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Causal Inference and RCT

¢ Causality is our main goal in the studies of empirical social science.
e The existence of makes social science more difficult than science.

* Although RCTs is a powerful tool for economists, every project or topic can NOT

be carried on by it.

* This is the reason why modern econometrics exists and develops. The main job

of econometrics is using non-experimental data to
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Furious Seven Weapons (-G zE)

* To build a reasonable counterfactual world or to find a proper control group is the

core of econometric methods.

1

o U A W

7.

Randomized controlled trial(RCTs)

Regression([d] J9)

Matching and Propensity Score(It # 51 [a]1547)
Instrumental Variable (TEZT &)

Regression Discontinuity (HfZ&[@)7)

Panel Data and Difference in Differences (WZEHE{EEX)
Synthetic Control Method (& B#=#li%)

* The most fundamental of these tools is regression. It compares treatment and

control subjects with the same observable characteristics in a generalized

manner.

* It paves the way for the more elaborate tools used in the class that follow.

* Let’s start our exciting journey from it.
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Question: Class Size and Student’s Performance

* Specific Question:
» What is the effect on district test scores if we would increase district average class
size by 1 student (or one unit of Student-Teacher’s Ratio)

* If we could know the full relationship between two variables which can be
summarized by a real value function, f(-)

Testscore = f(ClassSize)

* Unfortunately, the function form is always unknown.
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Question: Class Size and Student’s Performance

* Two basic methods to describe the function.

* non-parametric: we don’t care the specific form of the function, unless we know all
the values of two variables, which actually are the whole distributions of class size
and test scores.

* parametric: we have to suppose the basic form of the function, then to find values
of some unknown parameters to determine the specific function form.

* Both methods need to use samples to inference populations in our random and
unknown world.
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Question: Class Size and Student’s Performance

* Suppose we choose parametric method, then we just need to know the real value
of a parameter /3, to describe the relationship between Class Size and Test Scores

ATestscore

b= AClassSize

* Next step, we have to suppose specific forms of the functionf(-), still two

categories: linear and non-linear

* And we start to use the simplest function form: a linear equation, which is
graphically a straight line, to summarize the relationship between two variables.

Test score = By + 1 X Class size

where [3; is actually the the slope and f is the intercept of the straight line.
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Class Size and Student’s Performance

* BUT the average test score in district ; does not only depend on the average class
size
* Italso depends on other factors such as
* Student background
* Quality of the teachers
¢ School’s facilitates
* Quality of text books
* Random deviation
* So the equation describing the linear relation between Test score and Class size

is better written as
Test score; = By + 1 X Class size; + u;

where 1, lumps together all other factors that affect average test scores.
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Terminology for Simple Regression Model

* The linear regression model with one regressor is denoted by
Yi = fo+ P1Xi + ug

e Where

* Y is the dependent variable(Test Score)
* X, is the independent variable or regressor(Class Size or Student-Teacher Ratio)
* Bo + 81X, is the population regression line or the population regression function
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Population Regression: relationship in average

* The linear regression model with one regressor is denoted by
Yi = Bo + B1Xi + u
* Both side to conditional on X, then
ElY;|X;] = Bo + B1.X; + Elui| Xi]
¢ Suppose E[u;|X;] = 0 then
E[Yi|Xi] = fo + pr1Xi

* Population regression function is the relationship that holds between Y and X
on average over the population.
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Terminology for Simple Regression Model

¢ The intercept 3y and the slope 3; are the coefficients of the population
regression line, also known as the parameters of the population regression line.

* 1, is the error term which contains all the other factors besides X that
determine the value of the dependent variable, Y, for a specific observation, ¢.
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Graphics for Simple Regression Model

[ m Scatterplot of Test Score vs. Student-Teacher Ratio
(Hypothetical Data)

The scatterplot shows Test score (Y)
hypothetical observations 700 ~
for seven school districts.
The population regres-
sion lineis B, + B,X. The
vertical distance from the
it point to the population g0 |-
regression line is

Y; — (B, + B,X), which

680

is the population error 640 -
term u; for the it" r
observation. 620
600 L '
10 15 20 25 30

Student—teacher ratio (X)
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How to find the “best” fitting line?

* In general we don’t know /3y and 3; which are parameters of population
regression function but have to calculate them using a bunch of data: the
sample.

@EITTED scatterplot of Test Score vs. Student-Teacher Ratio (California School District Data

Data from 420

California school dis-
tricts. There is a weak
negative relationship 7001

Test score
20

~1
]

between the student—

teacherratioand test 80

scores: The sample

correlation is —0.23. 6601
640

i
15 20 25 30
Student—teacher ratio

¢ So how to find the line that fits the data best? 15/99



The Ordinary Least Squares Estimator (OLS)

The OLS estimator

* Chooses the best regression coefficients so that the estimated regression line is
as close as possible to the observed data, where closeness is measured by the
sum of the squared mistakes made in predicting Y given X.

« Let by and by be estimators of 3y and 31,thus by = So,b1 = /1

¢ The predicted value of Y; given X; using these estimators is by + b1 X, or
Bo + B X; formally denotes as V;, thus

Vi = Bo + A1 X,
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The Ordinary Least Squares Estimator (OLS)

The OLS estimator

* The prediction mistake is the difference between Y; and Y;,which denotes as 4i;
0 =Y, =Y, =Y; — (b + b1.X))

* The estimators of the slope and intercept that minimize the sum of the squares of
i;,thus
n n
argmin Zﬁ? =miny (Y; — by — b X;)?
' i=1

are called the ordinary least squares (OLS) estimators of 3y and /3.
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The Ordinary Least Squares Estimator (OLS)

* OLS minimizes sum of squared prediction mistakes:

* Solve the problem by F.0.C(the first order condition)
* Step 1for fy:
a n
87[70 Z(}/z - bO - leZ‘)Z =0
=1
* Step 2 for f4:
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Step 1: OLS estimator of /3

¢ Recall the sample mean of Y; is

* Optimization
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Step 1: OLS estimator of /3

¢ Recall the sample mean of Y; is

* Optimization
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Step 1: OLS estimator of /3

¢ Recall the sample mean of Y; is

* Optimization

6 n o n
8—%;% = —2;@;—&)0—&;1)(1) =0
=D V=Y bp—Y b X;=0
=1 =1 =1
1 n 1 n n
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Step 1: OLS estimator of

¢ Recall the sample mean of Y; is

* Optimization

1 1 1
:ﬁgiﬁ—ﬁ;bo—blﬁg&zo

:>?—b0—b1yzo
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Step 1: OLS estimator of /3

OLS estimator of S:
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Step 2: OLS estimator of /3
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Step 2: OLS estimator of /3
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Step 2: OLS estimator of /3

N a2 =—2> X(V; —bo — biX;) =0
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Step 2: OLS estimator of /3

N a2 =—2> X(V; —bo — biX;) =0
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Step 2: OLS estimator of /3

* Some Algebraic Facts
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Step 2: OLS estimator of /3

* Some Algebraic Facts
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Step 2: OLS estimator of /3

* Some Algebraic Facts

n n n n n
X -X)(Yi-Y)=> XV - ) X;¥V =) XVi+» XY
=1 =1 =1 =1 =1
n n e o l n -
=2 XiYi—) XV - ,1x<;; Y;) +nXY

s
Il
—

i=1

22/99



Step 2: OLS estimator of /3

* Some Algebraic Facts

n

> (X — X)( ZXY ZXY ZXY+ZXY

i=1

n ,
XiYi =) XY —nX (- Zy ) +nXY
=1

I
AM:

s
Il
—

(Y =Y)

I
P
|

@
Il
—
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Step 2: OLS estimator of /3

* Some Algebraic Facts

n

> (X — X)( ZXY ZXY ZXY+ZXY

i=1

I
AM:

s
Il
—

XY S XY (LS v Ly
il ; i n <11[§:] )+H

I
P
|

@
Il
—

(Y =Y)

* By a similar reasoning, we could obtain

n n n

Y (X -X)(Xi-X) =) Xi(Xi—-X)=> (Xi—-X)X;

=1 =1 i=1
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Step 2: OLS estimator of /3

* Some Algebraic Facts

S - F)(X - X) = ZXAXPY):i(XFY)Xi

i=1

7,:1 i=1 i=1 22/99



Step 2: OLS estimator of /3

e Thus
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Step 2: OLS estimator of /3

e Thus
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Step 2: OLS estimator of /3

e Thus
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Step 2: OLS estimator of /3

e Thus
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Some Algebraic of i,

e Recall the F.O.C

* We obtain two intermediate formulas

> (Yi—by—b1X;) =0
=1
> Xi(Y;—bo — b1 X;) =0
=1
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Some Algebraic of i,

* Recall the OLS predicted values Y; and residuals 7; are:

* Then we have(prove them by yourself,Appendix 4.3 in SW,pp184-185)

n n

> ti=0and Y 0:X; =0
i=1

i=1
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Some Algebraic of i,

* Recall the OLS predicted values Y; and residuals 7; are:

Yi = Bo + fi X,

* Then we have(prove them by yourself,Appendix 4.3 in SW,pp184-185)
> ti=0and Y 0:X; =0

n n
Y ti=0and Y 4X; =0
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Some Algebraic of i,

* Recall the OLS predicted values Y; and residuals 7; are:

Yi = Bo + fi X,

* Then we have(prove them by yourself,Appendix 4.3 in SW,pp184-185)

=1
25/99



The Estimated Regression Line

¢ Obtain the values of OLS estimator for a certain data,
By = —2.28 and By = 698.9

* Then the regression line is

26/99



The Estimated Regression Line

e Obtain the values of OLS estimator for a certain data,
B = —2.28 and By = 698.9
* Then the regression line is

m The Estimated Regression Line for the California Data

The estimated regres-  Test score

sion line shows a 720
[negative]relationship 3 .
between test scores 7001 :

and the student- r

teacher ratio. If class 680

sizes fall by one

student, the estimated 660 [

regression predicts that [

640 -

test scores will increase

by 2.28 points.

600
10

|
15 20 25 30
Student—teacher ratio
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Measures of Fit: The R?

* Because the variation of Y can be summarized by a statistic: Variance,so the
total variation of Y;, which are also called as the total sum of squares (TSS), is:

TSS=> (Y;-Y)?
=1

* Because Y; can be decomposed into the fitted value plus the residual:

Y; = Y; + 4;,then likewise Y;, we can obtain
TSS =ESS+ SSR

« The explained sum of squares (ESS): ESS = Y7, (V; — Y)?
« The sum of squared residuals (SSR): Y7, (V; — Y;)? = Y0, 2
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Measures of Fit: The R?

Proof of 7SS = ESS + SSR

TSS = i(yi — 7

=1
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Measures of Fit: The R?
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Proof of 7SS = ESS + SSR
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Measures of Fit: The R?

Proof of 7SS = ESS + SSR

TSS = i(yi — 7

1=
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Measures of Fit: The R?

Proof of 7SS = ESS + SSR

TSS = i(yi — 7
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Measures of Fit: The R?

R? or the coefficient of determination

RZ? or the coefficient of determination, is the fraction of the sample variance of Y;

explained/predicted by X;

,_ESS _ . _SSR
T 7SS TSS

*+ So0 < R? < 1, it measures that how much can the variations of Y be explained
by the variations of X; in share.

* Question: If R-squares is bigger, is the regression better?

» Answer: Not necessarily,especially when we make causal inference in

cross-sectional data.
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The Linear Regression Model

* In order to investigate the statistical properties of OLS, we need to make some
statistical assumptions
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The Linear Regression Model

* In order to investigate the statistical properties of OLS, we need to make some
statistical assumptions

Linear Regression Model

Two random variables Y; and X, their relationship can satisfy the linear regression
equation, thus
Yi = Bo + f1Xi 4w

* This is not a required assumption. We will extend the model to be nonlinear

later on.
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Assumption 1: Conditional Mean is Zero

Assumption 1: Zero conditional mean of the errors given X

The error,u; has expected value of 0 given any value of the independent variable

E[U¢|X¢:l‘]:0
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Assumption 1: Conditional Mean is Zero

Assumption 1: Zero conditional mean of the errors given X

The error,u; has expected value of 0 given any value of the independent variable

E[U¢|X¢:l‘]:0

Implications of Assumption 1

With the Iterated Expectation Law, we can obtain an extra implicit assumption
about u;, thus

E(u;) = E(E(ui] X;)) =0

* It seems that the assumption is too strong, but given that the linear regression
model have a intercept /3), which means that we could always make the
assumption true by redefining the intercept.
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Assumption 1: Conditional Mean is Zero

e An weaker condition that u; and X; are uncorrelated:

Covlu;, X;] = Elu; X;) =0

Covariance and Conditional Mean

Although Cov[u;, X;] = 0 # E[Y;|X;], we have

Covlu;, X;] # 0= Elu;| X;] #0

¢ if u; and X; are correlated, then Assumption 1is violated.
* Equivalently, the population regression line is the conditional mean of Y; given
X, thus
B[Yi|Xi] = fo + B Xi
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Assumption 1: Conditional Mean is Zero

Test score
720

700 L

680

660

640 -

620

600

m The Conditional Probability Distributions and the Population

Regression Line

Distribution of ¥ when X = 15

Distribution of ¥ when X = 20

/

E(Y|X =25)

Distribution of ¥ when X =25

E(Y]X = 15)

E(Y|X =20)
Bo+B:X

10

15 20 25 30
Student—teacher ratio

The figure shows the conditional probability of test scores for districts with class sizes of 15, 20,
and 25 students. The mean of the conditional distribution of test scores, given the student-
teacher ratio, £(Y| X), is the population regression line. At a given value of X, Y is distributed

around the regression line and the error,u = Y — (B, + ,X), has a conditional mean of zero
for all values of X.

34/99



Assumption 2: Random Sample

Assumption 2: Random Sample

We have a ii.d random sample of size, {(X;,Y;),? = 1, ...,n} from the population

regression model above.
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Assumption 2: Random Sample

Assumption 2: Random Sample

We have a ii.d random sample of size, {(X;,Y;),? = 1, ...,n} from the population

regression model above.

* This is an implication of random sampling. Then we have such as

Cov(X;, X;)
Cov(Y;, Xj)
Cov(u;, X;j)

0
0
0

* And it generally won’t hold in other data structures.

* time-series, cluster samples and spatial data.
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Assumption 3: Large outliers are unlikely

Assumption 3: Large outliers are unlikely

It states that observations with values of X, Y; or both that are far outside the usual
range of the data(Outlier) are unlikely. Mathematically, it assume that X and Y have

nonzero finite fourth moments.

 Large outliers can make OLS regression results misleading.

* One source of large outliers is data entry errors, such as a typographical error or
incorrectly using different units for different observations.

* Data entry errors aside, the assumption of finite kurtosis is a plausible one in
many applications with economic data.
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Assumption 3: Large outliers are unlikely

@D The Sensitivity of OLS to Large Outliers

This hypothetical data set has one v
outlier. The OLS regression line 2000 —
estimated with the outlier shows .
a strong positive relationship between 1700 —
Xand Y, but the OLS regression line
estimated without the outlier shows 1400 —
no relationship.

1100 —
800~
OLS regression line
N including outlier
500 —
200

OLS regression line
excluding outlier
1 I

0 I
30 40 50 60 70
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Underlying Assumptions of OLS

* The OLS estimator is unbiased, consistent and has asymptotically normal
sampling distribution if
1. Random sampling.
2. Large outliers are unlikely.
3. The conditional mean of u; given X is zero.
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Underlying assumptions of OLS

* OLS is an estimator: it is a machine that we plug data into and we get out
estimates.

* Ithas a sampling distribution, with a sampling variance/standard error, etc.
like the sample mean, sample difference in means, or the sample variance.

* Let’s discuss these characteristics of OLS in the next section.
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The OLS estimators

* Question of interest: What is the effect of a change in X;(Class Size) on Y;(Test
Score)
Yi=Po+ A Xi+u

» We derived the OLS estimators of 3y and/;:

— PN

Bo=Y — 1 X
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The OLS estimators

* Question of interest: What is the effect of a change in X;(Class Size) on Y;(Test

Score)
Yi = Bo + B1.X; + u;

» We derived the OLS estimators of 3y and/;:

— PN

Bo=Y — 1 X

B, = Y - X)(Yi - Y)
(X = X)(Xi — X)
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Least Squares Assumptions

1. Assumption 1: Conditional Mean is Zero
2. Assumption 2: Random Sample
3. Assumption 3: Large outliers are unlikely

o If the 3 least squares assumptions hold the OLS estimators will be

* unbiased
* consistent
* normal sampling distribution
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Properties of the OLS estimator: unbiasedness

e Recall:

fo=Y - HX
* take expectation to [ :
Elfo] =Y — E[f1]X

» Then we have: if 3; is unbiased, then (5 is also unbiased.
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Properties of the OLS estimator: unbiasedness

¢ Remind we have
Y = Bo + f1.Xi +

Y=03+5/X+u

* So take expectation to f3;:

E[p] =

44/99



Properties of the OLS estimator: unbiasedness

¢ Remind we have
Y = Bo + f1.Xi +

Y=03+5/X+u

* So take expectation to f3;:

Bl =B & 2
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Properties of the OLS estimator: unbiasedness

¢ Continued

4 EF:(Xi — X)(Bo + /31X7:_+ u; — (»io + /X + 11))}
(X — X)(Xi — X)
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Properties of the OLS estimator: unbiasedness

¢ Continued

4 EF:(Xi — X)(Bo + 1 Xi +u; — (»io + /X + 11))}
i S(Xi — X)(X; — X)
:E{Z(Xi_X)( }

S(Xi — X)(X; — X)
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Properties of the OLS estimator: unbiasedness

¢ Continued

E[p]=E

[S2(Xs — X)(Bo + i X + u; — (»io + 51X + 11))}
(X — X)(Xi — X)

S (X — X)( . i }

22X = X)(Xi — X)

_612<Xi__}?) - ]—I—E{ (X; — X) ]

L 22X = X)X — X)

2(Xi = X)(Xi — X)
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Properties of the OLS estimator: unbiasedness

¢ Continued

E[p]=E

[S2(Xi — X)(Bo + B1Xi +u; — (»io + /X + 11))}

i (X — X)(Xi — X)

IS (X — X)( . i }

>(X = X)X — X)

(81> (X — X) (X; — X)

L V(X — X)(X; — X) ]+E[ ; : ]
Z(Xi—)_()(ui—u)]

= S (-

=F
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Review: Conditional Expectation Function(CEF)

 Expectation(for a continuous r.v.)

B(y) = [ ufw)dy
* Conditional probability density function

frix(ylz) = w

* Conditional Expectation Function: the Expectation of Y conditional on X is

Blyle) = [y ixlyle)dy
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Review: Properties of CEF

Let X, Y, Z are random variables; a, b € R; g(+) is a real valued function, then we have
* Ela|Y]=a
e E[(aX 4+0Z)|Y]|=aFE[X |Y]+bE[Z|Y]
* If X and Y are independent, then E[Y | X| = E[Y]
* ElYg(X) | X]=g(X)E[Y | X]. Inparticular, E[g(Y) | Y] = g(Y)
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Review: the Law of Iterated Expectations(LIE)

the Law of Iterated Expectations

It states that an unconditional expectation can be written as the unconditional
average of conditional expectation function.

E(Y:) = E[E(Yi|X))]

48/99



Review: the Law of Iterated Expectations(LIE)

the Law of Iterated Expectations

It states that an unconditional expectation can be written as the unconditional
average of conditional expectation function.

E(Y:) = E[E(Yi|X))]
and it can easily extend to

E(9(X)Y:) = E[E(g(X:)Yi| Xy)] = E[g(Xs) E(Y;| X3)]
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Proof: the Law of Iterated Expectation(LIE)

* Prove it by a continuous variable way

E[E(Y|X)] =
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* Prove it by a continuous variable way
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:/[/tfy(ﬂX:u)dt}fx( )du
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Proof: the Law of Iterated Expectation(LIE)

* Prove it by a continuous variable way

E[E(Y|X)] /E Y|X = u)fx(u)du
:/[/tfy(ﬂX:u)dt}fx( )du
- //tfy(ﬂX = u) fx (u)dtdu
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Proof: the Law of Iterated Expectation(LIE)

* Prove it by a continuous variable way

E[E(Y|X)] /E YIX = u) fx (u)du
:/[/tfy(ﬂx—u)dt}fx( )du
_ //tfy(ﬂX = u) fx (u)dtdu
= [4] [ #r(tx = w)px(w)da]as
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Proof: the Law of Iterated Expectation(LIE)

* Prove it by a continuous variable way

E[E(Y|X)] /E Y|X = u)fx(u)du
:/[/tfy(ﬂx—u)dt}fx( )du

_ / (X = u) fx (u)dtdu

/
:/ [/fytp(_u u)du] dt
I




Proof: the Law of Iterated Expectation(LIE)

* Prove it by a continuous variable way

BIEWIX)) = [ BOIX = w)/fx (wdu

J [ thvteix = wat] s (wdu

[ [t e1x = wix (ydtdu
/fy X = u) fx(u )du}dt

J
[ vt
/t

fy(t)dt




Proof: the Law of Iterated Expectation(LIE)

* Prove it by a continuous variable way

BIEWIX)) = [ BOIX = w)/fx (wdu

J [ thvteix = wat] s (wdu
= [ [ty (01X =w fxwydtdu
/ /fy X = u) fx(u )du}dt
[ s
/tfy(t)dt
E(Y
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Conditional Expectation and Covariance

¢ Please proveif E(Y|X)=0= Cov(X,Y) =0

Cov(XY) = E(XY) — E(X)E(Y)
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Conditional Expectation and Covariance

¢ Please proveif E(Y|X)=0= Cov(X,Y) =0

Cov(XY) = E(XY) — E(X)E(Y)
= E[E(XY|X)] - E(X)E[E(Y]X)]
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Conditional Expectation and Covariance

¢ Please proveif E(Y|X)=0= Cov(X,Y) =0

Cov(XY) = E(XY) — E(X)E(Y)
[E(XY|X)] - E(X)E[E(Y|X)]
[XE(Y|X)]

—FE )
E )
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Conditional Expectation and Covariance

¢ Please proveif E(Y|X)=0= Cov(X,Y) =0

Cov(XY) = E(XY) — E(X)E(Y)
E[BE(XY|X)] — E(X)E[E(Y|X)]
E[XE(Y|X)]
0

)
)
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Properties of the OLS estimator: unbiasedness

* Because ) (X; — X)(u; — @) = > (X; — X)uy, so
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Properties of the OLS estimator: unbiasedness

* Because > (X; — X)(u; — @) = 3(X; — X)uy, so

. 2 (X — X)u
Elpi] =1+ E[Z(Xi - X)(X; —X)}
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Properties of the OLS estimator: unbiasedness

* Because > (X; — X)(u; — @) = 3(X; — X)uy, so

S (X — X)u }
(X - X)(Xi — X)

E[B1] = B +E[

=P+ B[y g(Xiu] o g(Xi) = —— =
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Properties of the OLS estimator: unbiasedness

* Because > (X; — X)(u; — @) = 3(X; — X)uy, so

S (X — X)u }
(X - X)(Xi — X)

E[B1] = B +E[

=1+ B[ g(Xiui] . 9(X) = (X, _();)()f)_ X)

=b+ Z E[g(X;)u;] - our sampleisiid,
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Properties of the OLS estimator: unbiasedness

* Because > (X; — X)(u; — @) = 3(X; — X)uy, so

S (X — X)u }
(X - X)(Xi — X)

E[B1] = B +E[

=1+ B[ g(Xiui] . 9(X) = (X, _();)()f)_ X)

=p1+ Y _ E[g(Xi)u;] - our sampleisiid,
=p1+ Z E[Q(XZ)E[UZ|XZH .- LIE
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Properties of the OLS estimator: unbiasedness

* Because > (X; — X)(u; — @) = 3(X; — X)uy, so

S (X — X)u }
(X - X)(Xi — X)

E[B1] = B +E[

=1+ B[ g(Xiui] . 9(X) = (X, _();)()f)_ X)

=p1+ Y _ E[g(Xi)u;] - our sampleisiid,
=p1+ Z E[Q(XZ)E[UZ|XZH .- LIE

e Then we can obtain
E[ﬂl] = [))1 Lf E[’IL,;‘Xi] =0

* Both 3y and 3; are unbiased on the condition of Assumption 1.
51/99



Properties of the OLS estimator: Consistency

* Notation: 31 L5 B or plimﬁl = f1,s0

(X — ):()(Yi — Y)]
>(X = X)) (X — X)

plimﬁl = plim{
¢ Then we could obtain

.oA . nl ( )SS):l_ (M)
plimpB = plzm{ S g‘\; X)X X) = plim 52

//l

where s, and s2 are sample covariance and sample variance.

Recall: Sample Variance and Sample Covariance
1
2

Se = Z(Xl _X)Q

n—1
ey = —= 3 (X~ X)(¥i = V)
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Math Review: Continuous Mapping Theorem

* Continuous Mapping Theorem: For every continuous function g(¢) and random
variable X:
plim(g(X)) = g(plim(X))
* Example:
plim(X +Y) = plim(X) + plim(Y)
X, plim(X)

plim(5>)

V) = plim(v) if plim(Y) #0
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Properties of the OLS estimator: Consistency

* Base on L.L.N(the law of large numbers) and random sample(i.i.d)
s% 25 0% = Var(X)

Szy Ly oxy = Cov(X,Y)

* Combining with Continuous Mapping Theorem,then we obtain the OLS
estimator Bl,when n — 00

Cov(X;,Y;)

Y —
plzm/il = plzm( 2 ) Var(X,)
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Properties of the OLS estimator: Consistency

Cov(X;,Y;)

limf1 =
plimby = =5 X))
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Properties of the OLS estimator: Consistency

Cov(X;,Y;)

Var(X;)
_ CO’U(XZ', (50 + ﬁlXi + ul))
Var(X;)

plimfy =
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Properties of the OLS estimator: Consistency

Cov(X;,Y;)
Var(X;)
~ Cov(Xy, (Bo + B1Xi + ;)
Var(X;)
_ Cou(Xy, Bo) + B1Cou(X;, X;) + Cov(X;, u;)
B Var(X;)

plimfy =
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Properties of the OLS estimator: Consistency

Cov(X;,Y;)
Var(X;)
~ Cov(Xy, (Bo + B1Xi + ;)
Var(X;)
_ Cou(Xy, Bo) + B1Cou(X;, X;) + Cov(X;, u;)
B Var(X;)

plimfy =

Cov(X;, u;)

= At Var(X;)
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Properties of the OLS estimator: Consistency

Cov(X;,Y;)

Var(X;)
~ Cov(Xy, (Bo + B1Xi + ;)

Var(X;)

_ Cov(X;, By) + f1Cov(X;, X;) + Cov(X;, u;)
B Var(X;)
Cov(X;, u;)

Var(X;)

plimfy =

=p1+

e Then we could obtain
plimpy = P if E[ui| X;] =0
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Wrap Up: Unbiasedness vs Consistency

* Unbiasedness & Consistency both rely on E[u;| X;] = 0

* Unbiasedness implies that F/ [’?ﬂ = [3; for a certain sample size n.(“small
sample”)

« Consistency implies that the distribution of 3; becomes more and more tightly
distributed around f3; if the sample size n becomes larger and larger.(“large
sample”“)

+ Additionally,you could prove that j is likewise Unbiased and Consistent on the
condition of Assumption 1.
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Sampling Distribution of % and ? Recalll of Y

Firstly, Let’s recall: Sampling Distribution of Y’
Because Y7, ..., Y, are ii.d. and py is the mean of the population,then for
L.L.N,we have

E(Y)=py

Based on the Central Limit theorem(C.L.T) and the 0% is the variance of the
population, the sample distribution in a large sample can approximates to a

normal distribution, thus

Y ~N X
(:U'Y7n)

Therefore, the OLS estimators Bo and ﬁl could have similar sample distributions

when three least squares assumptions hold.
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Sampling Distribution of % and ? Expectation

+ Likewise as Y, the sample distribution of 31 or 3, in a large sample can also
approximates to a normal distribution based on the Central Limit theorem(C.L.T)

Bl ~ N(ﬂlaaél)
BO ~ N(ﬂOa 0;0)

* The expectation of the OLS estimators is by the unbiasedness of the OLS
estimators.It implies that

E[$1] = 81 and E[Bo] = fo
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Sampling Distribution of /3, and j;: Variance

+ Likewise as Y, the sample distribution of 3; or 3, in a large sample can also
approximates to a normal distribution based on the Central Limit theorem(C.L.T)

BL~ N(pr,03)

Bo ~ N(fo,3,)
¢ The variance of the OLS estimators can be shown as follows:
2 _ 1Var[(X; — ux)u,])
Pin [Var(X;))?

o 1 Var(Hju;)
7 = n (BUTR

g

Where H; =1 — [%]XZ
* Please prove it by yourself{Hint: refer to Appendix)
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Sampling Distribution /3, in large-sample

¢ We have shown that

52 1 Var[(X; — pa)ui]

B [Var(X;))? )

* An intuition:The variation of X is very important.

* Because if Var(X;) is small, it is difficult to obtain an accurate estimate of the
effect of X on Y which implies that Var(5, ) is large.
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Variation of X

@I The Variance of 8, and the Variance of X

The colored dots represent ~ y
aset of X's with a small 206 —
variance. The black dots
represent a set of X/'s with
alarge variance. The 204 — ° .
regression line can be .
estimated more accurately . ~ 5
202 . o .,
with the black dots than b o, 2
.
with the colored dots. ° 0t o
o ed ? -, ,
200 - o cond
e W LN
L
198 o op®
.
.
.
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.
194 L Il L Il L J
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* When more variation in X, then there is more information in the data that you
can use to fit the regression line.
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In a Summary

Under 3 least squares assumptions, the OLS estimators will be

unbiased

consistent

normal sampling distribution

more variation in X, more accurate estimation
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OLS Regression and RCT

* We learned RCT is the “golden standard” for causal inference.Because it can
naturally eliminate selection bias.

¢ So far, we did not discuss the relationship between RCT and OLS regression,
which means that we can not be sure that the result from an OLS regression can
be explained as “causal”.

* Instead of using a continuous regressor X, the regression where D; is a binary
variable, a so-called dummy variable, will help us to unveil the relationship

between RCT and OLS regression.
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Regression when X is a Binary Variable

* For example, we may define D; as follows:

1 if ST R in it" school district < 20
L (4.2)

0 if ST R in i'" school district > 20

* The regression can be written as

Y = po+ 1D + u; (CHY)
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Regression when X is a Binary Variable

* More precisely, the regression model now is
TestScore; = By + f1D; + u; (4.3)

* With D as the regressor, it is not useful to think of 3; as a slope parameter.
* Since D; € {0, 1}, i.e,, we only observe two discrete values instead of a continuum
of regressor values.
¢ There is no continuous line depicting the conditional expectation function
E(TestScore;|D;) since this function is solely defined for z-positions 0 and 1.
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Class Size and STR

Dummy Regression
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Regression when X is a Binary Variable

¢ Therefore, the interpretation of the coefficients in this regression model is as
follows:

* E(Y;|D; = 0) = By, so By is the expected test score in districts where D; = (0 where
STR is below 20.

e E(Y;|D; = 1) = By + 81 where STR is above 20

¢ Thus, j; is the difference in group specific expectations, i.e,, the difference in
expected test score between districts with ST R < 20 and those with ST R > 20,

p1 = E(Y;|D; =1) — E(Y;|D; = 0)
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Causality and OLS

e Letus recall, the individual treatment effect

ICE=Y,— Yy =96; Vi

* The ATE is the average of the ICE and ATT is the average of the ICE for the
treated group.
p=E(5)orp=E(|D=1)
* Either way, the treatment effect is a constant, i.e,, it does not depend on the
individual.
* Our OLS regression function is to estimate a constant treatment effect p, thus
Yi= o +Di p + i,

~—
E[YWJ Y1:—Yoi Y()i*E[Y()i]
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Causality and OLS

* Now write out the conditional expectation of Y; for both levels of D,

ElY;|D;=1]=FEla+p+n |D;=1]=a+p+ E[n|D; = 1]
ElY;|D;=0]=E[a+mn|D; =0 =a+ E[n | D; = 0]

o Take the difference

E[Y;|Di=1]—-E[Y;|D; =0l =p+ E[n|D; = 1] — E[n; | D; = 0]

Selection bias
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Causality and OLS

* Again, our estimate of the treatment effect (p) is only going to be as good as our
ability to shut down the selection bias.

* Selection bias in regression model: E [n;|D; = 1] — E [n; | D; = 0]

* There is something in our disturbance 7, that is affecting Y; and is also
correlated with D,.
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Simple OLS Regression v.s. RCT

* In asimple regression model, OLS estimators are just a generalizing continuous
version of RCT when least squares assumptions are hold.

¢ Ideally,regression is a way to control observable confounding factors, which
assume the source of selection bias is only from the difference in observed
characteristics.
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Simple OLS Regression v.s. RCT

e Butin contrast to RCT, in observational studies, researchers cannot control the
assignment of treatment into a treatment group versus a control group,which
means that the two groups are incomparable.

* To make two groups comparable, we need to keep treatment and control group
“other thing equal”in observed characteristics and unobserved characteristics.

* OLS regression is valid only when least squares assumptions are hold.

* In most cases,it is not easy to obtain. We have to know how to make a convincing
causal inference when these assumptions are not hold.
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Case: Smoke and Mortality

* Criticisms from Ronald A. Fisher
* No experimental evidence to incriminate smoking as a cause of lung cancer or
other serious disease.
* Correlation between smoking and mortality may be spurious due to biased
selection of subjects.

76 /99



Case: Smoke and Mortality

e Criticisms from Ronald A. Fisher

* No experimental evidence to incriminate smoking as a cause of lung cancer or
other serious disease.

* Correlation between smoking and mortality may be spurious due to biased
selection of subjects.

VA

S——M

» Confounder, Z, creates backdoor path between smoking and mortality
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Case: Smoke and Mortality(Cochran 1968)

Table 1: Death rates(JE - %) per 1,000 person-years

Smoking group Canada UK. US.
Non-smokers(AI 1) 20.2 1.3 135
Cigarettes(Z#H) 20.5 141 135

Cigars/pipes(ZFan/M8s}) 355 207 174
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Case: Smoke and Mortality(Cochran 1968)

Table 1: Death rates(JE - %) per 1,000 person-years

Smoking group Canada UK. US.
Non-smokers(AI 1) 20.2 1.3 135
Cigarettes(Z#H) 20.5 141 135

Cigars/pipes(ZFan/M8s}) 355 207 174

¢ It seems that taking cigars is more hazardous than others to the health?
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Case: Smoke and Mortality(Cochran 1968)

Table 2: Non-smokers and smokers differ in age

Smoking group Canada UK. US.
Non-smokers(AI 4H) 54.9 491 570
Cigarettes(ZIH) 50.5  49.8 532

Cigars/pipes(ZEan/M8s}) 659 557 597
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Case: Smoke and Mortality(Cochran 1968)

Table 2: Non-smokers and smokers differ in age

Smoking group Canada UK. US.
Non-smokers(AI 4H) 54.9 491 570
Cigarettes(ZIH) 50.5  49.8 532

Cigars/pipes(ZEan/M8s}) 659 557 597

* Older people die at a higher rate, and for reasons other than just smoking cigars.

* Maybe cigar smokers higher observed death rates is because they’re older on
average.
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Case: Smoke and Mortality(Cochran 1968)

* The problem is that the age are not balanced, thus their mean values differ for
treatment and control group.

* let’s try to balance them, which means to compare mortality rates across the
different smoking groups within age groups so as to neutralize age imbalances
in the observed sample.

* Itnaturally relates to the concept of Conditional Expectation Function.
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Case: Smoke and Mortality(Cochran 1968)

How to balance?

1. Divide the smoking group samples into age groups.

2. For each of the smoking group samples, calculate the mortality rates for the age
group.

3. Construct probability weights for each age group as the proportion of the
sample with a given age.

4. Compute the weighted averages of the age groups mortality rates for each
smoking group using the probability weights.
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Case: Smoke and Mortality(Cochran 1968)

Death rates Number of

Pipe-smokers Pipe-smokers Non-smokers

Age 20-50 0.15 1 29
Age 50-70 0.35 13 9
Age +70 0.5 16 2
Total 40 40

* Question: What is the average death rate for pipe smokers?
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Case: Smoke and Mortality(Cochran 1968)

Death rates Number of

Pipe-smokers Pipe-smokers Non-smokers

Age 20-50 0.15 1 29
Age 50-70 0.35 13 9
Age +70 0.5 16 2
Total 40 40

* Question: What is the average death rate for pipe smokers?
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Case: Smoke and Mortality(Cochran 1968)

Death rates Number of

Pipe-smokers Pipe-smokers Non-smokers

Age 20-50 0.15 1 29
Age 50-70 0.35 13

Age +70 0.5 16 2
Total 40 40

* Question: What would the average mortality rate be for pipe smokers if they
had the same age distribution as the non-smokers?
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Case: Smoke and Mortality(Cochran 1968)

Death rates Number of

Pipe-smokers Pipe-smokers Non-smokers

Age 20-50 0.15 1 29
Age 50-70 0.35 13

Age +70 0.5 16 2
Total 40 40

* Question: What would the average mortality rate be for pipe smokers if they
had the same age distribution as the non-smokers?

0.15 <2T)>+035 <€)>+05 <2>—0212
’ 10 ’ 10 ' 10)
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Case: Smoke and Mortality(Cochran 1968)

Table 3: Non-smokers and smokers differ in mortality and age

Smoking group Canada UK. US.
Non-smokers(A~I H) 20.2 113 135
Cigarettes(& 1) 283 128 177

Cigars/pipes(Z 7/ M8})
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Case: Smoke and Mortality(Cochran 1968)

Table 3: Non-smokers and smokers differ in mortality and age

Smoking group Canada UK. US.
Non-smokers(A~I H) 20.2 113 135
Cigarettes(& 1) 283 128 177

Cigars/pipes(Z 7/ M8})

* Conclusion: It seems that taking cigarettes is most hazardous, and taking pipes
is not different from non-smoking.
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Formalization: Covariates

Definition: Covariates

Variable X is predetermined with respect to the treatment D if for each individual ¢,
X? = X!, ie, the value of X; does not depend on the value of D;. Such
characteristics are called covariates.

¢ Covariates are often time invariant (e.g., sex, race), but time invariance is nota

necessary condition.
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Identification under Independence

* Recall that randomization in RCTs implies
(Yoi, Y1) 1L D
and therefore:

E[Y|D=1]-E[Y|D=0]= E[YulD =1] - E[Yo|D = 0]

by the switching equation
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Identification under Independence

* Recall that randomization in RCTs implies
(Yo, Y1;) 1L D
and therefore:
ElY|D=1]-E[Y|D =0]= E[Yu|D = 1] — E[Yy|D = 0]
by the switching equation

— E[YulD = 1] - E[Yo|D = 1]
by independence
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Identification under Independence

* Recall that randomization in RCTs implies
(Yoi, Y1) 1L D

and therefore:
E[Y|D=1]~E[Y|D=0] = E[Yy|D = 1] - E[Yy|D = 0]
by the switching equation
= E[Yu|D =1] — E[Yy|D = 1]
by independence
= EY1; — Yo| D = 1]

ATT
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Identification under Independence

* Recall that randomization in RCTs implies
(Yoi, Y1) 1L D

and therefore:
E[YID=1-E[Y|D=0= E[Yy|D=1] - E[Yo;|D = 0]
by the switching equation
— E[Yu|D=1] - E[Yo;|D = 1]
by independence
= EY1; — Yo|D = 1]
ATT

= EY1; — Yo
—_———
ATE
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Identification under Conditional Independence

* Conditional Independence Assumption(CIA): which means that if we can
“balance” covariates X then we can take the treatment D as randomized, thus

(Y14, Yo:) 1L D|X

* Now as (YM,YE)Z‘) A D‘X <+ (Yu,Ybi) 1 D,
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Identification under Conditional Independence

* Conditional Independence Assumption(CIA): which means that if we can
“balance” covariates X then we can take the treatment D as randomized, thus

(Y14, Yo:) 1L D|X
e Nowas (Y1, Yo;) 1L D|X < (Y1;,Yy) UL D,

E[Yyi|D = 1] - E[Yoi|D = 0] # E[Yui|D = 1] — E[Yy|D = 1]
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Identification under Conditional Independence(CIA)

* But using the CIA assumption, then

E[Y11|D = 1] — E[YYOZ|D = O] = E[Y11|D =1, XV} — FDI;,‘D =0, Xr}

association conditional on covariates
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Identification under Conditional Independence(CIA)

* But using the CIA assumption, then

E[Y11|D = 1] — E[YYOZ|D = O] = E[Y11|D =1, XV} — FDI;,‘D =0, Xr}
association conditional on covariates

= E[YulD=1,X] - EYyD=1,X]

conditional independence
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Identification under Conditional Independence(CIA)

* But using the CIA assumption, then

E[Y11|D = 1] — E[YYOZ|D = O] = E[Y11|D =1, XV} — FDI;,‘D =0, Xr}

association conditional on covariates

= E[YulD=1,X] - EYyD=1,X]

conditional independence
= EYy; = Yo|D =1, X]

conditional ATT
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Identification under Conditional Independence(CIA)

* But using the CIA assumption, then

E[Yy;|D = 1] — E[Yy|D =0] =

E[Yi|D=1,X]— ENVy|D =0, X]

association

conditional on covariates

E[Yi|D =1,X] — E[Yu|D =1, X]

conditional independence
EYy; — Yyu|D =1, X|

conditional ATT

E[Y1; — Yoi| X]
——_— ———

conditional ATE
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Curse of Multiple Dimensionality

* Sub-classification in one or two dimensions as Cochran(1968) did in the case of
Smoke and Mortality is feasible.

* But as the number of covariates we would like to balance grows(like many
personal characteristics such as age, gender,education,working
experience,married,industries,income, ), then the method become less feasible.

* Assume we have k covariates and we divide each into 3 coarse categories (e.g.,
age: young, middle age, old; income: low,medium, high, etc.)

+ The number of cells(or groups)is 3.

* If k = 10 then 3'% = 59049
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Making Comparison Make Sense

e Selection on Observables
* Regression
* Matching

e Selection on Unobservables
e IV,RD,DID,FE and SCM.

* The most fundamental tool among them is regression, which compares
treatment and control subjects who have the same observable characteristics in

a generalized manner.
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Extending Reading

* Ho, Chong and Xia(2017),“Yellow taxis have fewer accidents than blue taxis
because yellow is more visible than blue”,PNAS,Vol.114(12),pp3074-3078.

* Cochran, W. G. (1968). The effectiveness of adjustment by subclassification in
removing bias in observational studies. Biometrics, 24(2), pp295-313.
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Sampling Distribution of B

* 1 in terms of regression and errors in following equation

3 =3 (X (Y —Y)
b1 = 1—=n

n £ui=1

(X; — X)(Xi — X)
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Sampling Distribution of B

* 1 in terms of regression and errors in following equation

5 - 2ZimXi = DE -1
1=7 n (X’L_Y)(XZ—Y)

n £si=1
15 (Xz - Y)(ui — 17)

=1

= [+ il n (Xz_y)(Xz—Y)

n £ui=1
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Sampling Distribution of /3;:the numerator

* The numerator: - 37 (X; — X)(u; — @)
X

« Because X is consistent, thus X % /,,then combine with Continuous Mapping

Theorem
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« Because X is consistent, thus X % /,,then combine with Continuous Mapping

Theorem
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Sampling Distribution of /3;:the numerator

e Letvy; = (Xl — ,um)ul
* Based on Assumption 1, then E(v;) =0
+ Based on Assumption 2, 02 = Var[(X; — )y

e Then

n

1
EZ(X Hg Ui = — sz—v

94/99



Sampling Distribution of /3;:the numerator

¢ Recall: Y to Y; and based on C.L.T,

v _ o 2
0 4, N(0.1) or 7V % N (0, 7¥)

Oy n

* The v is the sample mean of v;,based on C.L.T,

v—20

Oy

3|

4 N(0.1) or v % N(0,22)
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Sampling Distribution of 3,:the denominator

¢ Recall the sample variance of Xj is sg(i

1
n—1

2 _
SXi_

Zn:(Xz' - X)?
=1

* Then the denominator,is a variation of sample variance of X (except dividing by
n rather than n — 1, which is inconsequential if n is large)

* Based on discussion of the sample variance is a consistent estimator of the
population variance,thus

sg(i 2 Var[X;) = a%Q
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Sampling Distribution of B

* (31 in terms of regression and errors

- e ( z)(“i—z)
L3 (X - X) (X — X)

ph=p

2
« the numeratoris v and v % N (0,22)

¢ the denominator is

1 & _ _
- Y (X - X)X - X) B Var[X;) = 0%,
=1

» Combining these two results, we have that, in large samples

v

Var[X;]

B — B L
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Slutsky’s Theorem

* It combines consistency and convergence in distribution.

Slutsky’s Theorem

. d
Suppose that a,, LN a,where ¢ is a constant,and S,, — S.Then

an+S, L a+ 8

anSngaS
&igz’fa;«éo

Qn
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Sampling Distribution of B

* Based on v follow a normal distribution, in large samples,thus
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Sampling Distribution of B

* Based on v follow a normal distribution, in large samples,thus

0.2

_d
- N(0, 2%
05 NO )

v d o
= v ¥ ()

—~~|e
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Sampling Distribution of B

* Based on v follow a normal distribution, in large samples,thus

Var

(
= b - ,31—>N< i )
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Sampling Distribution of B

* Based on v follow a normal distribution, in large samples,thus

4l
1=

N (0,

Var

o
T

« Then the sampling distribution of /3] is
5 d
[31 — N(ﬁ)l, 0?51)

where
9 o ~ Var[(X; — pe)ug

B pVar(X;)]2  n[Var(X;))?
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