Lecture 4: Hypothesis Testing in OLS Regression

Introduction to Econometrics, Spring 2025

Zhaopeng Qu

Nanjing University Business School

March 20 2025

- 1 Review of the Previous Lecture 2 Hypothesis Testing **3** Hypotheses Testing in OLS Regressions 4 Confidence Intervals
- 5 Gauss-Markov theorem and Heteroskedasticity

6 OLS with Multiple Regressors: Hypotheses tests

- **7** Case: Analysis of the Test Score Data Set
 - **Appendix**

Review of the Previous Lecture

Omitted Variable Bias and Multiple OLS Regression

• Omitted Variable Bias(OVB) violates the first Least Squares Assumption:

$$E(u_i|X_i) = 0$$

- It renders Simple OLS estimation both biased and inconsistent.
- If the omitted variable can be observed and measured, we can include it in the regression, thereby controlling for it to eliminate the bias.
- We extended Simple OLS regression to Multiple OLS regression.

Multiple OLS Regression

• The multiple regression model is expressed as:

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \dots + \beta_k X_{k,i} + u_i, i = 1, \dots, n$$

- where:
 - Y_i is the **dependent variable**
 - X₁, X₂, ...X_k are the independent variables (including one treatment variable and several control variables)
 - + $\beta_j, j=1...k$ are the slope coefficients corresponding to each X_j
 - + β_0 is the **intercept**, representing the value of Y when all $X_j=0, j=1...k$
 - u_i is the **error term** (unobserved factors that affect Y)

Multiple OLS Regression: Estimation

• Multiple OLS regression estimates the coefficients $\beta_0,\beta_1,...\beta_k$ by minimizing the sum of squared residuals \hat{u}_i^2 :

$$\arg\min_{b_0,b_1,\ldots,b_k} \sum (Y_i - b_0 - b_1 X_{1,i} - \ldots - b_k X_{k,i})^2$$

where $b_0=\hat{eta}_0, b_1=\hat{eta}_1,...,b_k=\hat{eta}_k$ are the Multiple OLS estimators.

Multiple Regression: Assumptions

If the four least squares assumptions in the multiple regression model hold:

• Assumption 1: The conditional distribution of u_i given $X_{1i},...,X_{ki}$ has zero mean, thus

$$E[u_i|X_{1i},...,X_{ki}]=0$$

- Assumption 2: $(Y_i, X_{1i}, ..., X_{ki})$ are independently and identically distributed (i.i.d.)
- Assumption 3: Large outliers are unlikely
- · Assumption 4: No perfect multicollinearity

Then:

- The OLS estimators $\hat{\beta}_0, \hat{\beta}_1...\hat{\beta}_k$ are unbiased
- The OLS estimators $\hat{\beta}_0, \hat{\beta}_1...\hat{\beta}_k$ are *consistent*
- The OLS estimators $\hat{\beta}_0, \hat{\beta}_1...\hat{\beta}_k$ are normally distributed in large samples

Multiple Regression and Causality

- OLS regression yields valid causal explanations only when all least squares assumptions are satisfied.
- The most critical assumption is the Conditional Expectation Zero (CEZ):

$$E(u_i|D,C) = E(u_i|C)$$

- where *D* is the treatment variable and *C* represents the control variable(s).
- In causal inference, our *primary focus* is ensuring that the coefficient of the treatment variable D, denoted as β_D , is *unbiased* and *consistent*, rather than concerning ourselves with all coefficients β_j , j=0,1,...,k in the model.
- In most cases, non-experimental data fails to satisfy these conditions. Therefore, the central challenge is establishing convincing causal inference when these assumptions are violated.
 - Solutions include: Instrumental Variables (IV), Regression Discontinuity (RD), Difference-in-Differences (DID), Synthetic Control Methods (SCM), etc.

Hypothesis Testing

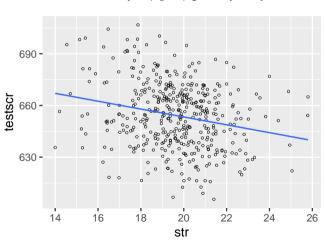
From Samples to the Population

- So far,we have learned how to estimate the OLS regression model and how to interpret the results.
- However, don't forget that our estimation is based on a sample, and the result
 may not be representative of the population.
- Therefore, we have to make sure that our estimation based on a sample is not a
 coincidence, but a reliable inference for the population.
 - Hypothesis testing is a tool to help us to make this inference.

Class size and Test Score

Recall our simple OLS regression mode is

$$TestScore_i = \beta_0 + \beta_1 STR_i + u_i \tag{4.3}$$



11/112

Class Size and Test Score

• Then we got the result of a simple OLS regression

$$\widehat{TestScore} = 698.9 - 2.28 \times STR, \ R^2 = 0.051, SER = 18.6, N = 420$$

- How can you be certain about the result in population as the one in a sample?
 - In other words, *how confident* you can believe the result from the sample inferring to the population?
- If someone believes that your results are not reliable but coincidental.
 - They states that cutting the class size will NOT help boost test scores.
- Can you dismiss the claim based your scientific evidence-based data analysis?
 - This is where **Hypothesis Testing in OLS regressions** comes into play.

Review: Hypothesis Testing

- A hypothesis is typically an assertion or statement about unknown population parameters,
 - Such as θ , which can be any statistic of interest including the *mean*, *variance*, *median*, etc.
- Suppose we want to test
 - ullet whether the parameter is significantly different from a specific value μ_0
- Then we set two *mutually exclusive* competing hypotheses:
 - null hypothesis:

$$H_0: \theta = \mu_0$$

• alternative hypothesis:

$$H_1: \theta \neq \mu_0$$

Review: Hypothesis Testing

- Our goal is to test whether the null hypothesis or(the alternative) is true based on the sample data.
- There are two strategies for testing hypotheses:
 - Prove **positively** by demonstrating the null hypothesis is **true**.
 - Prove negatively by demonstrating the null hypothesis is false.
- For example, in a simple case:
 - Null hypothesis: All sheep are white
 - Alternative hypothesis: Not all sheep are white
 - We can **reject the null hypothesis** if we find just *one sheep* that is not white.

The Principle of Falsification(证伪)

- Karl Popper (1902-1994), an Austrian philosopher of science renowned for his principle of falsification.
- From a philosophical and logical standpoint, it is significantly easier to prove something false than to prove it true.
- The principle of falsification serves as the standard for distinguishing scientific from non-scientific approaches in research methodology.

Review: Hypothesis Testing

- Now, in a world of uncertainty, we never know the true value of the parameter.
 - "Never say Never"
- Instead, we can say:
 - reject the null hypothesis in some level of confidence or
 - fail to reject the null hypothesis in some level of confidence.
- In econometrics, our goal is often to reject the null hypothesis, as this provides strong evidence in support of the alternative hypothesis.

	H_0 is true(H_A is false)	H_0 is false(H_A is true)
Fail to reject H_0		
Reject H_0		

- Type I error: Rejecting the null hypothesis when it is actually true.
- Type II error: Failing to reject the null hypothesis when it is actually false.
- Both types of errors are inversely related as you decrease the probability of one type of error, you typically increase the probability of the other.
- The trade-off between Type I and Type II errors cannot be *eliminated* simply by
 increasing sample size, though larger samples can help reduce both to some extent.

	H_0 is true(H_A is false)	H_0 is false(H_A is true)
Fail to reject H_0		
Reject H_0	Type I error	

- Type I error: Rejecting the null hypothesis when it is actually true.
- Type II error: Failing to reject the null hypothesis when it is actually false.
- Both types of errors are **inversely** related as you decrease the probability of one type of error, you typically increase the probability of the other.
- The trade-off between Type I and Type II errors cannot be *eliminated* simply by
 increasing sample size, though larger samples can help reduce both to some extent.

	H_0 is true(H_A is false)	H_0 is false(H_A is true)
Fail to reject H_0		Type II error
Reject H_0	Type I error	

- Type I error: Rejecting the null hypothesis when it is actually true.
- Type II error: Failing to reject the null hypothesis when it is actually false.
- Both types of errors are inversely related as you decrease the probability of one type of error, you typically increase the probability of the other.
- The trade-off between Type I and Type II errors cannot be *eliminated* simply by
 increasing sample size, though larger samples can help reduce both to some extent.

	H_0 is true(H_A is false)	H_0 is false(H_A is true)
Fail to reject H_0	Correct(True Negative)	Type II error
Reject H_0	Type I error	

- Type I error: Rejecting the null hypothesis when it is actually true.
- Type II error: Failing to reject the null hypothesis when it is actually false.
- Both types of errors are **inversely** related as you decrease the probability of one type of error, you typically increase the probability of the other.
- The trade-off between Type I and Type II errors cannot be *eliminated* simply by
 increasing sample size, though larger samples can help reduce both to some extent.

	H_0 is true(H_A is false)	H_0 is false(H_A is true)
Fail to reject H_0	Correct(True Negative)	Type II error
Reject H_0	Type I error	Correct(True Positive)

- Type I error: Rejecting the null hypothesis when it is actually true.
- Type II error: Failing to reject the null hypothesis when it is actually false.
- Both types of errors are **inversely** related as you decrease the probability of one type of error, you typically increase the probability of the other.
- The trade-off between Type I and Type II errors cannot be *eliminated* simply by increasing sample size, though larger samples can help reduce both to some extent.

Review: Hypothesis Testing in Justice Systems

- In the criminal justice system, the principle of innocent until proven guilty(疑 罪从无) is applied.
 - The jury(陪审团) or judge(法官) begins with the null hypothesis that the accused person is innocent.
 - The prosecutor(检察官) asserts that the accused person is *guilty* and must present compelling evidence, which represents the alternative hypothesis.
 - The defendant's lawyer(辩护律师) don't need to prove the innocence, but to disprove the guilt or cast doubt on the evidence presented by the prosecutor.
 - The jury or judge must reject the null hypothesis with substantial evidence in order to convict the accused person.
- Why is the legal system structured this way?

Review: Hypothesis Testing in Justice Systems

• Every trial faces two types of potential errors:

Trial outcome	The defendant is ${\sf innocent}(H_0)$	The defendant is guilty(H_A)
Guilty verdict (reject	Type I error	Correct(True Positive)
H_0)		
Not guilty verdict (fail	Correct(True Negative)	Type II error
to reject H_0)	, ,	

- Justice systems in most countries place greater weight on avoiding Type I errors than Type II errors:
 - "Convicting an innocent person" is considered much more detrimental to society than "Allowing a guilty person to go free".

Review: Hypothesis Testing in Social Science

- Similarly, in social science we follow the presumption of insignificance until proven otherwise.
 - Initially, researchers must assume that the independent variable has zero impact on the dependent variable (the null hypothesis).
 - To establish a relationship, we need to provide compelling evidence that is strong
 enough to convince readers or policy makers to reject the null hypothesis of no
 effect.
- Therefore,we weight the two types of errors differently in social science,
 - Type I error is more serious than Type II error.
- "大胆假设,小心求证"——胡适 (1891-1962).

The Significance level(显著性水平)

• The significance level or size of a test, α , is the maximum probability of the Type I Error that we tolerate.

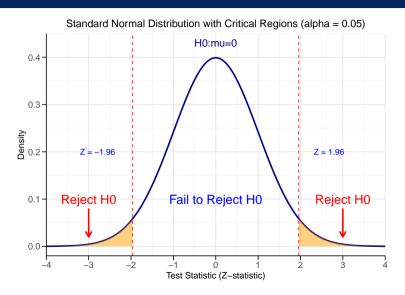
$$P(Type\ I\ error) = P(reject\ H_0\ |\ H_0\ is\ true) = \alpha$$

• The usual significance level is set at 5% in social sciences. A less rigorous standard is 10%, whereas a more stringent one is 1%.

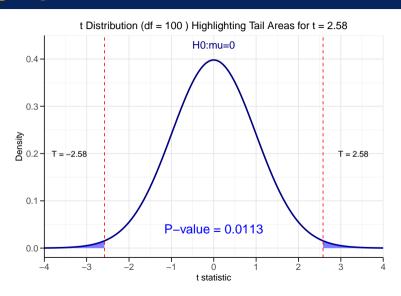
The Sampling Distribution in Hypothesis Testing

- How to calculate the likelihood of **Type-I error** for a given significance level?
 - We have to use the sampling distribution of the test statistic would be if the null
 were true.
- The sampling distribution of a test statistic is its distribution across repeated samples of the same size from the same population.
- Two methods to finish the hypothesis testing:
 - **critical value** is actually a **criteria** calculated by significance level and hypothesis value to make the judgement:
 - If the test statistic is **greater** than the critical value, we **reject** the null hypothesis.
 - p-value is the probability of observing a test statistic as extreme as the one computed from the sample data, assuming the null hypothesis is true.
 - If the p-value is less than the significance level, we reject the null hypothesis.

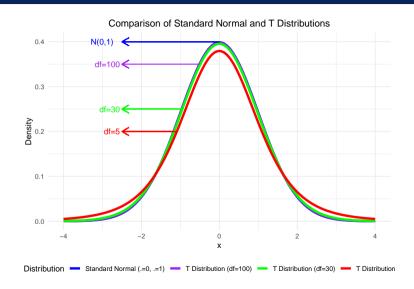
The Sampling Distribution and the Critical Value



The Sampling Distribution and the P Value



T and Standard Normal Distributions



Review: Hypothesis Testing of Population Mean

- Question: how to test the population mean of a random variable Y, thus E(Y), by using a sample?
- Let $\mu_{Y,c}$ is a specific value to which the population mean equals(thus we suppose)
 - the null hypothesis:

$$H_0: E(Y) = \mu_{Y,c}$$

• the alternative hypothesis(two-sided):

$$H_1: E(Y) \neq \mu_{Y,c}$$

Review: Hypothesis Testing of Population Mean

- Step 1 Compute the sample mean \overline{Y}
- Step 2 Compute the *standard error* of \overline{Y} , recall

$$SE(\overline{Y}) = \frac{s_Y}{\sqrt{n}}$$

• Step 3 Compute the *t-statistic* actually computed

$$t^{act} = \frac{\bar{Y}^{act} - \mu_{Y,c}}{SE(\bar{Y})}$$

• Alternative Step 3 Compute the p-value

p-value =
$$Pr_{H_0}(|t| > t^{act}) = 2\Phi(-|t^{act}|)$$

• Step 4 See if we can **Reject the null hypothesis** at a certain significance level α , like 5%, or p-value is less than significance level.

$$|t^{act}| > critical \ value \ {\it or} \ p-value < significance \ level$$

Hypotheses Testing in OLS Regressions

Hypotheses Testing in a Simple OLS

A Simple OLS regression

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

- The key unknown population parameters in the population regression equation is β_1 .
- We then test whether β_1 equals to a specific value $\beta_{1,c}$ or not
 - the null hypothesis:

$$H_0: \beta_1 = \beta_{1,c}$$

• the alternative hypothesis:

$$H_1: \beta_1 \neq \beta_{1,c}$$

Hypotheses Testing in a Simple OLS

- Step1: Estimate $Y_i = \beta_0 + \beta_1 X_i + u_i$ by OLS to obtain $\hat{\beta}_1$
- Step2: Compute the $standard\ error$ of \hat{eta}_1
- Step3: Construct the *t-statistic*

$$t^{act} = \frac{\hat{\beta}_1 - \beta_{1,c}}{SE\left(\hat{\beta}_1\right)}$$

• Step4: Reject the null hypothesis if

$$\mid t^{act}\mid > critical\ value$$

$$or\ p-value < significance\ level$$

The t-statistic v.s Z-statistic

- The statistic we use here is still the t-statistic rather than the Z-statistic. Why?
 - We can prove that

$$t^{act} = \frac{\hat{\beta}_1 - \beta_{1,c}}{SE(\hat{\beta}_1)} \sim t(n-2)$$

given OLS assumptions plus one additional assumption: u_i is normally distributed. (If you're interested, you can prove this by yourself.)

• This means that when the sample size is **small**, there is a meaningful difference between the t-statistic and the Z-statistic.

The t-statistic v.s Z-statistic

- We have previously shown that the OLS estimator is asymptotically normal when the sample size is large,
 - This means we could theoretically use the Z-statistic instead of the t-statistic.
 - When the sample size is large, the difference between the t-statistic and the Z-statistic becomes negligible, as the t-distribution converges to the normal distribution.
- In practice, statisticians and econometricians typically use the t-statistic rather than the Z-statistic in most regression analyses, regardless of sample size.

The t-statistic in a Simple OLS

• The formula for the t-statistic is:

$$t^{act} = \frac{\hat{\beta}_1 - \beta_{1,c}}{SE\left(\hat{\beta}_1\right)}$$

or

$$t^{act} = \frac{estimator - hypothesized\ value}{standard\ error\ of\ the\ estimator}$$

• The key unknown component in this calculation is the standard error (S.E).

The Standard Error of $\hat{\beta}_1$

- Recall from the Simple OLS Regression
 - if the least squares assumptions hold, then in large samples $\hat{\beta}_0$ and $\hat{\beta}_1$ have a joint normal sampling distribution,thus $\hat{\beta}_1$

$$\hat{\beta}_1 \sim N(\beta_1, \sigma_{\hat{\beta}_1}^2)$$

• We also derived the form of the variance of the normal distribution, $\sigma_{\hat{eta}_1}^2$ is

$$\sigma_{\hat{\beta}_1} = \sqrt{\frac{1}{n} \frac{Var[(X_i - \mu_X)u_i]}{[Var(X_i)]^2}}$$
 (4.21)

- The value of $\sigma_{\hat{\beta}_1}$ is **unknown** and can not be obtained *directly* by the data.
 - $Var[(X_i \mu_X)u_i]$ and $[Var(X_i)]^2$ are both unknown.

The Standard Error of \hat{eta}_1

- However, we can use sample statistics to estimate $\sigma_{\hat{\beta}_1}$. For detailed derivation, see Appendix.
- The standard error of $\hat{\beta}_1$ is an estimator of the standard deviation of the sampling distribution $\sigma_{\hat{\beta}_1}$, thus

$$SE(\hat{\beta}_1) = \sqrt{\hat{\sigma}_{\hat{\beta}_1}^2} = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum (X_i - \bar{X})^2 \hat{u}_i^2}{\left[\frac{1}{n} \sum (X_i - \bar{X})^2\right]^2}}$$
(5.4)

- Everything in the equation (5.4) are known now or can be obtained by calculation.
- Now we can construct a t-statistic and then make a hypothesis test.

Application to Test Score and Class Size

. regress test_score class_size, robust

Linear regression

Number of obs	=	420
F(1, 418)	=	19.26
Prob > F	=	0.0000
R-squared	=	0.0512
Root MSE	=	18.581

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. In	nterval]
class_size _cons		.5194892 10.36436		0.000	-3.3009 4 5 678.5602	-1.258671 719.3057

• the OLS regression line

$$\widehat{TestScore} = 698.9 - 2.28 \times STR, \ R^2 = 0.051, SER = 18.6$$

$$(10.4) \ (0.52)$$

Testing a two-sided hypothesis concerning β_1

- the null hypothesis $H_0: \beta_1 = 0$
 - It means that the class size will **not** affect the performance of students.
- the alternative hypothesis $H_1: \beta_1 \neq 0$
 - It means that the class size do affect the performance of students (whatever positive or negative)
- Our primary goal is to Reject the null, and then make a conclusion:
 - Class Size does matter for the performance of students.

Testing a two-sided hypothesis concerning β_1

- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the *t-statistic*

$$t^{act} = \frac{\hat{\beta}_1 - \beta_{1,c}}{SE\left(\hat{\beta}_1\right)} = \frac{-2.28 - 0}{0.52} = -4.39$$

- Step4: Reject the null hypothesis if

 - $p-value = 0 < significance\ level = 0.05$

Application to Test Score and Class Size

```
. regress test_score class_size, robust

Linear regression

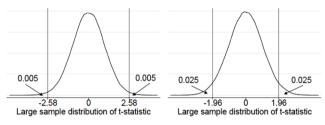
Number of obs = 420
F(1, 418) = 19.26
Prob > F = 0.0000
R-squared = 0.0512
Root MSE = 18.581
```

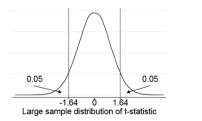
test_score	Coef.	Robust Std. Err.	t	P> t	95% Conf. Ir	nterval]
class_size _cons	-2.279808 698.933	.5194892 10.36436		0.000 0.000	-3.300945 678.5602	-1.258671 719.3057

- We can reject the null hypothesis that $H_0: \beta_1 = 0$, which means $\beta_1 \neq 0$ with a high probability(over 95%).
- It suggests that Class size **matters** the students' performance in a very high chance.

Critical Values of the t-statistic

The critical value of \emph{t} -statistic depends on significance level α





1% and 10% significant levels

- Step4: Reject the null hypothesis at a 10% significance level
 - | t^{act} |=| -4.39 |> $critical\ value = 1.64$
 - $p-value = 0.00 < significance\ level = 0.1$
- Step4: Reject the null hypothesis at a 1% significance level
 - $|t^{act}| = |-4.39| > critical\ value = 2.58$
 - $p-value = 0.00 < significance\ level = 0.01$

Two-Sided Hypotheses: β_1 in a certain value

- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_{1,c}}{SE(\hat{\beta}_1)} = \frac{-2.28 - (-2)}{0.52} = -0.54$$

- Step4: can't reject the null hypothesis at 5% significant level because
 - $|t^{act}| = |-0.54| < critical\ value = 1.96$
 - $p-value = 0.59 > significance\ level = 0.05$

Two-Sided Hypotheses : β_1 in a certain value

```
. lincom class_size-(-2)
( 1) class_size = -2
```

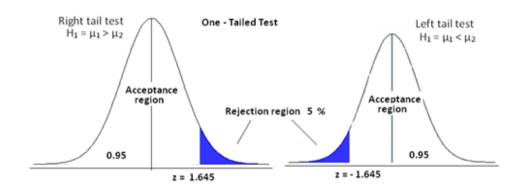
test_score	Coef.	Std. Err.	t	P> t	[95% Conf. In	nterval]
(1)	2798083	.5194892	-0.54	0.590	-1.300945	.7413286

- We cannot reject the null hypothesis that $H_0: \beta_1 = -2$.
- It suggests that *there is no enough evidence* to support the statement:
 - cutting class size in one unit will boost the test score in 2 points.

- Sometimes, we want to do a one-sided Hypothesis testing
- the null hypothesis is still unchanged $H_0: \beta_1 = -2$
- the alternative hypothesis is $H_1: \beta_1 < -2$
 - The statement is that reducing(or inversely increasing) class size will boost(or lower) student's performance.
 - More specifically, cutting class size in one unit will increase the test score in 2
 points at least.
- Because the null hypothesis is the same for a one- and a two-sided hypothesis test, the construction of the t-statistic is the same.
- The difference between the two is the critical value and p-value.

- Step1: Estimate $\hat{\beta}_1 = -2.28$
- Step2: Compute the standard error: $SE(\hat{eta}_1) = 0.52$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_{1,0}}{SE(\hat{\beta}_1)} = \frac{-2.28 - (-2)}{0.52} = -0.54$$



- Step4: under the circumstance, the critical value is not the -1.96 but -1.645 at 5% significant level.
- We can't reject the null hypothesis because

$$t^{act} = -0.54 > critical\ value = -1.645$$

- The p-value is not the $2\Phi(-|t^{act}|)$ now but $Pr(Z < t^{act}) = \Phi(t^{act})$.
- It suggests that *there is NO enough evidence* to support the statement:cutting class size in one unit will increase the test score in **2 points at least**.

- One-sided alternative hypotheses should be used only when there is a clear reason for doing so.
- This reason could come from economic theory, prior empirical evidence, or both.
- However, even if it initially seems that the relevant alternative is one-sided, upon reflection this might not necessarily be so.
- In practice, one-sided test is used much less than two-sided test.

Wrap up

- Hypothesis tests are useful if you have a specific null hypothesis in mind.
- Being able to accept or reject this null hypothesis based on the statistical evidence provides a powerful tool for coping with the uncertainty inherent in using a sample to learn about the population.
- Yet, there are many times that no single hypothesis about a regression coefficient is dominant, and instead one would like to know a range of values of the coefficient that are consistent with the data.
- This calls for constructing a confidence interval.

Confidence Intervals

Introduction

- Because any statistical estimate of the slope β_1 necessarily has sampling uncertainty, we cannot determine the true value of β_1 exactly from a sample of data.
- It is possible, however, to use the OLS estimators and its standard error to construct a confidence interval for the slope β_1

CI for β_1

- Method for constructing a confidence interval for a population mean can be easily extended to constructing a confidence interval for a regression coefficient.
- Using a two-sided test, a hypothesized value for β_1 will be rejected at 5% significance level if

$$\mid t^{act} \mid > critical \ value = 1.96$$

- So $\hat{\beta}_1$ will be in the confidence set if $|t^{act}| \le critical \ value = 1.96$
- Thus the 95% confidence interval for eta_1 are within ± 1.96 standard errors of \hat{eta}_1

$$\hat{\beta}_1 \pm 1.96 \cdot SE\left(\hat{\beta}_1\right)$$

CI for $\beta_{ClassSize}$

. regress test_score class_size, robust

Linear regression Number of obs = 420 F(1, 418) = 19.26 Frob > F = 0.0000 R-squared = 0.0512 Root MSE = 18.581

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Ir	nterval]
class_size	-2.279808	.5194892	-4.39	0.000	-3.3009 4 5	-1.258671
_cons	698.933	10.36436	67.44	0.000	678.5602	719.3057

CI for $\beta_{ClassSize}$

. regress test_score class_size, robust

Linear regression Number of obs = 420 F(1, 418) = 19.26 Prob > F = 0.0000 Prob > F = 0.0512 Prob > F = 0.0512 Prob > F = 0.0512 Prob > F = 0.0512

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Ir	nterval]
class_size	-2.279808	.5194892	-4.39	0.000	-3.3009 4 5	-1.258671
_cons	698.933	10.36436	67.44		678.5602	719.3057

• Thus the 95% confidence interval for eta_1 are within ± 1.96 standard errors of \hat{eta}_1

$$\hat{\beta}_1 \pm 1.96 \cdot SE(\hat{\beta}_1) = -2.28 \pm (1.96 \times 0.519) = [-3.3, -1.26]$$

CI for predicted effets of changing X

- Consider changing X by a given amount, ΔX . The predicted change in Y associated with this change in X is $\beta_1 \Delta$.
- the 95% confidence interval for $\beta_1 \Delta X$ is

$$\hat{\beta}_1 \Delta X \pm 1.96 \cdot SE\left(\hat{\beta}_1\right) \times \Delta X$$

• eg reducing the student-teacher ratio by 2. then the 95% confidence interval is

$$[-3.3 \times 2, -1.34 \times 2] = [-6.6, -2.68]$$

Gauss-Markov theorem and Heteroskedasticity

Introduction

- Recall we discussed the properties of \bar{Y} in Chapter 2.
 - an **unbiased** estimator of μ_Y
 - a consistent estimator of μ_Y
 - an approximate normal sampling distribution for large \boldsymbol{n}

The Efficiency of \bar{Y}

- the fourth properties of \bar{Y} in Chapter 3.
- the Best Linear Unbiased Estimator(BLUE): \bar{Y} is the most efficient estimator of μ_Y among all unbiased estimators that are weighted averages of $Y_1,...,Y_n$, presented by $\hat{\mu}_Y = \frac{1}{n} \sum a_i Y_i$, thus,

$$Var(\overline{Y}) < Var(\hat{\mu}_Y)$$

Unnecessary Assumption for Simple OLS

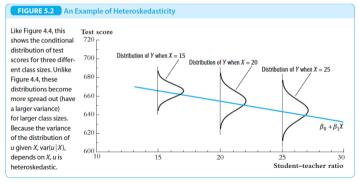
- Three Simple OLS Regression Assumptions
 - Assumption 1
 - Assumption 2
 - Assumption 3
- Assumption 4: The error terms are homoskedastic

$$Var(u_i \mid X_i) = \sigma_u^2$$

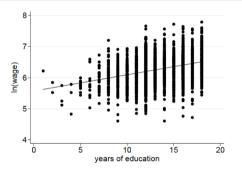
• Then $\hat{\beta}^{OLS}$ is the Best Linear Unbiased Estimator(BLUE): it is the most efficient estimator of β_1 among all conditional unbiased estimators that are a linear function of $Y_1, Y_2, ..., Y_n$.

Heteroskedasticity & homoskedasticity

- The error term u_i is **homoskedastic** if the variance of the conditional distribution of u_i given X_i is constant for i = 1, ...n, in particular does not depend on X_i .
- Otherwise, the error term is heteroskedastic.



An Actual Example: the returns to schooling



- The spread of the dots around the line is clearly increasing with years of education X_i.
- Variation in (log) wages is higher at higher levels of education.
- This implies that

$$Var(u_i \mid X_i) \neq \sigma_u^2$$

• Recall the standard deviation of β_1 , $\sigma_{\hat{\beta}_1}^2$, is

$$\sigma_{\hat{\beta}_1} = \sqrt{\frac{1}{n} \frac{Var[(X_i - \mu_X)u_i]}{[Var(X_i)]^2}}$$
 (4.21)

• If u_i is homoskedastic, thus

$$Var(u_i|X_i) = \sigma_u^2$$

$$Var[(X_i - \mu_X)u_i]$$

$$Var[(X_i - \mu_X)u_i] = E[(X_i - \mu_X)u_i]^2 - (E[(X_i - \mu_X)u_i])^2$$

$$Var[(X_i - \mu_X)u_i] = E[(X_i - \mu_X)u_i]^2 - (E[(X_i - \mu_X)u_i])^2$$

= $E[(X_i - \mu_X)u_i]^2$

$$Var[(X_i - \mu_X)u_i] = E[(X_i - \mu_X)u_i]^2 - (E[(X_i - \mu_X)u_i])^2$$

$$= E[(X_i - \mu_X)u_i]^2$$

$$= E[(X_i - \mu_X)^2 E(u_i^2 | X_i)]$$

$$Var[(X_i - \mu_X)u_i] = E[(X_i - \mu_X)u_i]^2 - (E[(X_i - \mu_X)u_i])^2$$

$$= E[(X_i - \mu_X)u_i]^2$$

$$= E[(X_i - \mu_X)^2 E(u_i^2 | X_i)]$$

$$= E[(X_i - \mu_X)^2 Var(u_i | X_i)]$$

$$Var[(X_i - \mu_X)u_i] = E[(X_i - \mu_X)u_i]^2 - (E[(X_i - \mu_X)u_i])^2$$

$$= E[(X_i - \mu_X)u_i]^2$$

$$= E[(X_i - \mu_X)^2 E(u_i^2 | X_i)]$$

$$= E[(X_i - \mu_X)^2 Var(u_i | X_i)]$$

$$= \sigma_u^2 E[(X_i - \mu_X)^2]$$

• Then the equation (4.21) turns into

$$\sigma_{\hat{eta}}$$

• Then the equation (4.21) turns into

$$\sigma_{\hat{\beta}_1} = \sqrt{\frac{1}{n} \frac{Var[(X_i - \mu_X)u_i]}{[Var(X_i)]^2}}$$

• Then the equation (4.21) turns into

$$\sigma_{\hat{\beta}_1} = \sqrt{\frac{1}{n} \frac{Var[(X_i - \mu_X)u_i]}{[Var(X_i)]^2}}$$
$$= \sqrt{\frac{1}{n} \frac{\sigma_u^2 Var(X_i)}{[Var(X_i)]^2}}$$

• Then the equation (4.21) turns into

$$\sigma_{\hat{\beta}_1} = \sqrt{\frac{1}{n} \frac{Var[(X_i - \mu_X)u_i]}{[Var(X_i)]^2}}$$
$$= \sqrt{\frac{1}{n} \frac{\sigma_u^2 Var(X_i)}{[Var(X_i)]^2}}$$
$$= \sqrt{\frac{1}{n} \frac{\sigma_u^2}{[Var(X_i)]}}$$

• So if we assume that the error terms are **homoskedastic**, then the **standard errors** of the OLS estimators β_1 simplify to

$$SE_{Homo}\left(\hat{\beta}_{1}\right) = \sqrt{\hat{\sigma}_{\hat{\beta}_{1}}^{2}} = \sqrt{\frac{s_{\hat{u}}^{2}}{\sum (X_{i} - \bar{X})^{2}}}$$

The Standard Error of the Regression

- We would also like to know the standard deviation of u_i , thus σ_u^2 . However, u_i are totally unobserved. We have to use the sample statistic to inference the population.
- The standard error of the regression (SER) is an *estimator* of the standard deviation of the regression error u_i .
- The **SER** is computed using their sample counterparts, the OLS residuals \hat{u}_i , thus

$$SER = s_{\hat{u}} = \sqrt{s_{\hat{u}}^2}$$

where
$$s_{\hat{u}}^2 = \frac{1}{n-2} \sum_{i=1}^n \hat{u}_i^2$$

• Think about it: why the denominator is n-2?

- However,in many applications homoskedasticity is NOT a plausible assumption.
- If the error terms are *heteroskedastic*, then you use the *homoskedastic* assumption to compute the S.E. of $\hat{\beta}_1$. It will leads to
 - The standard errors are wrong (often too small)
 - The t-statistic does NOT have a N(0,1) distribution (also not in large samples).
 - But the estimating coefficients in OLS regression will not *change*.

Heteroskedasticity & homoskedasticity

• If the error terms are **heteroskedastic**, we should use the original equation of S.E.

$$SE_{Heter}\left(\hat{\beta}_{1}\right) = \sqrt{\hat{\sigma}_{\hat{\beta}_{1}}^{2}} = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum (X_{i} - \bar{X})^{2} \hat{u}_{i}^{2}}{\left[\frac{1}{n} \sum (X_{i} - \bar{X})^{2}\right]^{2}}}$$

- It is called as heteroskedasticity robust-standard errors, also referred to as Eicker-Huber-White standard errors, simply Robust-Standard Errors
- In the case, it is not difficult to find that homoskedasticity is just a special case of heteroskedasticity.

Heteroskedasticity & homoskedasticity

- Since homoskedasticity is a special case of heteroskedasticity, these heteroskedasticity robust formulas are also valid if the error terms are homoskedastic.
- Hypothesis tests and confidence intervals based on above SE's are *valid* both in case of homoskedasticity and heteroskedasticity.
- In reality, since in many applications homoskedasticity is not a plausible
 assumption, it is best to use heteroskedasticity robust standard errors. Using robust
 standard errors rather than standard errors with homoskedasticity will lead us
 lose nothing.

Heteroskedasticity & homoskedasticity

- It can be quite cumbersome to do this calculation by hand.Luckily,computer can help us do the job.
 - In Stata, the default option of regression is to assume homoskedasticity, to obtain heteroskedasticity robust standard errors use the option "robust":

```
regress y x, robust
```

• In R, many ways can finish the job. A convenient function named vcovHC() is part of the package sandwich.

Test Scores and Class Size

. regress test_score class_size

Source	SS	df	MS	Number of obs = F(1, 418)	420 = 22.58
Model Residual	7794.11004 144315.484	1 418	7794.11004 345.252353	Prob > F R-squared Adj R-squared	= 0.0000 = 0.0512 = 0.0490
Total	152109.594	419	363.030056	Root MSE	= 18.581
test_score	Coef. S	td. Err.	t P>	t [95% Conf.	Interval]

class_size -2.279808 .4798256 -4.75 0.000 -3.22298 -1.33 _cons 698.933 9.467491 73.82 0.000 680.3231 717.5
--

. regress test_score class_size, robust

Linear regression

Number of obs	=	420
F(1, 418)	=	19.26
Prob > F	=	0.0000
R-squared	=	0.0512
Root MSE	=	18.581

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. Ir	nterval]
class size	-2.279808	.5194892	-4.39	0.000	-3.300945	-1.258671
_cons	698.933	10.36436	67.44		678.5602	719.3057

Test Scores and Class Size

. regress test_score class_size

Source	ss	df	MS	Number of obs	= _	420
Model Residual	7794.11004 144315.484	1 418	7794.11004 345.252353	R-squared	= = =	22.58 0.0000 0.0512
Total	152109.594	419	363.030056	Adj R-squared Root MSE	=	0.0490 18.581

test_score	_						
class_size	-	2.279808	.4798256	-4.75	0.000	-3.22298	-1.336637
_cons		698.933	9.467491	73.82	0.000	680.3231	717.5428

. regress test_score class_size, robust

Linear regression

Number of obs		420
F(1, 418)	=	19.26
Prob > F	=	0.0000
R-squared	=	0.0512
Root MSE	=	18.581

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf. In	nterval]
class size _cons	-2.279808 698.933	.5194892 10.36436	-4.39 67.44	0.000	-3.3009 4 5 678.5602	

Wrap up: Heteroskedasticity in a Simple OLS

- If the error terms are heteroskedastic
 - The fourth simple OLS assumption is violated.
 - · The Gauss-Markov conditions do not hold.
 - The OLS estimator is not BLUE (not the most efficient).
- But (given that the other OLS assumptions hold)
 - The OLS estimators are still unbiased.
 - The OLS estimators are still consistent.
 - The OLS estimators are *normally distributed* in large samples

OLS with Multiple Regressors: Hypotheses tests

Recall: the Multiple OLS Regression

• The multiple regression model is

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \dots + \beta_k X_{k,i} + u_i, i = 1, \dots, n$$

- Four Basic Assumptions
 - Assumption 1: $E[u_i \mid X_{1i}, X_{2i}..., X_{ki}] = 0$
 - Assumption 2 : i.i.d sample
 - Assumption 3: Large outliers are unlikely.
 - Assumption 4: No perfect multicollinearity.
- The Sampling Distribution: the OLS estimators $\hat{\beta}_j$ for j=1,...,k are approximately normally distributed in large samples.

Standard Errors for the Multiple OLS Estimators

- There is *nothing* conceptually different between the single- or multiple-regressor cases.
 - Standard Errors for a Simple OLS estimator β_1

$$SE\left(\hat{\beta}_1\right) = \hat{\sigma}_{\hat{\beta}_1}$$

- Standard Errors for Mutiple OLS Regression estimators eta_j

$$SE\left(\hat{\beta}_{j}\right) = \hat{\sigma}_{\hat{\beta}_{j}}$$

- Remind: since now the joint distribution is not only for (Y_i, X_i) , but also for (X_{ij}, X_{ik}) .
- The formula for the *standard errors* in Multiple OLS regression are related with a *matrix* named **Variance-Covariance matrix**.

Hypothesis Tests for a Single Coefficient

• the *t-statistic* in Simple OLS Regression

$$t_1^{act} = \frac{\hat{\beta}_1 - \beta_{1,c}}{SE(\hat{\beta}_1)} \sim N(0,1)$$

• the *t-statistic* in Multiple OLS Regression

$$t_j^{act} = \frac{\hat{\beta}_j - \beta_{j,c}}{SE(\hat{\beta}_j)} \sim N(0,1)$$

Hypothesis testing for single coefficient

- $H_0: \beta_j = \beta_{j,c} H_1: \beta_1 \neq \beta_{j,c}$
- Step1: Estimate \hat{eta}_j , by run a multiple OLS regression

$$Y_i = \beta_0 + \beta_1 X_{1i} + \dots + \beta_j X_{ji} + \dots + \beta_k X_{ki} + u_i$$

- Step2: Compute the standard error of \hat{eta}_j (requires matrix algebra)
- Step3: Compute the t-statistic

$$t_j^{act} = \frac{\beta_j - \beta_{j,c}}{SE\left(\hat{\beta}_j\right)}$$

- Step4: Reject the null hypothesis if
 - $\mid t^{act} \mid > critical \ value$
 - or if $p-value < significance\ level$

Confidence Intervals for a single coefficient

- · Also the same as in a simple OLS Regression.
- $\hat{\beta}_j$ will be in the confidence set if $\mid t^{act} \mid \leq critical \ value = 1.96$ at the 95% confidence level.
- Thus the 95% confidence interval for eta_j are within ± 1.96 standard errors of \hat{eta}_j

$$\hat{\beta}_j \pm 1.96 \cdot SE\left(\hat{\beta}_j\right)$$

Test Scores and Class Size

. regress test_score class_size el_pct,robust

sion Number o	f obs =	420
F(2, 417) =	223.82
Prob > F	=	0.0000
R-square	d =	0.4264
Root MSE	=	14.464
	F(2, 417 Prob > F R-square	F(2, 417) = Prob > F = R-squared =

test_score	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
class_size	-1.101296	.4328472	-2.54	0.011	-1.95213	2504616
el_pct	6497768	.0310318	-20.94	0.000	710775	5887786
_cons	686.0322	8.728224	78.60	0.000	668.8754	703.189

Case: Class Size and Test scores

- Does changing class size, while holding the percentage of English learners constant, have a statistically significant effect on test scores? (using a 5% significance level)
- $H_0: \beta_{ClassSize} = 0 \ H_1: \beta_{ClassSize} \neq 0$
- Step1: Estimate $\hat{\beta}_1 = -1.10$
- Step2: Compute the standard error: $SE(\hat{\beta}_1) = 0.43$
- Step3: Compute the t-statistic

$$t^{act} = \frac{\hat{\beta}_1 - \beta_{1,c}}{SE(\hat{\beta}_1)} = \frac{-1.10 - 0}{0.43} = -2.54$$

- Step4: Reject the null hypothesis if
 - | t^{act} |=| -2.54 |> $critical\ value.1.96$
 - $p-value = 0.011 < significance\ level = 0.05$

Tests of Joint Hypotheses: on 2 or more coefficients

- Can we just test one individual coefficient at a time?
- Suppose the angry taxpayer hypothesizes that neither the student-teacher ratio
 nor expenditures per pupil have an effect on test scores, once we control for the
 percentage of English learners.
- Therefore, we have to test a **joint null hypothesis** that both the coefficient on *student–teacher ratio* and the coefficient on *expenditures per pupil* are zero?

$$H_0: \beta_{str} = 0 \& \beta_{expn} = 0,$$

 $H_1: \beta_{str} \neq 0 \ and/or \ \beta_{expn} \neq 0$

Testing 1 hypothesis on 2 or more coefficients

- If either t_{str} or t_{expn} exceeds 1.96, should we reject the null hypothesis?
- Assume that t_{str} and t_{expn} are uncorrelated at first:

$$Pr(|t_{str}| > 1.96 \text{ and/or } |t_{expn}| > 1.96)$$

= $1 - Pr(|t_{str}| \le 1.96 \text{ and } |t_{expn}| \le 1.96)$
= $1 - Pr(|t_{str}| \le 1.96) * Pr |t_{expn}| \le 1.96)$
= $1 - 0.95 \times 0.95$
= $0.0975 > 0.05$

• We cannot reject the null hypothesis at 5% significant level now, even the single t-test for both variables can.

Testing 1 hypothesis on 2 or more coefficients

- If t_{str} and t_{expn} are correlated, then it is more complicated as simple t-statistic is not enough for hypothesis testing in Multiple OLS.
- In general, a joint hypothesis is a hypothesis that imposes two or more restrictions on the regression coefficients.

$$H_0: \beta_j = \beta_{j,c}, \beta_k = \beta_{k,c}, ..., for a total of q restrictions$$

 $H_1: one or more of q restrictions under H_0 does not hold$

- where β_j, β_k, \dots refer to different regression coefficients.
- When the regressors are highly correlated, we use F-statistic to testing joint hypotheses.

Unrestricted v.s Restricted model

- The unrestricted model: the model without any of the restrictions imposed. It
 contains all the variables.
- The restricted model: the model on which the restrictions have been imposed.
- And we want to test that $H_0: \beta_1 = 0$ and $\beta_2 = 0$, then $H_1: \beta_1 \neq 0$ and/or $\beta_2 \neq 0$ for the regression model

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \beta_3 X_{3,i} + u_i, i = 1,...,n$$

· Then restricted model is

$$Y_i = \beta_0 + \beta_3 X_{3,i} + u_i$$

The F-statistic with q restrictions

• The F-statistic is computed using a simple formula based on the sum of squared residuals from two regressions.

$$F = \frac{(SSR_{\text{restricted}} - SSR_{\text{unrestricted}})/q}{SSR_{\text{unrestricted}}/(n-k-1)}$$

- $SSR_{restricted}$ is the sum of squared residuals from the **restricted** regression.
- $SSR_{unrestricted}$ is the sum of squared residuals from the full model.
- q is the number of restrictions under the null.
- \boldsymbol{k} is the number of regressors in the unrestricted regression.

The F-statistic and \mathbb{R}^2

• An alternative equivalent formula for the **homoskedasticity-only F-statistic** is based on the \mathbb{R}^2 of the two regressions:

$$F = \frac{(R_{\text{restricted}}^2 - R_{\text{unrestricted}}^2)/q}{1 - R_{\text{unrestricted}}^2/(n - k - 1)}$$

Only if the error terms are homoskedastic

$$Var(u_i \mid X_i) = \sigma_u^2$$

Testing 1 hypothesis on 2 or more coefficients

Suppose we want to test

$$H_0: \beta_1 = 0 \& \beta_2 = 0 \quad H_1: \beta_1 \neq 0 \ and/or \ \beta_2 \neq 0$$

• Then the *F-statistic* can also combine the two *t-statistics* t_1 and t_2 as follows

$$F = \frac{1}{2} \left(\frac{t_1^2 + t_2^2 - 2\hat{\rho}_{t_1 t_2} t_1 t_2}{1 - \hat{\rho}_{t_1 t_2}^2} \right)$$

where $\hat{\rho}_{t_1t_2}$ is an estimator of the correlation between the two t-statistics.

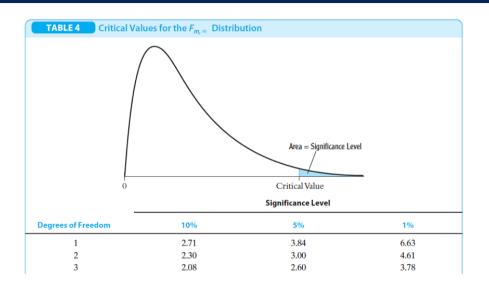
Heteroskedasticity-Robust F-statistic

- Using matrix to show the form of the **heteroskedasticity-robust F-statistic** which is *beyond the scope of our class*.
- While, under the null hypothesis, regardless of whether the errors are homoskedastic or heteroskedastic, the F-statistic with q has a sampling distribution in large samples,

$$F-statistic \sim F_{q,\infty}$$

- ullet where q is the number of restrictions
- Then we can compute the F-statistic, the critical values from the table of the $F_{q,\infty}$ and obtain the p-value.

F-Distribution



Testing joint hypothesis with q restrictions

- $H_0: \beta_j = \beta_{j,0}, ..., \beta_m = \beta_{m,0}$ for a total of q restrictions.
- H_1 :at least one of q restrictions under H_0 does not hold.
- Step1: Estimate

$$Y_i = \beta_0 + \beta_1 X_{1i} + \dots + \beta_j X_{ji} + \dots + \beta_k X_{ki} + u_i$$

by OLS

- Step2: Compute the F-statistic
- Step3: Reject the null hypothesis if

$$F-Statistic > F_{q,\infty}^{act}$$

or

$$p-value = Pr[F_{q,\infty} > F^{act}] \le significant\ level$$

Case: Class Size and Test Scores

- We want to test hypothesis that both the coefficient on *student–teacher ratio* and the coefficient on *expenditures per pupil* are zero?
 - $H_0: \beta_{str} = 0 \& \beta_{expn} = 0$
 - $H_1: \beta_{str} \neq 0 \ and/or \ \beta_{expn} \neq 0$
- The null hypothesis consists of two restrictions q=2

Case: Class Size and Test Scores

inear regres:	ion			Number o F(3, 416 Prob > F R-square)	-	420 147.20 0.0000 0.4366
				Root MSE		-	14.353
		Robust					
test_score	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
class_size	2863992	. 4820728	-0.59	0.553	-1.23	1002	.661203
expn_stu	.0038679	.0015807	2.45	0.015	.000		.0069751
el_pct _cons	6560227 649.5779	.0317844 15.45834	-20.64 42.02	0.000	718 619.		5935446 679.9641
_cons	649.5779	13.43034	42.02	0.000	619.	1917	0/9.9041
_	size expn_stu size = 0 :u = 0						

• It can be shown that the F-statistic with two restrictions has an approximate $F_{2,\infty}$ distribution in large samples

$$F_{act} = 5.43 > F_{2,\infty} = 4.61 \text{ at } 1\% \text{ significant level}$$

The "overall" regression F-statistic

- The "overall" F-statistic test the joint hypothesis that all the k slope coefficients are zero
 - $H_0: \beta_i = \beta_{i,0}, ..., \beta_m = \beta_{m,0}$ for a total of q = k restrictions.
 - H_1 : at least one of q = k restrictions under H_0 does not hold.

The "overall" regression F-statistic

						=	426
				F(3, 416)		=	147.26
				Prob > F		=	0.0000
				R-squared	i	=	0.4366
				Root MSE		-	14.353
		Robust					
test_score	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
class_size28	63992	. 4820728	-0.59	0.553	-1.23	1002	.661203
expn_stu .00	38679	.0015807	2.45	0.015	.000	7607	.0069751
el_pct65	60227	.0317844	-20.64	0.000	718	5008	5935446
_cons 649	.5779	15.45834	42.02	0.000	619.	1917	679.9641

• The overall F-Statistics=147.2 which indicates at least one coefficient can not be **ZERO**.

Case: Analysis of the Test Score Data Set

Introduction

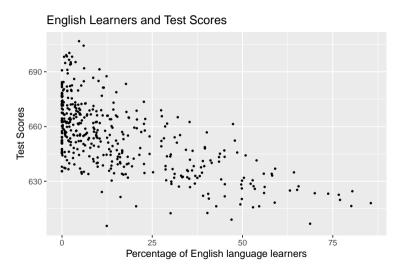
- How to use multiple regression in order to alleviate omitted variable bias and demonstrate how to report results.
- Considering three variables that control for unobservable student characteristics which correlate with the student-teacher ratio and are assumed to have an impact on test scores:
- English, the percentage of English learning students
- lunch, the share of students that qualify for a subsidized or even a free lunch at school
- calworks, the percentage of students that qualify for a income assistance program

Five different model equations:

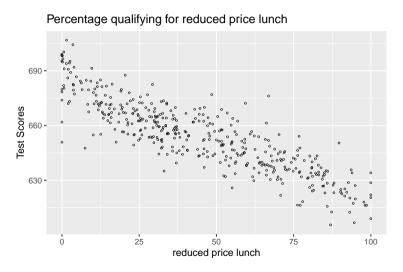
• We shall consider five different model equations:

- (1) $TestScore = \beta_0 + \beta_1 STR + u$,
- (2) $TestScore = \beta_0 + \beta_1 STR + \beta_2 english + u,$
- (3) $TestScore = \beta_0 + \beta_1 STR + \beta_2 english + \beta_3 lunch + u,$
- (4) $TestScore = \beta_0 + \beta_1 STR + \beta_2 english + \beta_4 calworks + u,$
- (5) $TestScore = \beta_0 + \beta_1 STR + \beta_2 english + \beta_3 lunch + \beta_4 calworks + u$

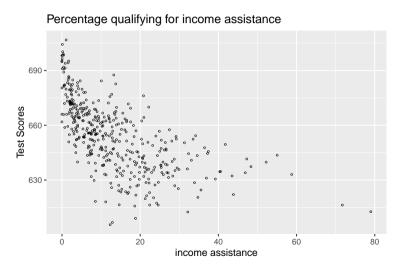
Scatter Plot: English learners and Test Scores



Scatter Plot: Free lunch and Test Scores



Scatter Plot: Income assistant and Test Scores



Correlations between Variables

The correlation coefficients are following

```
# estimate correlation between student characteristics and test scores
cor(CASchools$testscr, CASchools$el pct)
#> [1] -0.6441237
cor(CASchools$testscr, CASchools$meal pct)
#> [1] -0.868772
cor(CASchools$testscr, CASchools$calw pct)
#> [1] -0.6268534
cor(CASchools$meal pct, CASchools$calw pct)
#> [1] 0.7394218
```

Table 3

	Dependent Variable: Test Score		
	(1)	(2)	
str	-2.280***	-1.101 **	
	(0.519)	(0.433)	
el_pct		-0.650^{***}	
		(0.031)	
Constant	698.933***	686.032***	
	(10.364)	(8.728)	
Observations	420	420	
R^2	0.051	0.426	
Adjusted ${ m R}^2$	0.049	0.424	
F Statistic	22.575***	155.014***	

Robust S.E. are shown in the parentheses

101/112

	Dependent Variable: Test Score				
	(1)	(2)	(3)	(4)	
str	-2.280***	-1.101**	-0.998***	-1.308***	
	(0.519)	(0.433)	(0.270)	(0.339)	
el_pct	, ,	-0.650***	-0.122***	-0.488***	
_		(0.031)	(0.033)	(0.030)	
meal_pct			-0.547***		
			(0.024)		
calw_pct				-0.790^{***}	
				(0.068)	
Constant	698.933***	686.032***	700.150***	697.999***	
	(10.364)	(8.728)	(5.568)	(6.920)	
Observations	420	420	420	420	
\mathbb{R}^2	0.051	0.426	0.775	0.629	
Adjusted \mathbb{R}^2	0.049	0.424	0.773	0.626	

102 / 112

Table 4

Table 5

Dependent Variable: Test Score				
(1)	(2)	(3)	(4)	(5)
-2.280^{***}	-1.101**	-0.998^{***}	-1.308***	-1.014***
(0.519)	(0.433)	(0.270)	(0.339)	(0.269)
	-0.650***	-0.122***	-0.488***	-0.130***
	(0.031)	(0.033)	(0.030)	(0.036)
		-0.547^{***}		-0.529***
		(0.024)		(0.038)
			-0.790^{***}	-0.048
			(0.068)	(0.059)
698.933***	686.032***	700.150***	697.999***	700.392***
(10.364)	(8.728)	(5.568)	(6.920)	(5.537)
420	420	420	420	420
0.051	0.426	0.775	0.629	0.775
0.049	0.424	0.773	0.626	0.773
	-2.280*** (0.519) 698.933*** (10.364) 420 0.051	(1) (2) -2.280*** -1.101** (0.519) (0.433) -0.650*** (0.031) 698.933*** 686.032*** (10.364) (8.728) 420 420 0.051 0.426	(1) (2) (3) -2.280*** -1.101** -0.998*** (0.519) (0.433) (0.270) -0.650*** -0.122*** (0.031) (0.033) -0.547*** (0.024) 698.933*** 686.032*** 700.150*** (10.364) (8.728) (5.568) 420 420 420 0.051 0.426 0.775	(1) (2) (3) (4) -2.280***

The "Star War" and Regression Table

Regressor	(1)	(2)	(3)	(4)	(5)
Student–teacher ratio (X_1)	-2.28** (0.52)	-1.10* (0.43)	-1.00** (0.27)	-1.31* (0.34)	-1.01* (0.27)
Percent English learners (X ₂)	(0.52)	-0.650** (0.031)	-0.122** (0.033)	-0.488** (0.030)	-0.130** (0.036)
Percent eligible for subsidized lunch (X_3)			-0.547* (0.024)		-0.529* (0.038)
Percent on public income assistance (X_4)				-0.790** (0.068)	0.048 (0.059)
Intercept	698.9** (10.4)	686.0** (8.7)	700.2** (5.6)	698.0** (6.9)	700.4** (5.5)
Summary Statistics					
SER	18.58	14.46	9.08	11.65	9.08
\overline{R}^2	0.049	0.424	0.773	0.626	0.773
n	420	420	420	420	420

These regressions were estimated using the data on K–8 school districts in California, described in Appendix (4.1). Heteroskedasticity-robust standard errors are given in parentheses under coefficients. The individual coefficient is statistically significant at the *5% level or **1% significance level using a two-sided test.

Discussion of the empirical results

- We should focus on the coefficient of our main interest, the student-teacher ratio (STR), in the regression table.
 - Though we estimate the effect of STR on test scores in different specifications, the coefficient of STR is consistently negative and statistically significant at around from -1 to -1.3.
- We should explain the results in the context of the research question.
 - 1. The sign of the coefficient
 - 2. The magnitude of the coefficient
 - 3. The statistical significance of the coefficient
 - 4. The economic significance of the coefficient

Warp Up

- Therefore, we have to build a framework to test the hypothesis about the population parameters based on the sample given a certain level of confidence.
- Using the hypothesis testing and confidence interval in OLS regression, we could make a more reliable judgment about the relationship between the treatment and the outcomes.
- The analysis in this and the preceding lectures has presumed that the population regression function is linear in the regressor which might not be true.
 - We will extend the model into nonlinearity in the next lectures.

Appendix

• if the least squares assumptions hold, then in large samples $\hat{\beta}_0$ and $\hat{\beta}_1$ have a joint normal sampling distribution,thus $\hat{\beta}_1$

$$\hat{\beta}_1 \sim N(\beta_1, \sigma^2_{\hat{\beta}_1})$$

• We also derived the form of the variance of the normal distribution, $\sigma_{\hat{eta}_1}^2$ is

$$\sigma_{\hat{\beta}_1} = \sqrt{\frac{1}{n} \frac{Var[(X_i - \mu_X)u_i]}{[Var(X_i)]^2}}$$
 (4.21)

• Because $Var(X) = EX^2 - (EX)^2$, then the *numerator* in the square root in (4.21) is

$$Var[(X_i - \mu_X)u_i] = E[(X_i - \mu_X)u_i]^2 - (E[(X_i - \mu_X)u_i])^2$$

Based on the Law of Iterated Expectation(L.I.E), we have

$$E[(X_i - \mu_X)u_i] = E(E[(X_i - \mu_X)u_i]|X_i)$$

• Again by the 1st OLS assumption, thus $E(u_i|X_i)=0$,

$$E[(X_i - \mu_X)u_i] = 0$$

• Then the second term in the equation above

$$Var[(X_i - \mu_X)u_i] = E[(X_i - \mu_X)u_i]^2$$

• Because $plim(\overline{X})=\mu_X$, then we use \overline{X} and $\hat{\mu_i}$ to replace μ_X and μ_i in (4.21)(in large sample), then the numerator is

$$Var[(X_i - \mu_X)u_i]$$

• Because $plim(\overline{X}) = \mu_X$, then we use \overline{X} and $\hat{\mu_i}$ to replace μ_X and μ_i in (4.21)(in large sample), then the *numerator* is

$$Var[(X_i - \mu_X)u_i] = E[(X_i - \mu_X)u_i]^2$$

• Because $plim(\overline{X})=\mu_X$, then we use \overline{X} and $\hat{\mu_i}$ to replace μ_X and μ_i in (4.21)(in large sample), then the numerator is

$$Var[(X_i - \mu_X)u_i] = E[(X_i - \mu_X)u_i]^2$$

= $E[(X_i - \mu_X)^2 u_i^2]$

• Because $plim(\overline{X}) = \mu_X$, then we use \overline{X} and $\hat{\mu_i}$ to replace μ_X and μ_i in (4.21)(in large sample), then the *numerator* is

$$Var[(X_{i} - \mu_{X})u_{i}] = E[(X_{i} - \mu_{X})u_{i}]^{2}$$

$$= E[(X_{i} - \mu_{X})^{2}u_{i}^{2}]$$

$$= plim\left(\frac{1}{n-2}\sum_{i=1}^{n}(X_{i} - \overline{X})^{2}\hat{u}_{i}^{2}\right)$$

where n-2 is the *freedom of degree*. Because when we calculate u_i , we have estimated two coefficiencts, β_0 and β_1 .

• Because $plim(s_x) = \sigma_x^2 = Var(X_i)$, then

$$Var(X_i)$$

• Because $plim(s_x) = \sigma_x^2 = Var(X_i)$, then

$$Var(X_i) = plim(s_x)$$

• Because $plim(s_x) = \sigma_x^2 = Var(X_i)$, then

$$Var(X_i) = plim(s_x)$$
$$= plim(\frac{n-1}{n}(s_x))$$

• Because $plim(s_x) = \sigma_x^2 = Var(X_i)$, then

$$Var(X_i) = plim(s_x)$$

$$= plim(\frac{n-1}{n}(s_x))$$

$$= plim[\frac{1}{n}\sum_{i=1}^{n}(X_i - \overline{X})^2]$$

• Then the denominator in the square root in (4.21) is

$$[Var(X_i)]^2 = plim \left[\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2\right]^2$$

• Then the **standard errors** of $\hat{\beta}_1$ is an **estimator** of the standard deviation of the sampling distribution $\sigma_{\hat{\beta}_1}$, thus

$$SE\left(\hat{\beta}_{1}\right) = \sqrt{\hat{\sigma}_{\hat{\beta}_{1}}^{2}} = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum (X_{i} - \bar{X})^{2} \hat{u}_{i}^{2}}{\left[\frac{1}{n} \sum (X_{i} - \bar{X})^{2}\right]^{2}}}$$
(5.4)