ︷︷ ︸
ATE
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Identification under Conditional Independence

• Conditional Independence Assumption(CIA): whichmeans that if we can

“balance” covariates X then we can take the treatment D as randomized, thus

(Y1i, Y0i) ⊥⊥ D|X

• Now as (Y1i, Y0i) ⊥⊥ D|X ⇎ (Y1i, Y0i) ⊥⊥ D,

E[Y1i|D = 1] − E[Y0i|D = 0] ̸= E[Y1i|D = 1] − E[Y0i|D = 1]
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Identification under Conditional Independence(CIA)

• But using the CIA assumption, then

E[Y1i|D = 1] − E[Y0i|D = 0]︸ ︷︷ ︸
association

= E[Y1i|D = 1, X] − E[Y0i|D = 0, X]︸ ︷︷ ︸
conditional on covariates

= E[Y1i|D = 1, X] − E[Y0i|D = 1, X]︸ ︷︷ ︸
conditional independence

= E[Y1i − Y0i|D = 1, X]︸ ︷︷ ︸
conditional ATT

= E[Y1i − Y0i|X]︸ ︷︷ ︸
conditional ATE
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Curse of Multiple Dimensionality

• Sub-classification in one or two dimensions as Cochran(1968) did in the case of

Smoke and Mortality is feasible.

• But as the number of covariates we would like to balance grows(like many

personal characteristics such as age, gender,education,working

experience,married,industries,income,�), then the method become less feasible.

• Assume we have k covariates and we divide each into 3 coarse categories (e.g.,

age: young, middle age, old; income: low,medium, high, etc.)

• The number of cells(or groups)is 3K .

• If k = 10 then 310 = 59049
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Making ComparisonMake Sense

• Selection on Observables

• Regression
• Matching

• Selection on Unobservables

• IV,RD,DID,FE and SCM.

• Themost fundamental tool among them is regression, which compares

treatment and control subjects who have the same observable characteristics in

a generalizedmanner.
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Extending Reading

• Ho, Chong and Xia(2017),“Yellow taxis have fewer accidents than blue taxis

because yellow is more visible than blue”,PNAS,Vol.114(12),pp3074-3078.

• Cochran, W. G. (1968). The effectiveness of adjustment by subclassification in

removing bias in observational studies. Biometrics, 24(2), pp295–313.
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Appendix
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Sampling Distribution of β̂1

• β̂1 in terms of regression and errors in following equation

β̂1 =
1
n

∑n
i=1(Xi − X)(Yi − Y )

1
n

∑n
i=1(Xi − X)(Xi − X)

= β1 +
1
n

∑n
i=1(Xi − X)(ui − u)

1
n

∑n
i=1(Xi − X)(Xi − X)
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Sampling Distribution of β̂1:the numerator

• The numerator: 1
n

∑n
i=1(Xi − X)(ui − u)

• Because X̄ is consistent, thus X
p−→ µx,then combine with ContinuousMapping

Theorem
n∑

i=1
(Xi − X)(ui − u) =

n∑
i=1

(Xi − X)ui

=⇒ 1
n

n∑
i=1

(Xi − X)(ui − u) p−→ 1
n

n∑
i=1

(Xi − µx)ui
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Sampling Distribution of β̂1:the numerator

• Let vi = (Xi − µx)ui

• Based on Assumption 1, then E(vi) = 0
• Based on Assumption 2, σ2

v = V ar[(Xi − µx)ui]

• Then
1
n

n∑
i=1

(Xi − µx)ui = 1
n

n∑
i=1

vi = v̄
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Sampling Distribution of β̂1:the numerator

• Recall: Ȳ to Yi and based on C.L.T,

Y − 0
σȲ

d−→ N(0.1) or Y
d−→ N(0,

σ2
Y

n
)

• The v̄ is the sample mean of vi,based on C.L.T,

v̄ − 0
σv̄

d−→ N(0.1) or v̄
d−→ N(0,

σ2
v

n
)
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Sampling Distribution of β̂1:the denominator

• Recall the sample variance of Xi is s2
Xi

s2
Xi

= 1
n − 1

n∑
i=1

(Xi − X)2

• Then the denominator,is a variation of sample variance ofX (except dividing by

n rather than n − 1, which is inconsequential if n is large)

1
n

n∑
i=1

(Xi − X)(Xi − X)

• Based on discussion of the sample variance is a consistent estimator of the

population variance,thus

s2
Xi

p−→ V ar[Xi] = σ2
Xi
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Sampling Distribution of β̂1

• β̂1 in terms of regression and errors

β̂1 = β1 +
1
n

∑n
i=1(Xi − X)(ui − u)

1
n

∑n
i=1(Xi − X)(Xi − X)

• the numerator is v̄ and v̄
d−→ N(0, σ2

v
n )

• the denominator is

1
n

n∑
i=1

(Xi − X)(Xi − X) p−→ V ar[Xi] = σ2
Xi

• Combining these two results, we have that, in large samples

β̂1 − β1
p−→ v̄

V ar[Xi]
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Slutsky’s Theorem

• It combines consistency and convergence in distribution.

Slutsky’s Theorem

Suppose that an
p−→ a,where a is a constant,and Sn

d−→ S.Then

an + Sn
d−→ a + S

anSn
d−→ aS

Sn

an

d−→ S

a
if a ̸= 0
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Sampling Distribution of β̂1

• Based on v̄ follow a normal distribution, in large samples,thus

v̄
d−→ N(0,

σ2
v

n
)

⇒ v̄

V ar[Xi]
d−→ N

(
0,

σ2
v

n[V ar(Xi)]2

)

⇒ β̂1 − β1
d−→ N

(
0,

σ2
v

n[V ar(Xi)]2

)

• Then the sampling distribution of β̂1 is

β̂1
d−→ N(β1, σ2

β̂1
)

where

σ2
β̂1

= σ2
v

n[V ar(Xi)]2
= V ar[(Xi − µx)ui]

n[V ar(Xi)]2
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