Lecture 3: Multiple OLS Regression

Introduction to Econometrics, Spring 2025

Zhaopeng Qu

Business School, Nanjing University

March 12 2025

1 Review of the Last Lecture

- 2 Make Comparison Make Sense
- 3 Multiple OLS Regression: Introduction
- **4** Multiple OLS Regression: Estimation
- 5 Multiple OLS Regression Estimators: Partitioned Regression
- 6 Measures of Fit in Multiple Regression
- 7 Multiple Regression: Assumption
- 8 Properties of OLS Estimators in Multiple Regression

Review of the Last Lecture

Simple OLS Formula

• The linear regression model with one regressor is denoted by

• Where

- *Y_i* is the **dependent variable**(Test Score)
- X_i is the independent variable or regressor(Class Size or Student-Teacher Ratio)
- *u_i* is the **error term** which **contains all the other factors besides** *X* that determine the value of the dependent variable, *Y*, for a specific observation, *i*.

The OLS Estimator

- The estimators of the slope and intercept that minimize the sum of the squares of \hat{u}_i , thus

are called the ordinary least squares (OLS) estimators of β_0 and β_1 .

The OLS Estimator

• The estimators of the slope and intercept that minimize the sum of the squares of \hat{u}_i , thus

are called the ordinary least squares (OLS) estimators of β_0 and β_1 .

OLS estimator of β_1 **:**

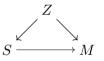
- Under 3 least squares assumptions,
 - 1. Assumption 1: ZERO Conditional Mean
 - 2. Assumption 2: i.i.d. Samples or random sampling
 - 3. Assumption 3: Without large outliers
- The OLS estimators will be
 - 1. unbiased
 - 2. consistent
 - 3. normal sampling distribution

- A simple OLS regression model is a generalizing continuous version of RCT assuming three least squares assumptions are held.
- In most observational studies, OLS regression suffers from selection bias, which violates the assumption of $E(u_i|X_i) = 0$.
- In such cases, OLS estimators are **biased** and **inconsistent**. Therefore the **causal effect** of *X* on *Y* cannot be identified by simple OLS regression.
- To address the selection bias problem, we have to extend the simple OLS regression model in more general settings.

Make Comparison Make Sense

Case: Smoke and Mortality

- Criticisms from Ronald A. Fisher
 - There is no experimental evidence to suggest that smoking is a cause of lung cancer or other serious diseases.
 - Correlation between smoking and mortality may be spurious due to **biased selection** of subjects.



• **Confounder**, Z, some other factors, affect on smoking and mortality simultaneously.

Table 1: Death rates(死亡率) per 1,000 person-years

Smoking group	Canada	U.K.	U.S.
Non-smokers(不吸烟)	20.2	11.3	13.5
Cigarettes(香烟)	20.5	14.1	13.5
Cigars/pipes(雪茄/烟斗)	35.5	20.7	17.4

• It seems that taking cigars is more hazardous than others to the health.

Case: Smoke and Mortality(Cochran 1968)

Table 2: Non-smokers and smokers differ in age

Smoking group	Canada	U.K.	U.S.
Non-smokers(不吸烟)	54.9	49.1	57.0
Cigarettes(香烟)	50.5	49.8	53.2
Cigars/pipes(雪茄/烟斗)	65.9	55.7	59.7

- Older people die at a higher rate, and for reasons other than just smoking cigars.
- Perhaps the higher observed death rates among cigar smokers are because they're older on average.

Case: Smoke and Mortality(Cochran 1968)

- The issue is that the ages are not balanced; there is a difference in the age distribution between the treatment and control groups.
- let's try to **balance** them, which means to compare mortality rates across the different smoking groups within age groups so as to neutralize age imbalances in the observed sample.
- It naturally relates to the concept of Conditional Expectation Function.

How to balance?

- 1. Divide the smoking group samples into age groups.
- 2. For each of the smoking group samples, calculate the mortality rates for the age group.
- 3. Construct probability weights for each age group as the proportion of the sample with a given age.
- 4. Compute the **weighted averages** of the age groups mortality rates for each smoking group using the probability weights.

Case: Smoke and Mortality(Cochran 1968)

	Death rates Number		Number of	
	Pipe-smokers	Pipe-smokers	Non-smokers	
Age 20-50	0.15	11	29	
Age 50-70	0.35	13	9	
Age +70	0.5	16	2	
Total		40	40	

• Question: What is the average death rate for pipe smokers?

Case: Smoke and Mortality(Cochran 1968)

	Death rates	Number of	
	Pipe-smokers	Pipe-smokers	Non-smokers
Age 20-50	0.15	11	29
Age 50-70	0.35	13	9
Age +70	0.5	16	2
Total		40	40

• Question: What would the average mortality rate be for pipe smokers if they had the same age distribution as the non-smokers?

Table 3: Non-smokers and smokers differ in mortality and age

Smoking group	Canada	U.K.	U.S.
Non-smokers(不吸烟)	20.2	11.3	13.5
Cigarettes(香烟)	28.3	12.8	17.7
Cigars/pipes(雪茄/烟斗)	21.2	12.0	14.2

Table 3: Non-smokers and smokers differ in mortality and age

Smoking group	Canada	U.K.	U.S.
Non-smokers(不吸烟)	20.2	11.3	13.5
Cigarettes(香烟)	28.3	12.8	17.7
Cigars/pipes(雪茄/烟斗)	21.2	12.0	14.2

• **Conclusion**: It seems that taking cigarettes is most hazardous, and taking pipes is not different from non-smoking.

Definition: Covariates

Variable W is predetermined with respect to the treatment D if for each individual i, $W_{0i} = W_{1i}$, i.e., the value of X_i does not depend on the value of D_i . Such characteristics are called *covariates*.

• Covariates are often time invariant (e.g., sex, race), but time invariance is not a necessary condition.

Identification under Independence

• Recall that randomization in RCTs implies

 $(Y_{0i}, Y_{1i}) \perp D$

and therefore:

Identification under Conditional Independence

• **Conditional Independence Assumption(CIA)**: which means that if we can "balance" covariates *X* then we can take the treatment D as randomized, thus

 $(Y_{1i}, Y_{0i}) \perp D | X$

• Now as $(Y_{1i}, Y_{0i}) \perp D | X \Leftrightarrow (Y_{1i}, Y_{0i}) \perp D$,

Identification under Conditional Independence(CIA)

• But using the CIA assumption, then

Curse of Multiple Dimensionality

- Sub-classification in one or two dimensions as Cochran(1968) did in the case of *Smoke and Mortality* is feasible.
- But as the number of covariates we would like to balance grows(like many personal characteristics such as age, gender,education,working experience,married,industries,income,), then the method become less feasible.
- Assume we have *k* covariates and we divide each into 3 coarse categories (e.g., age: young, middle age, old; income: low,medium, high, etc.)
- The number of cells(or groups) is 3^K .
 - If k = 10 then $3^{10} = 59049$
 - Even if k = 6, then $3^6 = 729$. Assume that we have 1000 observations, then the average number of observations in each cell is less than 2.
- Sub-classification is not a feasible method to balance covariates in high-dimensional space.

Making Comparison Make Sense

- Question: How to make comparison make sense in the presence of covariates?
- Selection on Observables
 - Regression
 - Matching
- Selection on Unobservables
 - IV,RD,DID,FE and SCM.
- The most fundamental tool among them is **multiple regression**, which compares treatment and control subjects who have the same **observable** characteristics **in a generalized manner**.

Multiple OLS Regression: Introduction

Violation of the 1st Least Squares Assumption

Recall simple OLS regression equation

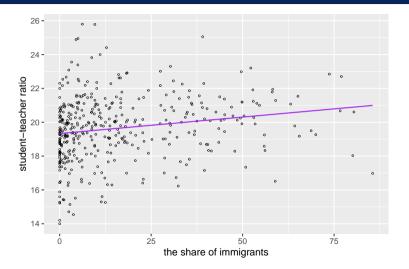
$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

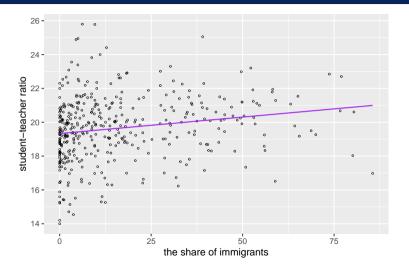
- **Question**: What does u_i represent?
 - Answer: contains all other factors (variables) which potentially affect Y_i .
- Assumption 1

 $E(u_i|X_i) = 0$

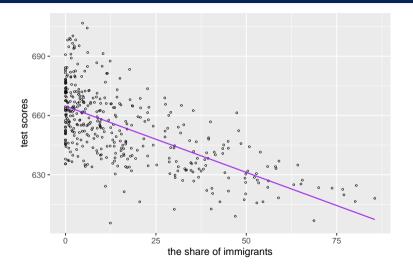
- It states that u_i are unrelated to X_i in the sense that, given a value of X_i , the mean of these other factors equals **zero**.
- But what if u_i is correlated with X_i ?

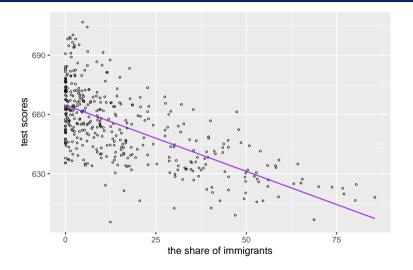
- Many other factors can affect student's performance in the school.
- One of factors is **the share of immigrants** in the class. Because immigrant children may have different backgrounds from native children, such as
 - parents' education level
 - family income and wealth
 - parenting style
 - traditional culture





• higher share of immigrants, bigger class size





• higher share of immigrants, lower testscore

The share of immigrants as an Omitted Variable

- Class size may be related to percentage of English learners and students who are still learning English likely have lower test scores.
 - In other words, the effect of class size on scores we had obtained in simple OLS may contain *an effect of immigrants on scores*.
- It implies that percentage of English learners is contained in u_i , in turn that Assumption 1 is violated.
 - More precisely, the estimates of $\hat{\beta}_1$ and $\hat{\beta}_0$ are biased and inconsistent.

Omitted Variable Bias: Introduction

- As before, X_i and Y_i represent STR and Test Score, repectively.
- Besides, W_i is the variable which represents the share of english learners.
- Suppose that we have no information about it for some reasons, then we have to omit in the regression.
- Thus we have two regressions in mind:
 - **True model**(the Long regression):

 $Y_i = \beta_0 + \beta_1 X_i + \gamma W_i + u_i$

where $E(u_i|X_i) = 0$

• **OVB model**(the Short regression):

$$Y_i = \beta_0 + \beta_1 X_i + v_i$$

where $v_i = \gamma W_i + u_i$

Omitted Variable Bias: Biasedness

• Let us see what is the consequence of OVB

Omitted Variable Bias: Biasedness

• Let us see what is the consequence of OVB

Omitted Variable Bias: Biasedness

• Let us see what is the consequence of OVB

 Using the Law of Iterated Expectation(LIE) again, we will obtain the following expression(Skip these steps which are very similar to those for proving unbiasedness of β̂₁, please prove it by yourself).

Omitted Variable Bias: Biasedness

- As proving unbiasedness of $\hat{\beta}_1$, thus $E[\hat{\beta}_1]=\beta_1$, then we need

- Two scenarios:
 - **1.** If W_i is unrelated to X_i , then $E[\hat{\beta}_1] = \beta_1$.
 - **2**. If W_i is not determinant of Y_i , which means that

$$\gamma = 0$$

,then $E[\hat{eta_1}]=eta_1$, too.

• Only if both two conditions above are violated simultaneously, then $\hat{\beta}_1$ is biased, which is normally called Omitted Variable Bias(OVB).

Omitted Variable Bias(OVB): inconsistency

• Recall: simple OLS is consistency when n is large, thus

$$plim\hat{\beta}_1 = \frac{Cov(X_i, Y_i)}{Var(X_i)}$$

Omitted Variable Bias(OVB): inconsistency

• Recall: simple OLS is consistency when n is large, thus

$$plim\hat{\beta}_1 = \frac{Cov(X_i, Y_i)}{Var(X_i)}$$

Omitted Variable Bias(OVB): inconsistency

• Thus we obtain

- $\hat{\beta_1}$ is still consistent
 - if W_i is unrelated to X, thus $Cov(X_i, W_i) = 0$
 - if W_i has no effect on Y_i , thus $\gamma = 0$
- Only if both two conditions above are violated *simultaneously*, then $\hat{\beta}_1$ is inconsistent.

- If OVB can be possible in our regressions, then we should guess the **directions** of the bias, in case that we can't eliminate it.
- A summary of the directions of the OVB bias

- If OVB can be possible in our regressions, then we should guess the **directions** of the bias, in case that we can't eliminate it.
- A summary of the directions of the OVB bias

 $Cov(X_i, W_i) > 0$ $Cov(X_i, W_i) < 0$

 $\gamma > 0$

- If OVB can be possible in our regressions, then we should guess the **directions** of the bias, in case that we can't eliminate it.
- A summary of the directions of the OVB bias

	$Cov(X_i, W_i) > 0$	$Cov(X_i, W_i) < 0$
$\gamma > 0$	Positive bias	

- If OVB can be possible in our regressions, then we should guess the **directions** of the bias, in case that we can't eliminate it.
- A summary of the directions of the OVB bias

	$Cov(X_i, W_i) > 0$	$Cov(X_i, W_i) < 0$
$\overline{\gamma > 0}$	Positive bias	Negative bias
$\gamma < 0$	i ositive blas	hegulive blas

- If OVB can be possible in our regressions, then we should guess the **directions** of the bias, in case that we can't eliminate it.
- A summary of the directions of the OVB bias

	$Cov(X_i, W_i) > 0$	$Cov(X_i, W_i) < 0$
$\gamma > 0$	Positive bias	Negative bias
$\gamma < 0$	Negative bias	

- If OVB can be possible in our regressions, then we should guess the **directions** of the bias, in case that we can't eliminate it.
- A summary of the directions of the OVB bias

	$Cov(X_i, W_i) > 0$	$Cov(X_i, W_i) < 0$
$\gamma > 0$	Positive bias	Nogotivo biog
$\gamma < 0$	POSITIVE DIAS	Negative bias
	Negative bias	Positive bias

- **Question**: If we omit following variables, then what are the directions of these biases? and why?
 - 1. Time of day of the test[suppose morning(8:00-12:00am) is better,afternoon(13:00-17:00pm) is worse]
 - 2. The number of dormitories
 - 3. Teachers' salary
 - 4. Family income
 - 5. Percentage of English learners(the share of immigrants)

Omitted Variable Bias: Examples in R

Regress Testscore on Class size

```
#>
#> Call:
#> lm(formula = testscr ~ str, data = ca)
#>
#> Residuals:
#> Min 10 Median 30 Max
#> -47.727 -14.251 0.483 12.822 48.540
#>
#> Coefficients:
#>
        Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 698.9330 9.4675 73.825 < 2e-16 ***
#> str -2.2798 0.4798 -4.751 2.78e-06 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 18.58 on 418 degrees of freedom
#> Multiple R-squared: 0.05124, Adjusted R-squared: 0.04897
\pm> F-statistic: 22.58 on 1 and 418 DF p-value: 2.783e-06
```

Omitted Variable Bias: Examples in R

• Regress Testscore on Class size and the percentage of English learners

```
#>
#> Call:
#> lm(formula = testscr ~ str + el pct, data = ca)
#>
#> Residuals:
#> Min 10 Median 30 Max
#> -48.845 -10.240 -0.308 9.815 43.461
#>
#> Coefficients:
#>
       Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
#> str -1.10130 0.38028 -2.896 0.00398 **
#> el pct -0.64978 0.03934 -16.516 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 14.46 on 417 degrees of freedom
#> Multiple R-squared: 0 4264 Adjusted R-squared: 0 4237
```

Omitted Variable Bias: Examples in R

_	Dependent variable:		
	testscr		
	(1)	(2)	
str	-2.280^{***}	-1.101^{***}	
	(0.480)	(0.380)	
el_pct		-0.650^{***}	
-		(0.039)	
Constant	698.933^{***}	686.032^{***}	
	(9.467)	(7.411)	
Observations	420	420	
\mathbf{R}^2	0.051	0.426	

- OVB is **the most common** bias when we run OLS regressions using nonexperimental data.
- OVB means that there are some variables which should have been included in the regression but actually was not.
- Then the simplest way to overcome OVB: *Put omitted the variable into the right side of the regression*, which means our regression model should be

$$Y_i = \beta_0 + \beta_1 X_i + \gamma W_i + u_i$$

• The strategy can be denoted as **controlling** informally, which introduces the more general regression model: **Multiple OLS Regression**.

Multiple OLS Regression: Estimation

Multiple regression model with k regressors

The multiple regression model is

where

- *Y_i* is the **dependent variable**
- $X_1, X_2, ... X_k$ are the independent variables(includes one is our of interest and some control variables)
- $\beta_i, j = 1...k$ are slope coefficients on X_i corresponding.
- β_0 is the estimate *intercept*, the value of Y when all $X_j = 0, j = 1...k$
- u_i is the regression *error term*, still all other factors affect outcomes.

Interpretation of coefficients $\beta_i, j = 1...k$

• β_j is partial (marginal) effect of X_j on Y.

• β_j is also partial (marginal) effect of $E[Y_i|X_1..X_k]$.

• it does mean that we are estimate the effect of X on Y when "other things equal", thus the concept of ceteris paribus.

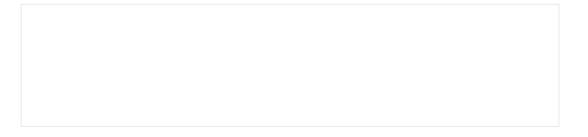
• As in a **Simple OLS Regression**, the estimators of **Multiple OLS Regression** is just a minimize the following question

• As in a **Simple OLS Regression**, the estimators of **Multiple OLS Regression** is just a minimize the following question

where
$$b_0 = \hat{eta}_1, b_1 = \hat{eta}_2, ..., b_k = \hat{eta}_k$$
 are estimators.

• Similarly in Simple OLS, based on F.O.C, the multiple OLS estimators $\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_k$ are obtained by solving the following system of normal equations

• Similarly in Simple OLS, based on F.O.C, the multiple OLS estimators $\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_k$ are obtained by solving the following system of normal equations



• Similar to in Simple OLS, the fitted residuals are

• Therefore, the normal equations also can be written as

Multiple OLS Regression Estimators: Partitioned Regression

Partitioned regression: OLS estimators

- The Multiple OLS estimators of $\hat{\beta}_j$ could be obtained by running **partitioned** regression, which can let us exempt from the matrix algebra.
- We can obtain OLS estimators of β_j ; j = 1, 2...k in following 3 steps:

• The last step implies that the OLS estimator of β_j can be expressed as follows

Partitioned regression: OLS estimators

- Suppose we want to obtain an expression for $\hat{\beta}_1$.
 - the first step: regress $X_{1,i}$ on other regressors Xs, thus

$$X_{1,i} = \gamma_0 + \gamma_2 X_{2,i} + \ldots + \gamma_k X_{k,i} + v_i$$

- the second step: obtain the residuals from the regression above, denoted as $\tilde{X}_{1,i}=\hat{v}_{1i}$, thus

$$X_{1,i} = \hat{\gamma}_0 + \hat{\gamma}_2 X_{2,i} + \ldots + \hat{\gamma}_k X_{k,i} + \tilde{X}_{1,i}$$

• Then we could prove that

Proof of Partitioned regression result(1)

• Recall u_i are the residuals for the Multiple OLS regression equation, thus

$$Y_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{1,i} + \hat{\beta}_{2}X_{2,i} + \dots + \hat{\beta}_{k}X_{k,i} + \hat{u}_{i}$$

• Then we have

- Likewise, \tilde{X}_{1i} are the residuals for the partitioned regression equation on $X_{2i}..., X_{ki}$, then we have

- Additionally, because $\tilde{X}_{1,i} = X_{1,i} - \hat{\gamma}_0 - \hat{\gamma}_2 X_{2,i} - \ldots - \hat{\gamma}_k X_{k,i}$, then

Proof of Partitioned regression result(2)

Proof of Partitioned regression result(3)

• We will see

• Then

FWL Theorem

Partialling Out

• FWL Theorem provides a new and important perspective to understand the multiple OLS estimator.

Test Scores and Student-Teacher Ratios(1)

• Now we put one additional control variables into our OLS regression model

$$Testscore = \beta_0 + \beta_1 STR + \beta_2 elpct + u_i$$

- elpct: the share of English learners as an indicator for the share of immigrants.
- We want to know the effect of STR on testscr after controlling for elpct.
- Two steps:
 - First, we regress str on elpct and keep the residuals \widetilde{STR} , thus

$$STR = \hat{\gamma}_0 + \hat{\gamma}_1 elpct + \widetilde{STR}$$

- Second, we regress testscr on \widetilde{STR} to get the effect of STR after controlling for elpct.

Test Scores and Student-Teacher Ratios(2)

- The residuals of the regression of ${\tt str}\, {\tt on}\, {\tt elpct}\, {\tt are}$

$$\widetilde{STR} = STR - \widehat{STR} = STR - (\hat{\gamma}_0 + \hat{\gamma}_1 elpct)$$

- Check whether the sum of \widetilde{STR} , $\widetilde{STR} \times elpct$ and $\widetilde{testscr} \times \widetilde{STR}$ are zero.

Test Scores and Student-Teacher Ratios(2)

- The residuals of the regression of ${\tt str}\, {\tt on}\, {\tt elpct}\, {\tt are}$

$$\widetilde{STR} = STR - \widehat{STR} = STR - (\hat{\gamma}_0 + \hat{\gamma}_1 elpct)$$

- Check whether the sum of $\widetilde{STR}, \widetilde{STR} \times elpct$ and $\widetilde{testscr} \times \widetilde{STR}$ are zero.

```
tilde.str <- residuals(lm(str ~ el_pct, data=ca))
tilde.score <- residuals(lm(testscr ~ str+el_pct, data=ca))
sum(tilde.str)  # also is zero</pre>
```

```
#> [1] -8.104628e-15
```

sum(tilde.str*ca\$el pct) # also should be zero

```
#> [1] -3.896883e-13
```

sum(tilde.score*tilde.str) # also should be zero

```
#> [1] 1.275424e-12
```

Test Scores and Student-Teacher Ratios(3)

• Multiple OLS estimator in a partitioned way

$$\hat{\beta}_{j} = \frac{\sum_{i=1}^{n} \tilde{X}_{j,i} Y_{i}}{\sum_{i=1}^{n} \tilde{X}_{j,i}^{2}} \text{ for } j = 1, 2, ..., k$$

Test Scores and Student-Teacher Ratios(3)

• Multiple OLS estimator in a partitioned way

$$\hat{\beta}_{j} = \frac{\sum_{i=1}^{n} \tilde{X}_{j,i} Y_{i}}{\sum_{i=1}^{n} \tilde{X}_{j,i}^{2}} \text{ for } j = 1, 2, ..., k$$

sum(tilde.str*ca\$testscr)/sum(tilde.str^2)

#> [1] -1.101296

Test Scores and Student-Teacher Ratios(4)

```
reg3 <- lm(testscr ~ tilde.str,data = ca)</pre>
summary(reg3)
#>
\#> Call:
#> lm(formula = testscr ~ tilde.str, data = ca)
\# >
#> Residuals:
#> Min 10 Median 30 Max
#> -48.693 -14.124 0.988 13.209 50.872
#>
#> Coefficients:
#>
        Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 654.1565 0.9254 706.864 <2e-16 ***
#> tilde.str -1.1013 0.4986 -2.209 0.0277 *
#> ---
```

#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 57/103

Test Scores and Student-Teacher Ratios(5)

```
reg4 <- lm(testscr ~ str+el pct,data = ca)</pre>
summary(req4)
#>
#> Call:
#> lm(formula = testscr ~ str + el pct, data = ca)
#>
#> Residuals:
#> Min 10 Median 30 Max
#> -48.845 -10.240 -0.308 9.815 43.461
#>
#> Coefficients:
        Estimate Std. Error t value Pr(>|t|)
#>
#> (Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
#> str -1.10130 0.38028 -2.896 0.00398 **
#> el pct -0.64978 0.03934 -16.516 < 2e-16 ***
#> ---
```

```
58/103
```

Test Scores and Student-Teacher Ratios(6)

ndent va	riable:	
testscr		
	(2)	
01^{**}		
99)		
	-1.101^{***}	
	(0.380)	
	-0.650^{***}	
	(0.039)	
57***	686.032***	
25)	(7.411)	
	420	
)	0.424	
	9 *p<0.05;	

59/103

Recall: Measures of Fit: The R^2

- Decompose Y_i into the fitted value plus the residual $Y_i = \hat{Y}_i + \hat{u}_i$
- The total sum of squares (TSS): $TSS = \sum_{i=1}^n (Y_i \overline{Y})^2$
- The explained sum of squares (ESS): $\sum_{i=1}^n (\hat{Y}_i \overline{Y})^2$
- The sum of squared residuals (SSR): $\sum_{i=1}^{n} (\hat{Y}_i Y_i)^2 = \sum_{i=1}^{n} \hat{u}_i^2$
- And

$$TSS = ESS + SSR$$

• The regression R^2 is the fraction of the sample variance of Y_i explained by (or predicted by) the regressors.

$$R^2 = \frac{ESS}{TSS} = 1 - \frac{SSR}{TSS}$$

- When you put more variables into the regression, then R^2 always increases when you *add another regressor*. Because in general the SSR will decrease.
- Consider two models

$$Y_i = \beta_0 + \beta_1 X_{1i} + u_i$$

$$Y_i = \tilde{\beta}_0 + \tilde{\beta}_1 X_{1i} + \tilde{\beta}_2 X_{2i} + v_i$$

• Recall: about two residuals \hat{u}_i and \hat{v}_i , we have

• we will show that

- therefore $R_v^2 \ge R_u^2$, thus R^2 that correspinds the regression with one regressor is less or equal than R^2 that corresponds to the regression with two regressors.
- This conclusion can be generalized to the case of k + 1 regressors.

• At first we would like to know $\sum_{i=1}^{n} \hat{u}_i \hat{v}_i$

• Then we can obtain

• Therefore $R_v^2 \ge R_u^2$, thus R^2 the regression with one regressor is less or equal than R^2 that corresponds to the regression with two regressors.

- the Adjusted R^2 , is a modified version of the R^2 that does not necessarily increase when a new regressor is added.

$$\overline{R^{2}} = 1 - \frac{n-1}{n-k-1} \frac{SSR}{TSS} = 1 - \frac{s_{\hat{u}}^{2}}{s_{Y}^{2}}$$

- because $rac{n-1}{n-k-1}$ is always greater than 1, so $\overline{R^2} < R^2$
- adding a regressor has two opposite effects on the $\overline{R^2}$.
- $\overline{R^2}$ can be negative.
- **Remind**: neither R^2 nor $\overline{R^2}$ is not the golden criterion for good or bad OLS estimation.

Example: Test scores and Student Teacher Ratios

1 . reg testscr str el_pct

Source	ss	df	MS	Number of obs	=	420
Model	64864.3011	2	32432.1506	F(2, 417) Prob > F	=	155.01 0.0000
Residual	87245.2925	417	209.221325	R-squared	=	0.4264
Total	152109.594	419	363.030056	Adj R-squared Root MSE	=	0.4237 14.464

testscr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
str el_pct _cons	6497768	.3802783 .0393425 7.411312	-16.52			3537945 5724423 700.6004

Multiple Regression: Assumption

Multiple Regression: Assumption

- Assumption 1: The conditional distribution of u_i given $X_{1i}, ..., X_{ki}$ has mean zero, thus

$$E[u_i|X_{1i},...,X_{ki}] = 0$$

- which is a very strong assumption, which means u_i is uncorrelated with all the independent variables.
- Assumption 2: $(Y_i, X_{1i}, ..., X_{ki})$ are i.i.d.
- Assumption 3: Large outliers are unlikely.
- At last, we have to add one more assumption for multiple regression.
 - Assumption 4: No perfect multicollinearity.

- **Perfect multicollinearity** arises when one of the regressors is a **perfect** linear combination of the other regressors.
- If you include a full set of binary variables (a complete and mutually exclusive categorization) and an intercept in the regression, you will have perfect multicollinearity.
 - eg. female and male = 1-female
- This is called the **dummy variable trap**.
- Solutions to the dummy variable trap:
 - Omit one of the groups or the intercept

Categoried Variable as Independent Variables

- Recall if *X* is a dummy variable, then we can put it into regression equation straightly.
- What if *X* is a categorical variable?
 - Question: What is a categorical variable?
- For example, we may define D_i as follows:

Categoried Variable as Independent Variables

- Recall if *X* is a dummy variable, then we can put it into regression equation straightly.
- What if *X* is a categorical variable?
 - Question: What is a categorical variable?
- For example, we may define D_i as follows:

 $D_{i} = \begin{cases} 1 \text{ small-size class if } STR \text{ in } i^{th} \text{ school district < 18} \\ 2 \text{ middle-size class if } 18 \leq STR \text{ in } i^{th} \text{ school district < 22} \\ 3 \text{ large-size class if } STR \text{ in } i^{th} \text{ school district } \geq 22 \end{cases}$ (4.5)

• Naive Solution: a simple OLS regression model

$$TestScore_i = \beta_0 + \beta_1 D_i + u_i$$

- **Question**: Can you explain the meanning of estimate coefficient β_1 ?
- Answer: It doese not make sense that the coefficient of β_1 can be explained as continuous variables.

A Special Case: Categorical Variables as X

• The first step: turn a categorical variable(D_i) into multiple dummy variables(D_{1i}, D_{2i}, D_{3i})

• We put these dummies into a multiple regression

$$TestScore_{i} = \beta_{0} + \beta_{1}D_{1i} + \beta_{2}D_{2i} + \beta_{3}D_{3i} + u_{i}$$
(4.6)

• Then as a dummy variable as the independent variable in a simple regression The coefficients (β_1 , β_2 , β_3) represent the effect of every categorical class on testscore respectively.

- In practice, we can't put all dummies into the regression, but only have n 1 dummies unless we will suffer perfect multi-collinearity.
- The regression may be like as

$$TestScore_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + u_i \tag{4.6}$$

• The default intercept term, β_0 , represents the large-sized class. Then, the coefficients (β_1 , β_2) represent testscore gaps between small_sized, middle-sized class and large-sized class, respectively.

Perfect multicollinearity

• regress Testscore on Class size and the percentage of English learners

```
#>
\#> Call:
\# lm(formula = testscr ~ str + el pct, data = ca)
#>
#> Residuals:
#> Min 10 Median 30
                                   Max
#> -48.845 -10.240 -0.308 9.815 43.461
#>
#> Coefficients:
              Estimate Std. Error t value Pr(>|t|)
#>
#> (Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
          -1.10130 0.38028 -2.896 0.00398 **
#> str
```

76/103

Perfect multicollinearity

• add a new variable nel=1-el_pct into the regression

```
#>
#> Call:
#> lm(formula = testscr ~ str + nel pct + el pct, data = ca)
#>
#> Residuals:
#> Min 10 Median 30 Max
#> -48.845 -10.240 -0.308 9.815 43.461
#>
#> Coefficients: (1 not defined because of singularities)
#>
         Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 685.38247 7.41556 92.425 < 2e-16 ***
#> str -1.10130 0.38028 -2.896 0.00398 **
#> nel pct 0.64978 0.03934 16.516 < 2e-16 ***
#> el pct NA NA NA
                                           NA
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error. 14 46 on 417 degrees of freedom
```

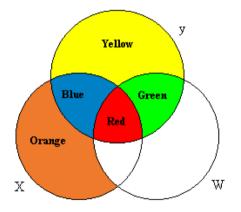
Perfect multicollinearity

	Dependent	variable:
	tests	cr
	(1)	(2)
str	-1.101^{***}	-1.101^{***}
	(0.380)	(0.380)
nel_pct		0.650^{***}
		(0.039)
el_pct	-0.650^{***}	
	(0.039)	
Constant	686.032^{***}	685.382^{***}
	(7.411)	(7.416)
Observations	420	420
Adjusted \mathbb{R}^2	0.424	0.424

Multicollinearity means that two or more regressors are **highly** correlated, but one regressor is **NOT** a perfect linear function of one or more of the other regressors.

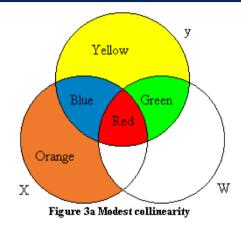
- multicollinearity is NOT a violation of OLS assumptions.
 - It does not impose theoretical problem for the calculation of OLS estimators.
- But if two regressors are highly correlated, then the the coefficient on at least one of the regressors is imprecisely estimated (high variance).
- To what extent two correlated variables can be seen as "highly correlated"?
 - rule of thumb: correlation coefficient is over 0.8.

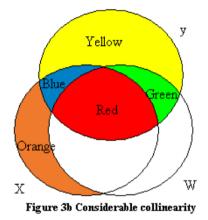
Venn Diagrams for Multiple Regression Model



- In a simple model (y on X), OLS uses 'Blue' + 'Red' to estimate β.
- When y is regressed on X and W: OLS throws away the red area and just uses blue to estimate β.
- Idea: Red area is contaminated(we do not know if the movements in y are due to X or to W).

Venn Diagrams for Multicollinearity





Multiple Regression: Test Scores and Class Size

• New variable: expense per student expn_stu

cor(ca\$str,ca\$el_pct)

[1] 0.1876424

cor(ca\$str,ca\$expn_stu)

[1] -0.6199821

Multiple Regression: Test Scores and Class Size

Table 5: Class Size and Test Score

	testscr		
	(1)	(2)	(3)
str	-2.280^{***}	-1.101^{***}	-0.286
	(0.480)	(0.380)	(0.481)
el_pct		-0.650^{***}	-0.656^{***}
		(0.039)	(0.039)
expn_stu			0.004***
			(0.001)
Constant	698.933^{***}	686.032^{***}	649.578***
	(9.467)	(7.411)	(15.206)
Ν	420	420	420
Adjusted \mathbb{R}^2	0.049	0.424	0.433

Notes:	*** Significant at the 1 percent level.
	** Significant at the 5 percent level.

Properties of OLS Estimators in Multiple Regression

Properties of OLS estimators: Unbiasedness(1)

• Use partitioned regression formula

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n \tilde{X}_{1,i} Y_i}{\sum_{i=1}^n \tilde{X}_{1,i}^2}$$

• Substitute $Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + ... + \beta_k X_{k,i} + u_i, i = 1, ..., n$, then

Properties of OLS estimators: Unbiasedness(2)

Because

• Therefore

$$\hat{\beta}_1 = \beta_1 + \frac{\sum_{i=1}^n \tilde{X}_{1,i} u_i}{\sum_{i=1}^n \tilde{X}_{1,i}^2}$$

Properties of OLS estimators: Unbiasedness(3)

- Recall Assumption 1: $E[u_i|X_{1i}, X_{2i}...X_{ki}] = 0$ and \tilde{X}_{1i} is a function of $X_{2i}...X_{ki}$
- Then take expectations of $\hat{eta_1}$ and The Law of Iterated Expectations again

• Identical argument works for $\beta_2, ..., \beta_k$, thus

$$E[\hat{\beta_j}]=\beta_j$$
 where $j=1,2,...,k$

Properties of OLS estimators: Consistency(1)

Recall

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n \tilde{X}_{1,i} Y_i}{\sum_{i=1}^n \tilde{X}_{1,i}^2}$$

• Similar to the proof in the Simple OLS Regression, thus

Properties of OLS estimators: Consistency(1)

Recall

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n \tilde{X}_{1,i} Y_i}{\sum_{i=1}^n \tilde{X}_{1,i}^2}$$

• Similar to the proof in the Simple OLS Regression, thus

where $s_{\tilde{X}_1Y}$ and $s_{\tilde{X}_1}^2$ are the sample covariance of \tilde{X}_1 and Y and the sample variance of $\tilde{X}_1.$

Properties of OLS estimators: Consistency(2)

• Base on L.L.N(the law of large numbers) and random sample(i.i.d)

Properties of OLS estimators: Consistency(2)

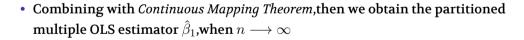
• Base on L.L.N(the law of large numbers) and random sample(i.i.d)

• Combining with *Continuous Mapping Theorem*, then we obtain the partitioned multiple OLS estimator $\hat{\beta}_1$, when $n \longrightarrow \infty$

$$plim\hat{\beta}_1 =$$

Properties of OLS estimators: Consistency(2)

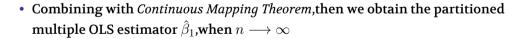
• Base on L.L.N(the law of large numbers) and random sample(i.i.d)



$$plim\hat{\beta}_1 = plim\left(\frac{s_{\tilde{X}_1Y}}{s_{\tilde{X}_1}^2}\right) =$$

Properties of OLS estimators: Consistency(2)

• Base on L.L.N(the law of large numbers) and random sample(i.i.d)



$$plim\hat{\beta}_1 = plim\left(\frac{s_{\tilde{X}_1Y}}{s_{\tilde{X}_1}^2}\right) = \frac{Cov(\tilde{X}_1, Y)}{Var(\tilde{X}_1)}$$

Properties of OLS estimators: Consistency(3)

90/103

Properties of OLS estimators: Consistency(4)

- Based on Assumption 1: $E[u_i|X_{1i}, X_{2i}...X_{ki}] = 0$
- And \tilde{X}_{1i} is a function of $X_{2i}...X_{ki}$
- Then

$$Cov(\tilde{X}_1, u_i) = 0$$

• Then we can obtain

$$plim\hat{\beta_1} = \beta_1$$

• Identical argument works for $\beta_2, ..., \beta_k$, thus

$$plim\hat{\beta}_j = \beta_j$$
 where $j = 1, 2, ..., k$

Recall: The Distribution of Simple OLS Estimators

- Under the least squares assumptions, the Simple OLS estimators $\hat{\beta}_1$ and $\hat{\beta}_0$, are unbiased and consistent estimators of β_1 and β_0 .
- In large samples, the sampling distribution of $\hat{\beta}_1$ and $\hat{\beta}_0$ is well approximated by a bivariate normal distribution.
- Specifically, the sampling distribution of $\hat{eta_1}$ is

 $\hat{\beta}_1 \xrightarrow{d} N(\beta_1, \sigma^2_{\hat{\beta}_1})$

where

$$\sigma_{\hat{\beta}_1}^2 = \frac{Var[(X_i - \mu_x)u_i]}{n[Var(X_i)]^2}$$

The Distribution of Multiple OLS Estimators

• Similarly as in the simple OLS, the multiple OLS estimators are averages of the randomly sampled data, and if the sample size is sufficiently large, the sampling distribution of those averages becomes normal.

$$\hat{\boldsymbol{eta}}_{j} = \boldsymbol{eta}_{j} + rac{\left(\sum_{i=1}^{n} \tilde{X}_{ij} u_{i}\right)}{\left(\sum_{i=1}^{n} \tilde{X}_{ij}^{2}
ight)}$$

• Then we have

- Under the four least squares assumptions, the multiple OLS estimators are unbiased and consistent estimators and approximately normal in large samples.
- The FWL Theorem provides a simple but important perspective to understand the multiple OLS estimator, which is the **partialling out** or **netting out** is a key concept in the multiple regression analysis.

Multiple OLS Regression and Causality

Independent Variable v.s Control Variables

- Generally, we would like to pay more attention to **only one** independent variable(thus we would like to call it **treatment variable**), though there could be many independent variables.
- Because β_j is partial (marginal) effect of X_j on Y.

$$\beta_j = \frac{\partial Y_i}{\partial X_{j,i}}$$

which means that we are estimate the effect of X on Y when **"other things equal"**, thus the concept of **ceteris paribus**.

• Therefore, other variables in the right hand of equation, we call them **control variables**, which we would like to explicitly **hold fixed** when studying the effect of X_1 or D on Y.

Independent Variable v.s Control Variables

- In a multiple regression, OLS is a way to control observable confounding factors, which assume the source of selection bias is only from the difference in observed characteristics(Selection-on-Observables)
- If the multiple regression model is

 $Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \ldots + \beta_k X_{k,i} + u_i, i = 1, \ldots, n$

- Generally, we would like to pay more attention to **only one** independent variable(thus we would like to call it **treatment variable**), though there could be many independent variables.
- Other variables in the right hand of equation, we call them **control variables**, which we would like to explicitly hold fixed when studying the effect of *X*₁ on Y.

• More specifically, our multiple regression model turns into

$$Y_{i} = \beta_{0} + \beta_{1}D_{i} + \gamma_{2}C_{2,i} + ... + \gamma_{k}C_{k,i} + u_{i}, i = 1, ..., n$$

• We could transform it into as follows

$$Y_i = \alpha + \rho D_i + C'_i \Gamma + u_i$$

where
$$\alpha=\beta_0, \rho=\beta_1, \Gamma=(\gamma_2,...,\gamma_k), C_i=(C_{2i},...,C_{ki})$$

OLS Regression, Covariates and RCT

- Now write out the conditional expectation of Y_i for both levels of D_i conditional on C

• Taking the difference

OLS Regression, Covariates and RCT

- Again, our estimate of the treatment effect (ρ) is only going to be as good as our ability to eliminate the selection bias, thus

$$E[u_{1i}|\mathbf{D}_i = 1, C] - E[u_{0i} | \mathbf{D}_i = 0, C] \neq 0$$

OLS Regression, Covariates and RCT

• This is the equivalence of the CIA assumption, which is also equivalent to the 1st assumption of Multiple OLS

• Then we can eliminate the selection bias, thus making

$$E[u_{1i}|\mathbf{D}_i = 1, C] = E[u_{0i} | \mathbf{D}_i = 0, C]$$

Thus

Wrap up

- OLS regression is valid or can obtain a causal explanation only when least squares assumptions are held.
- The most critical assumption is either

or

Picking Control Variables

- Questions: Are "more controls" always better (or at least never worse)?
- Answer: It depends on.

• We will come back soon to discuss the topic in details(in lecture 7 or 8).