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Simple OLS Formula

• The linear regressionmodel with one regressor is denoted by

Yi = β0 + β1Xi + ui

• Where

• Yi is the dependent variable(Test Score)
• Xi is the independent variable or regressor(Class Size or Student-Teacher Ratio)
• ui is the error termwhich contains all the other factors besidesX that determine
the value of the dependent variable, Y , for a specific observation, i.
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The OLS Estimator

• The estimators of the slope and intercept thatminimize the sum of the squares

of ûi,thus

arg min
b0,b1

n∑
i=1

û2
i = min

b0,b1

n∑
i=1

(Yi − b0 − b1Xi)2

are called the ordinary least squares (OLS) estimators of β0 and β1.

OLS estimator of β1:

b1 = β̂1 =
∑n

i=1(Xi − X)(Yi − Y )∑n
i=1(Xi − X)(Xi − X)

5 / 98



The OLS Estimator

• The estimators of the slope and intercept thatminimize the sum of the squares
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Least Squares Assumptions

• Under 3 least squares assumptions,

1. Assumption 1: ZERO Conditional Mean
2. Assumption 2: i.i.d. Samples or random sampling
3. Assumption 3: Without large outliers

• The OLS estimators will be

1. unbiased
2. consistent
3. normal sampling distribution
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Simple OLS Regression v.s. RCT

• A simple OLS regressionmodel is a generalizing continuous version of RCT

assuming three least squares assumptions are held.

• Inmost observational studies, OLS regression suffers from selection bias, which

violates the assumption of E(ui|Xi) = 0.
• In such cases, OLS estimators are biased and inconsistent. Therefore the causal

effect of X on Y cannot be identified by simple OLS regression.

• To address the selection bias problem, we have to extend the simple OLS

regressionmodel in more general settings.
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Make ComparisonMake Sense
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Case: Smoke andMortality

• Criticisms from Ronald A. Fisher

• There is no experimental evidence to suggest that smoking is a cause of lung
cancer or other serious diseases.

• Correlation between smoking andmortality may be spurious due to biased
selection of subjects.

Z

MS

• Confounder, Z, some other factors, affect on smoking andmortality

simultaneously.
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Case: Smoke andMortality(Cochran 1968)

Table 1: Death rates(死亡率) per 1,000 person-years

Smoking group Canada U.K. U.S.

Non-smokers(不吸烟) 20.2 11.3 13.5

Cigarettes(香烟) 20.5 14.1 13.5

Cigars/pipes(雪茄/烟斗) 35.5 20.7 17.4

• It seems that taking cigars is more hazardous than others to the health.
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Case: Smoke andMortality(Cochran 1968)

Table 2: Non-smokers and smokers differ in age

Smoking group Canada U.K. U.S.

Non-smokers(不吸烟) 54.9 49.1 57.0

Cigarettes(香烟) 50.5 49.8 53.2

Cigars/pipes(雪茄/烟斗) 65.9 55.7 59.7

• Older people die at a higher rate, and for reasons other than just smoking cigars.

• Perhaps the higher observed death rates among cigar smokers are because

they’re older on average.
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Case: Smoke andMortality(Cochran 1968)

• The issue is that the ages are not balanced; there is a difference in the age

distribution between the treatment and control groups.

• let’s try to balance them, whichmeans to compare mortality rates across the

different smoking groups within age groups so as to neutralize age imbalances

in the observed sample.

• It naturally relates to the concept of Conditional Expectation Function.
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Case: Smoke andMortality(Cochran 1968)

How to balance?

1. Divide the smoking group samples into age groups.

2. For each of the smoking group samples, calculate the mortality rates for the age

group.

3. Construct probability weights for each age group as the proportion of the

sample with a given age.

4. Compute theweighted averages of the age groups mortality rates for each

smoking group using the probability weights.
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Case: Smoke andMortality(Cochran 1968)

Death rates Number of

Pipe-smokers Pipe-smokers Non-smokers

Age 20-50 0.15 11 29

Age 50-70 0.35 13 9

Age +70 0.5 16 2

Total 40 40

• Question: What is the average death rate for pipe smokers?

0.15 ·
(11

40

)
+ 0.35 ·

(13
40

)
+ 0.5 ·

(16
40

)
= 0.355
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Case: Smoke andMortality(Cochran 1968)

Table 3: Non-smokers and smokers differ in mortality and age

Smoking group Canada U.K. U.S.

Non-smokers(不吸烟) 20.2 11.3 13.5

Cigarettes(香烟) 28.3 12.8 17.7

Cigars/pipes(雪茄/烟斗) 21.2 12.0 14.2

• Conclusion: It seems that taking cigarettes is most hazardous, and taking pipes

is not different from non-smoking.
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Formalization: Covariates

Definition: Covariates

Variable W is predetermined with respect to the treatment D if for each individual

i, W0i = W1i, i.e., the value of Xi does not depend on the value of Di. Such

characteristics are called covariates.

• Covariates are often time invariant (e.g., sex, race), but time invariance is not a

necessary condition.
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Identification under Independence

• Recall that randomization in RCTs implies

(Y0i, Y1i) ⊥⊥ D

and therefore:

E[Y |D = 1] − E[Y |D = 0] = E[Y1i|D = 1] − E[Y0i|D = 0]︸ ︷︷ ︸
by the switching equation

= E[Y1i|D = 1] − E[Y0i|D = 1]︸ ︷︷ ︸
by independence

= E[Y1i − Y0i|D = 1]︸ ︷︷ ︸
ATT

= E[Y1i − Y0i]︸ ︷︷ ︸
ATE
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Identification under Conditional Independence

• Conditional Independence Assumption(CIA): whichmeans that if we can balance

covariates X , then we can take the treatment D as randomized, thus

(Y1i, Y0i) ⊥⊥ D|X

• NOTE: Because (Y1i, Y0i) ⊥⊥ D|X < (Y1i, Y0i) ⊥⊥ D,then

E[Y1i|D = 1] − E[Y0i|D = 0] ̸= E[Y1i|D = 1] − E[Y0i|D = 1]
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Identification under Conditional Independence(CIA)

• But using the CIA assumption, then

E[Y1i|D = 1] − E[Y0i|D = 0]︸ ︷︷ ︸
association

= E[Y1i|D = 1, X] − E[Y0i|D = 0, X]︸ ︷︷ ︸
conditional on covariates

= E[Y1i|D = 1, X] − E[Y0i|D = 1, X]︸ ︷︷ ︸
conditional independence

= E[Y1i − Y0i|D = 1, X]︸ ︷︷ ︸
conditional ATT

= E[Y1i − Y0i|X]︸ ︷︷ ︸
conditional ATE
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Curse of Multiple Dimensionality

• Sub-classification in one or two dimensions as Cochran(1968) did in the case of

Smoke and Mortality is feasible.

• But as the number of covariates we would like to balance grows(like many

personal characteristics such as age, gender,education,working

experience,married,industries,income,�), then the method become less feasible.

• Assume we have k covariates and we divide each into 3 coarse categories (e.g.,

age: young, middle age, old; income: low,medium, high, etc.)

• The number of cells(or groups)is 3K .
• If k = 10 then 310 = 59049
• Even if k = 6, then 36 = 729.Assume that we have 1000 observations, then the
average number of observations in each cell is less than 2.

• Sub-classification is not a feasible method to balance covariates in

high-dimensional space.
21 / 98



Making ComparisonMake Sense

• Question: How tomake comparisonmake sense in the presence of covariates?

• Selection on Observables

• Regression
• Matching

• Selection on Unobservables

• IV,RD,DID,FE and SCM.

• Themost fundamental tool among them ismultiple regression, which

compares treatment and control subjects who have the same observable

characteristics in a generalizedmanner.
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Multiple OLS Regression: Introduction
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Violation of the 1st Least Squares Assumption

• Recall simple OLS regression equation

Yi = β0 + β1Xi + ui

• Question: What does ui represent?

• Answer: contains all other factors(variables)which potentially affect Yi.

• Assumption 1

E(ui|Xi) = 0

• It states that ui are unrelated to Xi in the sense that,given a value of Xi,the mean
of these other factors equals zero.

• But what if ui is correlatedwith Xi?
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Example: Class Size and Test Score

• Many other factors can affect student’s performance in the school.

• One of factors is the share of immigrants in the class. Because immigrant

childrenmay have different backgrounds from native children, such as

• parents’ education level
• family income and wealth
• parenting style
• traditional culture

25 / 98



Scatter Plot: The share of immigrants and STR
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Scatter Plot: The share of immigrants and STR
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The share of immigrants as an Omitted Variable

• Class size may be related to percentage of English learners and students who are

still learning English likely have lower test scores.

• In other words, the effect of class size on scores we had obtained in simple OLS
may contain an effect of immigrants on scores.

• It implies that percentage of English learners is contained in ui, in turn that

Assumption 1 is violated.

• More precisely,the estimates of β̂1 and β̂0 are biased and inconsistent.
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Omitted Variable Bias: Introduction

• As before, Xi and Yi represent STR and Test Score,repectively.

• Besides, Wi is the variable which represents the share of english learners.

• Suppose that we have no information about it for some reasons, then we have to

omit in the regression.

• Thus we have two regressions in mind:
• Truemodel(the Long regression):

Yi = β0 + β1Xi + γWi + ui

where E(ui|Xi) = 0
• OVBmodel(the Short regression):

Yi = β0 + β1Xi + vi

where vi = γWi + ui
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Omitted Variable Bias: Biasedness

• Let us see what is the consequence of OVB

E[β̂1] = E

[ ∑n
i=1(Xi − X)(Yi − Y )∑n
i=1(Xi − X)(Xi − X)

]
= E

[∑
(Xi − X̄)(β0 + β1Xi + γWi + ui − (β0 + β1X + γW + u))∑

(Xi − X̄)(Xi − X̄)

]
= E

[∑
(Xi − X̄)(β1(Xi − X) + γ(Wi − W ) + ui − u)∑

(Xi − X̄)(Xi − X̄)

]
• Using the Law of Iterated Expectation(LIE) again, we will obtain the following
expression(Skip these steps which are very similar to those for proving unbiasedness
of β̂1, please prove it by yourself).

E[β̂1] = β1 + γE

[∑
(Xi − X̄)(Wi − W̄ )∑
(Xi − X̄)(Xi − X̄)

]
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Omitted Variable Bias: Biasedness

• As proving unbiasedness of β̂1, thus E[β̂1] = β1, then we need

E

[∑
(Xi − X̄)(Wi − W̄ )∑
(Xi − X̄)(Xi − X̄)

]
= 0

• Two scenarios:

1. If Wi is unrelated to Xi,then E[β̂1] = β1.
2. If Wi is not determinant of Yi, whichmeans that

γ = 0

,then E[β̂1] = β1, too.

• Only if both two conditions above are violated simultaneously, then β̂1 is biased,

which is normally calledOmitted Variable Bias(OVB).
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Omitted Variable Bias(OVB): inconsistency

• Recall: simple OLS is consistency when n is large, thus

plimβ̂1 = Cov(Xi, Yi)
V ar(Xi)

plimβ̂1 = Cov(Xi, Yi)
V arXi

= Cov(Xi, (β0 + β1Xi + vi))
V arXi

= Cov(Xi, (β0 + β1Xi + γWi + ui))
V arXi

= Cov(Xi, β0) + β1Cov(Xi, Xi) + γCov(Xi, Wi) + Cov(Xi, ui)
V arXi

= β1 + γ
Cov(Xi, Wi)

V arXi
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= Cov(Xi, (β0 + β1Xi + vi))
V arXi

= Cov(Xi, (β0 + β1Xi + γWi + ui))
V arXi
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Omitted Variable Bias(OVB): Inconsistency

• Thus we obtain

plimβ̂1 = β1 + γ
Cov(Xi, Wi)

V arXi

• β̂1 is still consistent

• if Wi is unrelated to X, thus Cov(Xi, Wi) = 0
• if Wi has no effect on Yi, thus γ = 0

• Only if both two conditions above are violated simultaneously}, then β̂1 is

inconsistent.
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Omitted Variable Bias(OVB):Directions

• If OVB can be possible in our regressions,then we should guess the directions of

the bias, in case that we can’t eliminate it.

• A summary of the directions of the OVB bias

Cov(Xi, Wi) > 0 Cov(Xi, Wi) < 0

γ > 0
Positive bias Negative bias

γ < 0
Negative bias Positive bias
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Omitted Variable Bias: Examples

• Question: If we omit following variables, then what are the directions of these

biases? and why?

1. Time of day of the test[suppose morning(8:00-12:00am) is
better,afternoon(13:00-17:00pm) is worse]

2. The number of dormitories
3. Teachers’ salary
4. Family income
5. Percentage of English learners(the share of immigrants)
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Omitted Variable Bias: Examples in R

• Regress Testscore on Class size

#>
#> Call:
#> lm(formula = testscr ~ str, data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -47.727 -14.251 0.483 12.822 48.540
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 698.9330 9.4675 73.825 < 2e-16 ***
#> str -2.2798 0.4798 -4.751 2.78e-06 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 18.58 on 418 degrees of freedom
#> Multiple R-squared: 0.05124, Adjusted R-squared: 0.04897
#> F-statistic: 22.58 on 1 and 418 DF, p-value: 2.783e-06
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Omitted Variable Bias: Examples in R

• Regress Testscore on Class size and the percentage of English learners

#>
#> Call:
#> lm(formula = testscr ~ str + el_pct, data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -48.845 -10.240 -0.308 9.815 43.461
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
#> str -1.10130 0.38028 -2.896 0.00398 **
#> el_pct -0.64978 0.03934 -16.516 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 14.46 on 417 degrees of freedom
#> Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
#> F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16
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Omitted Variable Bias: Examples in R

Dependent variable:

testscr

(1) (2)

str −2.280∗∗∗ −1.101∗∗∗

(0.480) (0.380)
el_pct −0.650∗∗∗

(0.039)
Constant 698.933∗∗∗ 686.032∗∗∗

(9.467) (7.411)

Observations 420 420
R2 0.051 0.426

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Warp Up

• OVB is themost common bias when we run OLS regressions using

non-experimental data.

• It means that there are some variables which should have been included in the
regression but actually was not.

• Then the simplest way to overcome OVB: Putting omitted variables into the right

side of the regression, whichmeans our regressionmodel should be

Yi = β0 + β1Xi + γWi + ui

• This strategy can be denoted as controlling informally, which introduces the

more general regressionmodel: Multiple OLS Regression.
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Multiple OLS Regression: Estimation
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Multiple regressionmodel with k regressors

• Themultiple regressionmodel is

Yi = β0 + β1X1,i + β2X2,i + ... + βkXk,i + ui, i = 1, ..., n (4.1)

where

• Yi is the dependent variable
• X1, X2, ...Xk are the independent variables(includes one is our of interest and
some control variables)

• βi, j = 1...k are slope coefficients on Xi corresponding.
• β0 is the estimate intercept, the value of Y when all Xj = 0, j = 1...k

• ui is the regression error term, still all other factors affect outcomes.
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Interpretation of coefficients βi, j = 1...k

• βj is partial (marginal) effect of Xj on Y.

βj = ∂Yi

∂Xj,i

• βj is also partial (marginal) effect of E
[
Yi|X1..Xk

]
.

βj = ∂E[Yi|X1, ..., Xk]
∂Xj,i

• it does mean that we are estimate the effect of X on Y when “other things equal”,

thus the concept of ceteris paribus.
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OLS Estimation inMultiple Regressors

• As in a Simple OLS Regression, the estimators of Multiple OLS Regression is

just a minimize the following question

argmin
∑

b0,b1,...,bk

(Yi − b0 − b1X1,i − ... − bkXk,i)2

where b0 = β̂1, b1 = β̂2, ..., bk = β̂k are estimators.
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OLS Estimation inMultiple Regressors

• Similarly in Simple OLS, based on F.O.C,the multiple OLS estimators

β̂0, β̂1, ..., β̂k are obtained by solving the following system of normal equations

∂

∂b0

n∑
i=1

û2
i =

∑ (
Yi − β̂0 − β̂1X1,i − ... − β̂kXk,i

)
= 0

∂

∂b1

n∑
i=1

û2
i =

∑ (
Yi − β̂0 − β̂1X1,i − ... − β̂kXk,i

)
X1,i = 0

... =
... =

...

∂

∂bk

n∑
i=1

û2
i =

∑ (
Yi − β̂0 − β̂1X1,i − ... − β̂kXk,i

)
Xk,i = 0
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OLS Estimation inMultiple Regressors

• Similar to in Simple OLS, the fitted residuals are

ûi = Yi − β̂0 − β̂1X1,i − ... − β̂kXk,i

• Therefore, the normal equations also can be written as∑
ûi = 0∑

ûiX1,i = 0
... =

...∑
ûiXk,i = 0

• While it is convenient to transform equations above usingmatrix algebra to

compute these estimators, we can use partitioned regression to obtain the

formula of estimators without usingmatrix algebra.
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Multiple OLS Regression Estimators: Partitioned Regression
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Partitioned Regression: OLS estimators

• Suppose our multiple regressionmodel is

Yi = β0 + β1X1,i + β2X2,i + ... + βkXk,i + ui

• Then, partitioned regression obtain OLS estimators of βj ; j = 1, 2...k in

following 3 steps:
1. Regress Xj on X1, X2, ...Xj−1, Xj+1, Xk , thus

Xj,i = γ0 + γ1X1i + ... + γj−1Xj−1,i + γj+1Xj+1,i... + γkXk,i + vji

2. Obtain the residuals from the regression above,denoted as v̂ji ≡ X̃j,i

3. Regress Y on X̃j,i to obtain the OLS estimator of βj .

• The last step implies that the OLS estimator of βj can be expressed as follows

β̂j =
∑n

i=1 X̃jiYi∑n
i=1 X̃2

ji
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Partitioned Regression: OLS estimators

• Suppose we want to obtain an expression for β̂1.

• the first step: regress X1,i on other regressors Xs, thus

X1,i = γ0 + γ2X2,i + ... + γkXk,i + vi

• the second step: obtain the residuals from the regression above, denoted as
X̃1,i = v̂1i, thus

X1,i = γ̂0 + γ̂2X2,i + ... + γ̂kXk,i + X̃1,i

• the third step: regress Yi on X̃1,i to obtain the OLS estimator of β1, thus

β̂1 =
∑n

i=1 X̃1,iYi∑n
i=1 X̃2

1,i
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Proof of Partitioned Regression OLS Estimator(1)

• Recall: if ui are the residuals for theMultiple OLS regression equation,thus we have

ûi = Yi − Ŷi = Yi − (β̂0 + β̂1X1,i + β̂2X2,i + ... + β̂kXk,i)

• Then we have ∑
ûi =

∑
ûiXji = 0, j = 1, 2, ..., k

• Likewise,X̃1i ≡ v1i are the residuals for the partitioned regression equation of X1i on
X2i..., Xki, then we have∑

X̃1i =
∑

X̃1iX2,i = ... =
∑

X̃1iXk,i = 0

• Additionally, because X̃1,i = X1,i − γ̂0 − γ̂2X2,i − ... − γ̂kXk,i, then we have∑
ûiX̃ji = 0
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Proof of Partitioned Regression OLS Estimator(2)

∑n
i=1 X̃1,iYi∑n

i=1 X̃2
1,i

=

∑
X̃1,i(β̂0 + β̂1X1,i + β̂2X2,i + ... + β̂kXk,i + ûi)∑

X̃2
1,i

= β̂0

∑n
i=1 X̃1,i∑n
i=1 X̃2

1,i

+ β̂1

∑n
i=1 X̃1,iX1,i∑n

i=1 X̃2
1,i

+ ...

+ β̂k

∑n
i=1 X̃1,iXk,i∑n

i=1 X̃2
1,i

+
∑n

i=1 X̃1,iûi∑n
i=1 X̃2

1,i

= β̂1

∑n
i=1 X̃1,iX1,i∑n

i=1 X̃2
1,i
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X̃2

1,i

= β̂0

∑n
i=1 X̃1,i∑n
i=1 X̃2

1,i

+ β̂1

∑n
i=1 X̃1,iX1,i∑n

i=1 X̃2
1,i

+ ...

+ β̂k

∑n
i=1 X̃1,iXk,i∑n

i=1 X̃2
1,i

+
∑n

i=1 X̃1,iûi∑n
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Proof of Partitioned Regression OLS Estimator(3)

Proof(cont’d)

n∑
i=1

X̃1,iX1,i

=
n∑

i=1
X̃1,i(γ̂0 + γ̂2X2,i + ... + γ̂kXk,i + X̃1,i)

= γ̂0 · 0 + γ̂2 · 0 + ... + γ̂k · 0 +
∑

X̃2
1,i

=
∑

X̃2
1,i

• Then ∑n
i=1 X̃1,iYi∑n

i=1 X̃2
1,i

= β̂1

∑n
i=1 X̃1,iX1,i∑n

i=1 X̃2
1,i

= β̂1
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i=1 X̃2
1,i

=

β̂1

∑n
i=1 X̃1,iX1,i∑n

i=1 X̃2
1,i

= β̂1
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Proof of Partitioned Regression OLS Estimator(3)

Proof(cont’d)
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Frisch-Waugh-Lowell Theorem

FWL Theorem

Themultiple regressionmodel is

Yi = β0 + β1X1,i + β2X2,i + ... + βkXk,i + ui, i = 1, ..., n

Then estimator of β̂1, ..., β̂k can be expressed as following

β̂j =
∑n

i=1 X̃j,iYi∑n
i=1 X̃2

j,i

=
∑n

i=1 X̃j,iỸj,i∑n
i=1 X̃2

j,i

for j = 1, 2, .., k

where X̃j,i and Ỹji are the fitted OLS residuals of the regression Xji and Yi on all

other Xs respectively except Xji.
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The Intuition of FWL Theorem

Partialling Out

1. First, we regress Xj against the rest of the regressors (and a constant) and keep

X̃j which is the “part” of Xj that is uncorrelatedwith the other regressors.

2. Then, to obtain β̂j , we regress Y on X̃j which is “clean” from correlation with

other regressors.

3. β̂j measures the effect of X1 after the effects of X2, ..., Xk have been partialled

out or netted out.

• FWL Theorem provides a new and important perspective to understand the

multiple OLS estimator.
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Test Scores and Student-Teacher Ratios(1)

• Nowwe put one additional control variables into our OLS regressionmodel

Testscore = β0 + β1STR + β2elpct + ui

• elpct: the share of English learners as an indicator for the share of

immigrants.

• We want to know the effect of STR on testscr after controlling for elpct.

• Two steps:

• First, we regress str on elpct and keep the residuals S̃TR, thus

STR = γ̂0 + γ̂1elpct + S̃TR

• Second, we regress testscr on S̃TR to get the effect of STR after controlling for
elpct.
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Test Scores and Student-Teacher Ratios(2)

• The residuals of the regression of str on elpct are

S̃T R = ST R − ŜT R = ST R − (γ̂0 + γ̂1elpct)

• Check whether the sum of S̃T R, S̃T R × elpct and ˜testscr × S̃T R are zero.

tilde.str <- residuals(lm(str ~ el_pct, data=ca))
tilde.score <- residuals(lm(testscr ~ str+el_pct, data=ca))
sum(tilde.str) # also is zero

#> [1] -8.104628e-15

sum(tilde.str*ca$el_pct) # also should be zero

#> [1] -3.896883e-13

sum(tilde.score*tilde.str) # also should be zero

#> [1] 1.275424e-12
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Test Scores and Student-Teacher Ratios(3)

• Multiple OLS estimator in a partitioned way

β̂j =
∑n

i=1 X̃j,iYi∑n
i=1 X̃2

j,i

for j = 1, 2, .., k

sum(tilde.str*ca$testscr)/sum(tilde.str^2)

#> [1] -1.101296
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Test Scores and Student-Teacher Ratios(4)

reg3 <- lm(testscr ~ tilde.str,data = ca)
summary(reg3)

#>
#> Call:
#> lm(formula = testscr ~ tilde.str, data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -48.693 -14.124 0.988 13.209 50.872
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 654.1565 0.9254 706.864 <2e-16 ***
#> tilde.str -1.1013 0.4986 -2.209 0.0277 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 18.97 on 418 degrees of freedom
#> Multiple R-squared: 0.01154, Adjusted R-squared: 0.009171
#> F-statistic: 4.878 on 1 and 418 DF, p-value: 0.02774
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Test Scores and Student-Teacher Ratios(5)

reg4 <- lm(testscr ~ str+el_pct,data = ca)
summary(reg4)

#>
#> Call:
#> lm(formula = testscr ~ str + el_pct, data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -48.845 -10.240 -0.308 9.815 43.461
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
#> str -1.10130 0.38028 -2.896 0.00398 **
#> el_pct -0.64978 0.03934 -16.516 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 14.46 on 417 degrees of freedom
#> Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
#> F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16
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Test Scores and Student-Teacher Ratios(6)

Dependent variable:

testscr

(1) (2)

tilde.str −1.101∗∗

(0.499)
str −1.101∗∗∗

(0.380)
el_pct −0.650∗∗∗

(0.039)
Constant 654.157∗∗∗ 686.032∗∗∗

(0.925) (7.411)

Observations 420 420
Adjusted R2 0.009 0.424

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 59 / 98



Measures of Fit in Multiple Regression
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Recall: Measures of Fit: The R2

• Decompose Yi into the fitted value plus the residual Yi = Ŷi + ûi

• The total sum of squares (TSS): TSS =
∑n

i=1(Yi − Y )2

• The explained sum of squares (ESS):
∑n

i=1(Ŷi − Y )2

• The sum of squared residuals (SSR):
∑n

i=1(Ŷi − Yi)2 =
∑n

i=1 û2
i

• And

TSS = ESS + SSR

• The regression R2 is the fraction of the sample variance of Yi explained by (or

predicted by) the regressors.

R2 = ESS

TSS
= 1 − SSR

TSS
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Measures of Fit in Multiple Regression

• When you put more variables into the regression, then R2 always increases

when you add another regressor. Because in general the SSR will decrease.

• Consider twomodels
Yi = β0 + β1X1i + ui

Yi = β̃0 + β̃1X1i + β̃2X2i + vi

• Recall: about two residuals ûi and v̂i, we have

n∑
i=1

ûi =
n∑

i=1
ûiX1i = 0

n∑
i=1

v̂i =
n∑

i=1
v̂iX1i =

n∑
i=1

v̂iX2i = 0
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Measures of Fit in Multiple Regression

• we will show that
n∑

i=1
û2

i ≥
n∑

i=1
v̂2

i

• thereforeR2
v ≥ R2

u, thusR2 that correspinds the regression with one regressor is

less or equal than R2 that corresponds to the regression with two regressors.

• This conclusion can be generalized to the case of k + 1 regressors.
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Measures of Fit in Multiple Regression

• At first we would like to know
∑n

i=1 ûiv̂i

n∑
i=1

ûiv̂i =
n∑

i=1
(Yi − β̂0 − β̂1X1i)v̂i

=
n∑

i=1
Yiv̂i − β̂0

n∑
i=1

v̂i − β̂1

n∑
i=1

X1v̂i

=
n∑

i=1
Yiv̂i − β̂0 · 0 − β̂1 · 0

=
n∑

i=1
( ˆ̃β0 + ˆ̃β1X1i + ˆ̃β2X2i + v̂i)v̂i

=
∑
i=1

v̂iv̂i
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Measures of Fit in Multiple Regression

• Then we can obtain

n∑
i=1

û2
i −

n∑
i=1

v̂2
i =

n∑
i=1

û2
i +

n∑
i=1

v̂2
i − 2

n∑
i=1

v̂2
i

=
n∑

i=1
û2

i +
n∑

i=1
v̂2

i − 2
n∑

i=1
ûiv̂i

=
n∑

i=1
(ûi − v̂i)2 ≥ 0

• Therefore R2
v ≥ R2

u, thus R2 the regression with one regressor is less or equal

than R2 that corresponds to the regression with two regressors.
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Measures of Fit: The Adjusted R2

• the AdjustedR2,is a modified version of the R2 that does not necessarily

increase when a new regressor is added.

R2 = 1 − n − 1
n − k − 1

SSR

TSS
= 1 − s2

û

s2
Y

• because n−1
n−k−1 is always greater than 1, so R2 < R2

• adding a regressor has two opposite effects on the R2.
• R2 can be negative.

• Remind: neither R2 nor R2 is NOT the golden criterion for good or bad OLS

estimation.
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Example: Test scores and Student Teacher Ratios
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Multiple Regression: Assumption
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Multiple Regression: Assumption

• Assumption 1: The conditional distribution of ui given X1i, ..., Xki has mean

zero,thus

E[ui|X1i, ..., Xki] = 0

• which is a very strong assumption, whichmeans ui is uncorrelated with all the
independent variables.(we will discuss this later)

• Assumption 2: (Yi, X1i, ..., Xki) are i.i.d.
• Assumption 3: Large outliers are unlikely.

• At last, we have to add onemore assumption for multiple regression.

• Assumption 4: No perfect multicollinearity.
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Perfect Multicollinearity

• Perfect multicollinearity arises when one of the regressors is a perfect linear

combination of the other regressors.

• If you include a full set of binary variables (a complete andmutually exclusive

categorization) and an intercept in the regression, you will have perfect

multicollinearity.

• eg. female andmale = 1-female

• This is called the dummy variable trap.

• Solutions to the dummy variable trap:

• Omit one of the groups or the intercept
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Categoried Variable as Independent Variables

• Recall if X is a dummy variable, then we can put it into regression equation

straightly.

• What if X is a categorical variable?

• Question: What is a categorical variable?

• For example, wemay define Di as follows:

Di =


1 small-size class if STR in ith school district < 18

2 middle-size class if 18 ≤ STR in ith school district < 22

3 large-size class if STR in ith school district ≥ 22

(4.5)
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A Special Case: Categorical Variable as X

• Naive Solution: a simple OLS regressionmodel

TestScorei = β0 + β1Di + ui

• Question: Can you explain the meanning of estimate coefficient β1?

• Answer: It doese not make sense that the coefficient of β1 can be explained as

continuous variables.
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A Special Case: Categorical Variables as X

• The first step: turn a categorical variable(Di) into multiple dummy

variables(D1i, D2i, D3i)

D1i =

1 small-sized class if STR in ith school district < 18

0 middle-sized class or large-sized class if not

D2i =

1 middle-sized class if 18 ≤ STR in ith school district < 22

0 large-sized class or small-sized class if not

D3i =

1 large-sized class if STR in ith school district ≥ 22

0 middle-sized class or small-sized class if not
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A Special Case: Categorical Variables as X

• We put these dummies into a multiple regression

TestScorei = β0 + β1D1i + β2D2i + β3D3i + ui (4.6)

• Then as a dummy variable as the independent variable in a simple regression

The coefficients (β1, β2, β3) represent the effect of every categorical class on

testscore respectively.
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A Special Case: Categorical Variables as X

• In practice, we can’t put all dummies into the regression, but only have n − 1
dummies unless we will suffer perfect multi-collinearity.

• The regressionmay be like as

TestScorei = β0 + β1D1i + β2D2i + ui (4.6)

• The default intercept term, β0,represents the large-sized class.Then, the

coefficients (β1, β2) represent testscore gaps between small_sized, middle-sized

class and large-sized class,respectively.
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• regress Testscore on Class size and the percentage of English learners

#>
#> Call:
#> lm(formula = testscr ~ str + el_pct, data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -48.845 -10.240 -0.308 9.815 43.461
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
#> str -1.10130 0.38028 -2.896 0.00398 **
#> el_pct -0.64978 0.03934 -16.516 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 14.46 on 417 degrees of freedom
#> Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
#> F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16
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• add a new variable nel=1-el_pct into the regression

#>
#> Call:
#> lm(formula = testscr ~ str + nel_pct + el_pct, data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -48.845 -10.240 -0.308 9.815 43.461
#>
#> Coefficients: (1 not defined because of singularities)
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 685.38247 7.41556 92.425 < 2e-16 ***
#> str -1.10130 0.38028 -2.896 0.00398 **
#> nel_pct 0.64978 0.03934 16.516 < 2e-16 ***
#> el_pct NA NA NA NA
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 14.46 on 417 degrees of freedom
#> Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
#> F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16
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Perfect Multicollinearity

Table 5: Class Size and Test Score

Dependent variable:

testscr

(1) (2)

str −1.101∗∗∗ −1.101∗∗∗

(0.380) (0.380)
nel_pct 0.650∗∗∗

(0.039)
el_pct −0.650∗∗∗

(0.039)
Constant 686.032∗∗∗ 685.382∗∗∗

(7.411) (7.416)

Observations 420 420
Adjusted R2 0.424 0.424

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
78 / 98



Properties of OLS Estimators inMultiple Regression
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Properties of OLS estimators

• Like we have done in simple OLS estimator, we will discuss the properties of OLS

estimators in multiple regression.

• Under the assumptions of the multiple regressionmodel,thus

1. Assumption 1: E[ui|X1i, X2i...Xki] = 0
2. Assumption 2: (Yi, X1i, X2i...Xki) are i.i.d.
3. Assumption 3: Large outliers are unlikely.

4. Assumption 4: No perfect multicollinearity.

• Then,the OLS estimators have the following properties:

• Unbiasedness: E[β̂j ] = βj for j = 1, 2, ..., k

• Consistency: β̂j →p βj for j = 1, 2, ..., k

• Asymptotic Normality: β̂j ∼ N(βj , σ2
β̂
) for j = 1, 2, ..., k in the large sample.
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Properties of OLS estimators: Unbiasedness(1)

• Use partitioned regression formula

β̂1 =
∑n

i=1 X̃1,iYi∑n
i=1 X̃2

1,i

• Substitute Yi = β0 + β1X1,i + β2X2,i + ... + βkXk,i + ui, i = 1, ..., n,then

β̂1 =
∑

X̃1,i(β0 + β1X1,i + β2X2,i + ... + βkXk,i + ui)∑
X̃2

1,i

= β0

∑n
i=1 X̃1,i∑n
i=1 X̃2

1,i

+ β1

∑n
i=1 X̃1,iX1,i∑n

i=1 X̃2
1,i

+ ...

+ βk

∑n
i=1 X̃1,iXk,i∑n

i=1 X̃2
1,i

+
∑n

i=1 X̃1,iui∑n
i=1 X̃2

1,i
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Properties of OLS estimators: Unbiasedness(2)

• Because

n∑
i=1

X̃1,i =
n∑

i=1
X̃1,iXj,i = 0 , j = 2, 3, ..., k

n∑
i=1

X̃1,iX1,i =
∑

X̃2
1,i

• Therefore

β̂1 = β1 +
∑n

i=1 X̃1,iui∑n
i=1 X̃2

1,i
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Properties of OLS estimators: Unbiasedness(3)

• Recall Assumption 1: E[ui|X1i, X2i...Xki] = 0 and X̃1i is a function of X2i...Xki

• Then take expectations of β̂1 and The Law of Iterated Expectations again

E[β̂1] = E

[
β1 +

∑n
i=1 X̃1,iui∑n

i=1 X̃2
1,i

]
= β1 + E

[∑n
i=1 X̃1,iui∑n

i=1 X̃2
1,i

]

= β1 + E

[∑n
i=1 X̃1,iE[ui|X1i...Xki]∑n

i=1 X̃2
1,i

]
= β1

• Identical argument works for β2, ..., βk , thus

E[β̂j ] = βj where j = 1, 2, ..., k
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Properties of OLS estimators: Consistency(1)

• Recall

β̂1 =
∑n

i=1 X̃1,iYi∑n
i=1 X̃2

1,i

• Similar to the proof in the Simple OLS Regression,thus

β̂1 =
∑n

i=1 X̃1,iYi∑n
i=1 X̃2

1,i

=
1

n−2
∑n

i=1 X̃1iYi

1
n−2

∑n
i=1 X̃2

1i

=
(

sX̃1Y

s2
X̃1

)

where sX̃1Y and s2
X̃1

are the sample covariance of X̃1 and Y and the sample

variance of X̃1.
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Properties of OLS estimators: Consistency(2)

• Base on L.L.N(the law of large numbers) and random sample(i.i.d)

sX̃2
1

p−→ σX̃2
1

= V ar(X̃1)

sX̃1Y

p−→ σX̃1Y = Cov(X̃1, Y )

• Combining with Continuous Mapping Theorem,then we obtain the partitioned

multiple OLS estimator β̂1,when n −→ ∞

plimβ̂1 = plim

(
sX̃1Y

s2
X̃1

)
= Cov(X̃1, Y )

V ar(X̃1)
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Properties of OLS estimators: Consistency(3)

plimβ̂1 = Cov(X̃1, Y )
V ar(X̃1)

= Cov(X̃1, (β0 + β1X1i + ... + βkXki + ui))
V ar(X̃1)

= Cov(X̃1, β0) + β1Cov(X̃1, X1i) + ... + βkCov(X̃1, Xki) + Cov(X̃1, ui)
V ar(X̃1)

= β1 + Cov(X̃1, ui)
V ar(X̃1)
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Properties of OLS estimators: Consistency(4)

• Based on Assumption 1: E[ui|X1i, X2i...Xki] = 0
• And X̃1i is a function of X2i...Xki

• Then

Cov(X̃1, ui) = 0

• Then we can obtain

plimβ̂1 = β1

• Identical argument works for β2, ..., βk ,thus

plimβ̂j = βj where j = 1, 2, ..., k
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Recall: The Distribution of Simple OLS Estimators

• Under the least squares assumptions,the Simple OLS estimators β̂1 and β̂0, are

unbiased and consistent estimators of β1 and β0.

• In large samples, the sampling distribution of β̂1 and β̂0 is well approximated by

a bivariate normal distribution.

• Specifically, the sampling distribution of β̂1 is

β̂1
d−→ N(β1, σ2

β̂1
)

where

σ2
β̂1

= V ar[(Xi − µx)ui]
n[V ar(Xi)]2
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The Distribution of Multiple OLS Estimators

• Similarly as in the simple OLS, the multiple OLS estimators are averages of the

randomly sampled data, and if the sample size is sufficiently large, the

sampling distribution of those averages becomes normal.

β̂j = βj +

(∑n
i=1 X̃ijui

)
(∑n

i=1 X̃2
ij

)
• Then we have

σ2
βj

= V ar(β̂j) =
V ar

(∑n
i=1 X̃2

ijui

)
(∑n

i=1 X̃2
i1

)2

• Here the expression of V ar
(∑n

i=1 X̃2
ijui

)
is a little bit complicated, Then best

waymathematically to handle it is usingmatrix algebra, the expressions for the

joint distribution of the OLS estimators are deferred to Chapter 18(SW textbook). 89 / 98



Multiple OLS Regression and Causality
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Independent Variable v.s Control Variables

• Generally, we would like to paymore attention to only one independent

variable(thus we would like to call it treatment variable), though there could be

many independent variables.

• Because βj is partial (marginal) effect of Xj on Y.

βj = ∂Yi

∂Xj,i

whichmeans that we are estimate the effect of X on Ywhen “other things equal”,

thus the concept of ceteris paribus.

• Therefore,other variables in the right hand of equation, we call them control

variables, which we would like to explicitly hold fixedwhen studying the effect

of X1 or D on Y .
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Independent Variable v.s Control Variables

• In a multiple regression, OLS is a way to control observable confounding factors,

which assume the source of selection bias is only from the difference in

observed characteristics(Selection-on-Observables)

• If the multiple regressionmodel is

Yi = β0 + β1X1,i + β2X2,i + ... + βkXk,i + ui, i = 1, ..., n

• Generally, we would like to paymore attention to only one independent

variable(thus we would like to call it treatment variable), though there could be

many independent variables.

• Other variables in the right hand of equation, we call them control variables,

which we would like to explicitly hold fixed when studying the effect of X1 on Y.
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OLS Regression, Covariates and RCT

• More specifically,our multiple regressionmodel turns into

Yi = β0 + β1Di + γ2C2,i + ... + γkCk,i + ui, i = 1, ..., n

• We could transform it into as follows

Yi = α + ρDi + C ′
iΓ + ui

where α = β0, ρ = β1, Γ = (γ2, ..., γk), Ci = (C2i, ..., Cki)
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OLS Regression, Covariates and RCT

• Nowwrite out the conditional expectation of Yi for both levels of Di conditional

on C
E [Yi | Di = 1, C] = E

[
α + ρ + C ′Γ + ui | Di = 1, C

]
= α + ρ + C ′Γ + E [ui|Di = 1, C]

E [Yi | Di = 0, C] = E
[
α + C ′Γ + ui | Di = 0, C

]
= α + C ′Γ + E [ui | Di = 0, C]

• Taking the difference

E [Yi | Di = 1, C] − E [Yi | Di = 0, C]
= ρ + E [ui|Di = 1, C] − E [ui | Di = 0, C]︸ ︷︷ ︸

Selection bias
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OLS Regression, Covariates and RCT

• Again, our estimate of the treatment effect (ρ) is only going to be as good as our
ability to eliminate the selection bias,thus

E [u1i|Di = 1, C] − E [u0i | Di = 0, C] ̸= 0

Conditional Independence Assumption(CIA)

Balancing or controlling covariates C then we can take the treatment D as

randomized, thus

(Y 1, Y 0) ⊥⊥ D|C

95 / 98



OLS Regression, Covariates and RCT

• This is the equivalence of the CIA assumption, which is also equivalent to the 1st

assumption of Multiple OLS

E [u1i|Di = 1, C] − E [u0i | Di = 0, C] = E [u1i|C] − E [u0i|C]

• Then we can eliminate the selection bias, thus making

E [u1i|Di = 1, C] = E [u0i | Di = 0, C]

• Thus

E [Yi | Di = 1, C] − E [Yi | Di = 0, C] = ρ
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Wrap up

• OLS regression is valid or can obtain a causal explanation only when least

squares assumptions are held.

• Themost critical assumption is the Conditional Independence

Assumption(CIA), which can be loose to

E(ui|D, C) = E(ui|C)

• This means that not all coefficients in the regression need to be causal (unbiased

or consistent).
• Only the coefficient of the treatment variable (D) need to be causal in the
regression. which is the interest of the study.

• If the coefficients of control variables (C) are biased or inconsistent, it does not
affect the causal interpretation of the treatment effect.
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Picking Control Variables

• Questions: Are “more controls” always better (or at least never worse)?

• Answer: It depends on.

• Irrelevant controls are variables which have a ZERO partial effect on the outcome,
thus the coefficient in the population regression function is zero.

• Relevant controls are variables which have a NONZERO partial effect on the
dependent variable.

• Non-Omitted Variables
• Omitted Variables

• Highly-correlated Variables

• Multicollinearity

• We will come back soon to discuss the topic in details(in lecture 7 or 8) .
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