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OLS Regression and Hypothsis Testing

• Since our β estimate comes from a sample, it contains sampling error. To

determine the true relationship between treatment and outcomes, wemust

make statistical inferences from our sample to the population.

• Hypothesis Testing is a statistical method that uses sample data to evaluate a
hypothesis about a population parameter.

• Confidence Interval is a range of values that is likely to contain the true
population parameter.
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OLS Regression and Hypothesis Testing

• Hypothesis Testing in OLS regressions

• single coefficient: the t-statistic
• potential assumption: large sample size ⇒ the normal distribution

• The key component in obtaining the t-statistic is the standard error(S.E.), which

is the estimation of Standard Deviation of estimated coefficients(β̂).

• t-statistic is calculated as:

t = β̂ − β

SE(β̂)
• confidence interval is calculated as:

β̂ ± tcritical × SE(β̂)

5 / 102



OLS Regression and Hypothsis Testing

• Assumption 4: When error terms are homoskedastic in OLS regression

V ar(ui | Xi) = σ2
u

the β̂OLS is the Best Linear Unbiased Estimator (BLUE).

• However, this assumption rarely holds in practice.

• Since homoskedasticity is merely a special case of heteroskedasticity, robust

standard error formulas remain valid even when errors are homoskedastic.

• Therefore, we should generally use heteroskedasticity-robust S.E. in our

analyses. Later, you’ll learn additional methods for adjusting standard errors in

other scenarios.
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OLS Regression and Hypothsis Testing

• Two or more coefficients: the F-statistic

• Testing individual coefficients with t-tests is insufficient for evaluating the joint
significance of multiple coefficients.

• The F-statistic follows an approximate χ2 distribution, similar to other important
test statistics such as theWald test, Likelihood ratio test, and Lagrange
Multiplier(LM) test (beyond the scope of this course).

• Through hypothesis testing and confidence intervals in OLS regression, we can

makemore reliable inferences about population-level relationships between

treatments and outcomes.
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Nonlinear Regression Functions
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Introduction

• Recall the assumption of Linear RegressionModel

Linear RegressionModel

The observations, (Yi, Xi) come from a random sample(i.i.d) and satisfy the linear

regression equation,

Yi = β0 + β1X1,i + ... + βkXk,i + ui

• Everything what we have learned so far is under this assumption of linearity.

But this linear approximation is not always a good one.
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Introduction: Recall the whole picture

• A general formula for a population regressionmodel may be

Yi = f(X1,i, X2,i, ..., Xk,i) + ui

• Parametric methods: assume that the function form(families) is known, we just

need to assure(estimate) some unknown parameters in the function.

• Linear(we just learned in the previous lectures)
• Nonlinear(we will learn in this lecture)

• Nonparametric methods: assume that the function form is unknown or

unnecessary to known.
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Nonlinear Regression Functions

• How to extend a linear OLSmodel to be a nonlinear?

1. Nonlinear in Xs(the lecture now)
• Polynomials,Logarithms and Interactions
• Themultiple regression framework can be extended to handle regression
functions that are nonlinear in one or more X.

• the difference from a standardmultiple OLS regression is how to explain estimating
coefficients.

2. Nonlinear in β orNonlinear in Y(the next lecture)
• Discrete Dependent Variables or Limited Dependent Variables.
• Linear function in Xs is not a good prediciton function or Y.
• Need a function which parameters enter nonlinearly, such as logisitic or negative
exponential functions.

• Then the parameters can not obtained by OLS estimation anymore but Nonlinear
Least Squres orMaximum Likelyhood Estimation.
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Marginal Effect of X in Nonlinear Regression

• If our regressionmodel is linear: Yi = β0 + β1X1,i + ... + βkXk,i + ui

• Then themarginal effect of X, thus the effect of Y on a change in Xj by 1 (unit) is
constant and equals βj :

βj = ∂Yi

∂Xji

• But if a relation between Y and X is nonlinear, thus

Yi = f(X1,i, X2,i, ..., Xk,i) + ui

• Then themarginal effect of X is not constant, but depends on the value of
Xs(including Xi itself or/and other Xjs) because

∂Yi

∂Xji
= ∂f(X1,i, X2,i, ..., Xk,i)

∂Xji

• The explaination of estimate coefficient β in nonlinear regression is not as

straightforward as linear regression.
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Nonlinear in Xs
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The TestScore – STR relation looks linear (maybe)

TestScore^ = c(698.9) − c(−2.28)*STR

630

660

690

14 16 18 20 22 24 26
Student−Teacher Ratio

Te
st

 S
co

re

14 / 102



But the TestScore – Income relation looks nonlinear

TestScore^ = c(625.4) + c(1.88)*Avginc
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• Overestimate the true relationship when income is very high or very low and underestimate it for the middle
income group.
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Three Complementary Approaches:

1. Polynomials in X

• The population regression function is approximated by a quadratic, cubic, or
higher-degree polynomial.

2. Logarithmic transformations

• Y and/or X is transformed by taking its logarithm
• A percentage interpretation that makes sense inmany applications

3. Interactions

• The effect of X on Y depends on the value of another independent variable
• often used in the analysis of hetergenous effects or channel effects.
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Population Regression Functions with Different Slopes
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The Effect of a Change in X in Nonlinear Functions
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Polynomials in X
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Example: the TestScore-Income relation

• If a straight line is NOT an adequate description of the relationship between

district income and test scores, what is?

• Two simple options

• Quadratic specification:

TestScorei = β0 + β1Incomei + β2(Incomei)2 + ui

• Cubic specification:

TestScorei = β0 + β1Incomei + β2(Incomei)2 + β3(Incomei)3 + ui

• How to estimate these models?

• We can see quadratic and cubic terms as two independent variables in the model.
• Then themodel turns into a special form of a multiple OLS regressionmodel.
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Estimation of the quadratic specification in R

#>
#> Call:
#> felm(formula = testscr ~ avginc + I(avginc^2), data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -44.416 -9.048 0.440 8.348 31.639
#>
#> Coefficients:
#> Estimate Robust s.e t value Pr(>|t|)
#> (Intercept) 607.30174 2.90175 209.288 <2e-16 ***
#> avginc 3.85100 0.26809 14.364 <2e-16 ***
#> I(avginc^2) -0.04231 0.00478 -8.851 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 12.72 on 417 degrees of freedom
#> Multiple R-squared(full model): 0.5562 Adjusted R-squared: 0.554
#> Multiple R-squared(proj model): 0.5562 Adjusted R-squared: 0.554
#> F-statistic(full model, *iid*):261.3 on 2 and 417 DF, p-value: < 2.2e-16
#> F-statistic(proj model): 428.5 on 2 and 417 DF, p-value: < 2.2e-16
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Estimation of the cubic specification in R

#>
#> Call:
#> felm(formula = testscr ~ avginc + I(avginc^2) + I(avginc3), data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -44.28 -9.21 0.20 8.32 31.16
#>
#> Coefficients:
#> Estimate Robust s.e t value Pr(>|t|)
#> (Intercept) 6.001e+02 5.102e+00 117.615 < 2e-16 ***
#> avginc 5.019e+00 7.074e-01 7.095 5.61e-12 ***
#> I(avginc^2) -9.581e-02 2.895e-02 -3.309 0.00102 **
#> I(avginc3) 6.855e-04 3.471e-04 1.975 0.04892 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 12.71 on 416 degrees of freedom
#> Multiple R-squared(full model): 0.5584 Adjusted R-squared: 0.5552
#> Multiple R-squared(proj model): 0.5584 Adjusted R-squared: 0.5552
#> F-statistic(full model, *iid*):175.4 on 3 and 416 DF, p-value: < 2.2e-16
#> F-statistic(proj model): 270.2 on 3 and 416 DF, p-value: < 2.2e-16
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Table 1: Test Score and Income: Nonlinear OLS Regression

Dependent Variable: Test Score

(1) (2) (3)

avginc 1.879∗∗∗ 3.851∗∗∗ 5.019∗∗∗

(0.113) (0.267) (0.704)
I(avginĉ 2) −0.042∗∗∗ −0.096∗∗∗

(0.005) (0.029)
I(avginĉ 3) 0.001∗∗

(0.0003)
Constant 625.384∗∗∗ 607.302∗∗∗ 600.079∗∗∗

(1.863) (2.891) (5.078)

Observations 420 420 420
Adjusted R2 0.506 0.554 0.555
F Statistic 430.830∗∗∗ 261.278∗∗∗ 175.352∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust S.E. are shown in the parentheses
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Quadratic vs Linear

• Question: Is the quadratic model better than the linear model?

• We can test the null hypothesis that the regression function is linear against the

alternative hypothesis that it is quadratic:

H0 : β2 = 0 and H1 : β2 ̸= 0

• the t-statistic

t = (β̂2 − 0)
SE(β̂2)

= −0.0423
0.0048

= −8.81

• Since 8.81 > 2.58, we reject the null hypothesis (the linear model) at a 1%

significance level.

• Based on the F-test, we can also reject the null hypothesis

F − statisticq=2,d=417 = 261.3, p − value ∼= 0.00
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Figure: Linear and Quadratic Regression
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Interpreting the estimated quadratic regression function

• What is themarginal effect of X on Y in a quadratic regression function.

• The regressionmodel now is

Yi = β0 + β1Xi + β2X2
i + ui

• Themarginal effect of X on Y

∂Yi

∂Xi
= β1 + 2β2Xi

• It means that themarginal effect of X on Y depends on the specific value of Xi
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Interpreting the quadratic regression function

• The estimated regression function with a quadratic term of income is

̂TestScorei = 607.3
(2.90)

+ 3.85
(0.27)

× incomei − 0.0423
(0.0048)

× income2
i .

• Suppose the effect of an $1000 increase on average income on test scores

• A group: from $10, 000 per capita to $11, 000 per capita:

∆TestScore = 607.3 + 3.85 × 11 − 0.0423 × (11)2

− [607.3 + 3.85 × 10 − 0.0423 × (10)2]
= 2.96

• B group: from $40, 000 per capita to $41, 000 per capita:

∆TestScore = 607.3 + 3.85 × 41 − 0.0423 × (41)2

− [607.3 + 3.85 × 40 − 0.0423 × (40)2]
= 0.42
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Quadratic vs Cubic

• Question: Is the cubic model better than the quadratic model?

• Answer: testing the null hypothesis that the regression function is quadratic

against the alternative hypothesis that it is cubic:

H0 : β3 = 0 and H1 : β3 ̸= 0

• the t-statistic

t = (β̂3 − 0)
SE(β̂3)

= −0.001
0.0003

= −3.33

• Since 3.33 > 2.58, we reject the null hypothesis (the linear model) at a 1%

significance level.

• the F-test also reject the null hypothesis: β1 = 0 = β2 = β3 = 0:

F − statisticq=3,d=416 = 175.35, p − value ∼= 0.00
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Figure: Cubic and Quadratic Regression
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Interpreting the estimated cubic regression function

• The regressionmodel now is

Yi = β0 + β1Xi + β2X2
i + β3X3

i + ui

• Themarginal effect of X on Y

∂Yi

∂Xi
= β1 + 2β2Xi + 3β3X2

i
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Interpreting the estimated regression function

• The estimated cubic model is

̂TestScorei = 600.1
(5.83)

+ 5.02
(0.86)

× income − 0.096
(0.03)

× income2 + 0.00069
(0.00047)

× income3.

• A group: from $10,000 per capita to $11,000 per capita:

∆TestScore = 600.079 + 5.019 × 11 − 0.096 × (11)2 + 0.001 × (11)3

− [600.079 + 5.019 × 10 − 0.096 × (10)2 + 0.001 × (10)3]

• B group: from $40,000 per capita to $41,000 per capita:

∆TestScore = 600.079 + 5.019 × 41 − 0.096 × (41)2 + 0.001 × (41)3

− [600.079 + 5.019 × 40 − 0.096 × (40)2 + 0.001 × (40)3]
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Polynomials in X Regression Function

• Approximate the population regression function by a polynomial:

Yi = β0 + β1Xi + β2X2... + βrXr
i + ui

• This is just the multiple linear regressionmodel – except that the regressors are

powers of X!

• Estimation, hypothesis testing, etc. proceeds as in themultiple regressionmodel

using OLS.

• Although, the coefficients are difficult to interpret, the regression function itself

is interpretable.
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Which degree polynomial should I use?

• Howmany powers of X should be included in a polynomial regression?

• The answer balances a trade-off between flexibility and statistical precision.

(manyML or non-parametric or semi-parametric methods work on this)

• Increasing the degree r introduces more flexibility into the regression function
and allows it to matchmore shapes; a polynomial of degree r can have up to r - 1
bends (that is, inflection points) in its graph.

• But increasing r means addingmore regressors, which can reduce the precision of
the estimated coefficients.
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Which degree polynomial should I use?

• A practical way: asking whether the coefficients in the regression associated

with the largest values of r are zero. If so, then these terms can be dropped from

the regression.

• This procedure, which is called sequential hypothesis testing

1. Pick a maximum value of r and estimate the polynomial regression for that r.
2. Use the t-statistic to test whether the coefficient on Xr ,βr is ZERO.
3. If reject, then the degree is r; if not then test the whether the coefficient on

Xr−1,βr−1 is ZERO.
4. �continue this procedure until the coefficient on the highest power in your

polynomial is statistically significant.
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Which degree polynomial should I use?

• The initial degree r of the polynomial is still missing.

• In many applications involving economic data, the nonlinear functions are

smooth, that is, they do not have sharp jumps, or “spikes.”

• If so, then it is appropriate to choose a small maximum degree for the

polynomial, such as 2, 3, or 4.
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Joint-Testing the population regression function

• If the population regression function is linear, then the higher-degree terms

should not enter the population regression function.

• To perform hypothesis test

H0 : β2 = 0, β3 = 0, ..., βr = 0 and H1 : at least one βj ̸= 0

• Because H0 is a joint null hypothesiswith q = r − 1 restrictions on the

coefficients, it can be tested using the F-statistic.

• This can be easily extended to the case where the population regression function

is quadratic or cubic.

• There are also several formal testing to determine the degree.

• The Akaike Information Criterion(AIC)
• The Bayes Information Criterion(BIC)
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Wrap Up

• The nonlinear functions in Polynomials in Xs are just a special form ofMultiple

OLS Regression.

• If the true relationship between X and Y is nonlinear in polynomials in Xs, then

a fully linear regression is misspecified - the functional form is wrong.

• The estimator of the effect on Y of X is biased and inconsistent which you can

see it as a special case of OVB.

• Estimation, hypothesis testing, etc. proceeds as in themultiple regressionmodel

using OLS, which can also help us to tell the degrees of polynomial functions.

• The big difference is how to explained the estimate coefficients andmake the

predicted change in Y with a change in Xs.
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Logarithms
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Logarithmic functions of Y and/or X

• Another way to specify a nonlinear regressionmodel is to use the natural

logarithm of Y and/or X.

• Ln(x) = the natural logarithm of x is the inverse function of the exponential

function ex, here e = 2.71828.
x = ln(ex)
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Review of the Basic Logarithmic functions

• If X and a are variables, then we have

ln(1/x) = −ln(x)
ln(ax) = ln(a) + ln(x)

ln(x/a) = ln(x) − ln(a)
ln(xa) = aln(x)
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Logarithms and percentages

• Following the limitation rule of logarithms, we have

Ln(1 + X) ∼= X when X is very small

• Therefore,

ln(x + ∆x) − ln(x) = ln

(
x + ∆x

x

)

∼=
∆x

x
(when

∆x

x
is very small)

• For example:

ln(1 + 0.01) = ln(101) − ln(100) = 0.00995 ∼= 0.01

• Thus,logarithmic transforms permit modeling relations in percentage terms

(like elasticities), rather than linearly.
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The three log regression specifications:

Case Population regression function

I.linear-log

Yi = β0 + β1ln(Xi) + ui

II.log-linear
ln(Yi) = β0 + β1Xi + ui

III.log-log
ln(Yi) = β0 + β1ln(Xi) + ui

• The interpretation of the slope coefficient differs in each case.

• The interpretation is found by applying the general “before and after” rule:

“figure out the change in Y for a given change in X.”(Key Concept 8.1 in

S.W.pp301)
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I. Linear-log population regression function

• RegressionModel:
Yi = β0 + β1ln(Xi) + ui

• Change X ∆X :
∆Y = [β0 + β1ln(X + ∆X)] − [β0 + β1ln(X)]

= β1[ln(X + ∆X) − ln(X)]

∼= β1
∆X

X

• Note 100 × ∆X
X = percentage change in X , and β1 ∼= ∆Y

∆X
X

• Interpretation of β1: a 1 percent increase in X (multiplying X by 1.01 or 100 × ∆X
X ) is

associated with a 0.01β1 or
β1
100 change in Y.
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Example: the TestScore – log(Income) relation

• The OLS regression of ln(Income) on Testscore yields

̂TestScore =557.8 + 36.42 × ln(Income)
(3.8) (1.4)

• Interpretation of β1: a 1% increase in Income is associated with an increase in

TestScore of 0.3642 points.
• Calculate on themean values: Then if the mean of Income is $25,000, then the

predicted change in test score from a 1% increase in income is

$25000 × 1% = $250 will increase TestScore by 0.3642 points.
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Test scores: linear-log function
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Case II. Log-linear population regression function

• Regressionmodel:

ln(Yi) = β0 + β1Xi + ui

• Change X:

ln(∆Y + Y ) − ln(Y ) = [β0 + β1(X + ∆X)] − [β0 + β1X]

⇒ ln(1 + ∆Y

Y
) = β1∆X

⇒ ∆Y

Y
∼= β1∆X

• So 100∆Y
Y = percentage change in Y and β1 =

∆Y
Y

∆X

• Then a change in X by one unit is associated with a β1 × 100 percent change in
Y.
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Example: the Log(TestScore) – Income relation

• The OLS regression of ln(Income) on Testscore yields

̂ln(TestScore) =6.439 + 0.003 × (Income)
(0.0028) (0.0002)

• Interpretation of β1: a unit increase in Income (here is $1000) is associated

with an increase in TestScore of 0.3% in TestScore.

• Calculate on themean values: Then if the mean of TestScore is 650, the

predicted change in test score from a $1000 increase in income is

0.3% × 650 = 1.95 points.
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Test scores: log-linear function
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Themost common use of log-linear functions

• Mincer Earning Function:

ln(Earnings) = β0 + β1SchoolingY ears + β2Experience + β3Experience2 + u

• It is widely used in labor economics to study the relationship between earnings

and human capital.

• β1 is called as the rate of the returns to schooling.

• Suppose our estimated equation of Mincer Earning Function is:

ln(Earnings) = 2.881+0.06SchoolingY ears+0.01Experience−0.0003Experience2+u

• Question: How to interpret the meaning of β̂1 = 0.06?
• Answer: A one-year increase in schooling is associated with a 0.06% increase in

earnings.
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Case III. Log-log population regression function

• the regressionmodel is

ln(Yi) = β0 + β1ln(Xi) + ui

• Change X:

ln(∆Y + Y ) − ln(Y ) = [β0 + β1ln(X + ∆X)] − [β0 + β1ln(X)]

⇒ ln(1 + ∆Y

Y
) = β1ln(1 + ∆X

X
)

⇒ ∆Y

Y
∼= β1

∆X

X

• Now 100∆Y
Y = percentage change in Y and 100∆X

X = percentage change in X

• Therefore a 1% change in X by one unit is associated with a β1% change in

Y,thus β1 has the interpretation of an elasticity.
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Test scores and income: log-log specifications

̂ln(TestScore) =6.336 + 0.055 × ln(Income)
(0.006) (0.002)

• Interpretation of β1: A 1% increase in Income is associated with an increase of

0.055% in TestScore.

• Calculate on themean values: Then if the means of TestScore and Income
are 650 and $/25, 000, the predicted change in TestScore from a $250(1%)
increase in Income is 3.575 points(650 × 0.055% = $3.575).
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Test scores: The log-linear and log-log functions
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Test scores: The linear-log and cubic functions
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Table 3: Test Score and Income

Dependent Variable: Test Score

testscr log.testscr testscr

(1) (2) (3)

loginc 36.420∗∗∗ 0.055∗∗∗

(0.002)
avginc 5.019∗∗∗

(0.704)
I(avginĉ 2) −0.096∗∗∗

(0.029)
I(avginĉ 3) 0.001∗∗

(0.0003)
Constant 557.832∗∗∗ 6.336∗∗∗ 600.079∗∗∗

(0.003) (0.006) (5.078)

Observations 420 420 420
Adjusted R2 0.561 0.557 0.555
Residual Std. Error 12.618 0.019 12.707
F Statistic 537.444∗∗∗ 527.238∗∗∗ 175.352∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust S.E. are shown in the parentheses
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Choice of specification: guided by economic theory

• When regression functions yield similar results, how do you choose between

them?

• Consider these guidelines:

1. Apply economic theory (Choose the model with the most sensible interpretation
for your context)

2. Rely on t-tests and F-tests for statistical validation (More complex tests are rarely
necessary)

3. Evaluate model fit through visual inspection of predicted values andmetrics like
R2 or SER
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Wrap Up

• Adding polynomial terms to significant variables allows for single and joint

significance testing. Incorporate quadratic or cubic termswhen they prove

statistically significant.

• Logarithmic transformations effectively capture nonlinear relationships

between variables.

• While pinpointing the exact cause of functional formmisspecification is often

difficult in practice.

• In economic analysis, logarithms and polynomial terms (quadratic or cubic) are

generally sufficient to model most important nonlinear relationships.
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Interactions Between Independent Variables
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Introduction

• Try to answer following question:

• how the effect on Y of a change in an independent variable X depends on the value of
another independent variable Z.

• The question will be answered by putting an interaction, which is the product of

two independent variables, in a regression.

• The term is called an interaction term.

• Consider three cases:

1. Interactions between two binary variables.
2. Interactions between a binary and a continuous variable.
3. Interactions between two continuous variables.
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Interactions Between Two Binary Variables

• Assume we would like to study the earnings of worker in the labor market

• The population linear regression of Yi is

Yi = β0 + β1D1i + β2D2i + ui

• Dependent Variable: log earnings(Yi,where Yi = ln(Earnings))
• Independent Variables: two binary variables

• D1i = 1 if the person graduate from college,D1i = 0 otherwise
• D2i = 1 if the worker’s gender is female,D2i = 0 otherwise

• Question: how to interpret the coefficients β1 and β2 of the model?

• β1 is the effect of having a college degree on log earnings, holding gender constant
• β2 is the effect of being female on log earnings, holding schooling constant.
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Interactions Between Two Binary Variables

• In this specification, the effect of a college degree on earnings is identical for

men and women when gender is held constant, thus β1 for bothmen and

women.

• However, this assumptionmay not be realistic.

• A college degree could have different impact on earnings for men versus women.
In other words, the effect of a college degree on earnings is not the same for men
and women.

• To capture the difference in the effect of a college degree on earnings for men

and women, we need to modify our regressionmodel.

Yi = β0 + β1D1i + β2D2i + β3(D1i × D2i) + ui

• The product termD1i × D2i is called an interaction term or interacted regressor.
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Interactions Between Two Binary Variables:

• The population regressionmodel now is

Yi = β0 + β1D1i + β2D2i + β3(D1i × D2i) + ui

• Let d2 be the value of D2i,which is 0(Men) or 1(Women).

• Then the expected earnings of men and womenwithout a college degree are

E(Yi|D1i = 0, D2i = d2) = β0 + β1 × 0 + β2d2 + β3(0 × d2) = β0 + β2d2

• Then the expected earnings of men and womenwith a college degree are

E(Yi|D1i = 1, D2i = d2) = β0 + β1 × 1 + β2d2 + β3(1 × d2)
= β0 + β1 + β2d2 + β3d2
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Interactions Between Two Binary Variables:

• The effect of a college degree on earnings is the difference of expected

values,which is

E(Yi|D1i = 1, D2i = d2) − E(Yi|D1i = 0, D2i = d2) = β1 + β3d2

• In the binary variable interaction specification, the effect of acquiring a college

degree (a unit change in D1ifrom0to1) depends on the person’s gender(D2i).

• If the person is male,thus D2i = d2 = 0,then the effect is β1

• If the person is female,thus D2i = d2 = 1,then the effect is β1 + β3

• Therefore, the coefficient β3 is the difference in the effect of acquiring a college

degree on earnings for women versus men.
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Application: the STR and the English learners

• Let HiSTRi be a binary variable for STR

• HiSTRi = 1 if the STR ≥ 20
• HiSTRi = 0 otherwise

• Let HiELi be a binary variable for the share of English learners

• HiELi = 1 if the elpct ≥ 10percent

• HiELi = 0 otherwise
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Application: the STR and the English learners

• the OLS regression result is

̂TestScore = 682.2 − 0.97STR + 5.6HiEL − 1.28(STR × HiEL)
(11.9) (0.59) (19.5) (0.97)

• Question: What does the interaction coefficient of β3 here mean?

• Answer: The effect of class size on test scores varies between the
“higher-share-immigrant” class and the “lower-share immigrants” class.

• Answer: The performance gap in test scores between large class(STR > 20) and small
class(STR ≤ 20) varies between the “higher-share-immigrant” class and the
“lower-share immigrants” class.

• More precisely,the gap of test scores is positively related with the
“higher-share-immigrant” class though insignificantly.
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Interactions: a Continuous and a Binary Variable

• Binary Variable: eg, whether the worker has a college degree (Di)

• Continuous Variable: eg, the individual’s years of work experience (Xi)

• In this case, we can have three specifications:

1. No interaction
Yi = β0 + β1Xi + β2Di + ui

2. A interaction and only one independent variable

Yi = β0 + β1Xi + β2(Di × Xi) + ui

3. A interaction and two independent variables

Yi = β0 + β1Xi + β2Di + β3(Di × Xi) + ui
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A Continuous and a Binary Variable: Three Cases
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A Continuous and a Binary Variable: Three Cases
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A Continuous and a Binary Variable: Specifications

• All three specifications are just different versions of the multiple regression

model.

• Different specifications are based on different assumptions of the relationships

of X on Y depending on D.

• TheModel 3 is preferred, because it allows for both different intercepts and

different slops.
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Application: the STR and the English learners

• HiELi is still a binary variable for English learner, while STR is a continuous

variable for class size.

• The estimated interaction regression

̂TestScore = 682.2 − 0.97STR + 5.6HiEL − 1.28(STR × HiEL)
(11.9) (0.59) (19.5) (0.97)

• For districts with a low fraction of English learners,thus HiELi = 0,the
estimated regression line is

̂TestScore = 682.2 − 0.97STRi

• For districts with a high fraction of English learners,thus HiELi = 1,the
estimated regression line is

̂TestScore = 682.2 + 5.6 − 0.97STRi − 1.28STRi = 687.8 − 2.25STRi
69 / 102



Application: the STR and the English learners

• The difference between these two effects, 1.28 points, is the coefficient on the

interaction term.

• The value of β3 here(-1.28) means that the effect of class size on test scores varies

between the “higher-share-immigrant” class and the “lower-share immigrants or more

native” class.

• More precisely,negatively related with the “higher-share-immigrant” class

though insignificantly.
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TestingModel Specifications

• We can evaluate the three specifications using F-tests and t-tests.

1. Testing whether test scores are identical between groups (same intercept and

slope)

• H0 : β2 = β3 = 0
• F-test result: F-statistic = 89.9, significant at the 1% level, allowing us to reject this
hypothesis.

2. Testing whether effects are identical between groups (same slope but potentially

different intercepts)

• H0 : β3 = 0
• t-statistic = −1.32, not significant at the 10% level.
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Further Testing

3. Testing whether groups have the same intercept but different slopes

• H0 : β2 = 0
• t-statistic = 0.29, not significant at the 10% level.

• The high correlation between regressors HiEL and STR ∗ HiEL leads to

inflated standard errors for individual coefficients.

• Conclusion: While we cannot determine which specific coefficient is non-zero,

we have strong evidence to reject the hypothesis that both coefficients equal

zero.
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Interactions Between Two Continuous Variables

• Now suppose that both independent variables (X1i and X2i) are continuous.

• X1i is his or her years of work experience
• X2i is the number of years he or she went to school.

• there might be an interaction between these two variables so that the effect on

wages of an additional year of experience depends on the number of years of

education.

• the population regressionmodel

Yi = β0 + β1X1i + β2X2i + β3(X1i × X2i) + ui
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Interactions Between Two Continuous Variables

• Thus the effect on Y of a change in X1, holding X2 constant, is

∆Y

∆X1
= β1 + β3X2

• A similar calculation shows that the effect on Y of a change ∆X1 in X2, holding

X1 constant, is
∆Y

∆X2
= β2 + β3X1

• That is, if X1 changes by ∆X1 and X2 changes by ∆X2, then the expected

change in Y

∆Y = (β1 + β3X2)∆X1 + (β2 + β3X1)∆X2 + β3∆X1∆X2
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Application: the STR and the English learners

• Now STR and PctEL are both continuous variables.

• The estimated interaction regression

̂ln(TestScore) =686.3 − 1.12STR − 0.67PctEL + 0.0012(STR × PctEL)
(11.8) (0.059) (0.037) (0.019)

• Interpretation of β3: how the effect of class size on test scores varies along with the

share of English learners in the class.

• More precisely, increase 1 unit of the share of English learnersmake the effect of

class size on test scores increase extra 0.0012 scores.
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Application: the STR and the English learners

• when the percentage of English learners is at themedian(PctEL = 8.85), the
slope of the line relating test scores and the STR is

∆Y

∆X1
= β1 + β3X2 = −1.12 + 0.0012 × 8.85 = −1.11

• when the percentage of English learners is at the 75th percentile(PctEL = 23.0),
the slope of the line relating test scores and the STR is

∆Y

∆X1
= β1 + β3X2 = −1.12 + 0.0012 × 23.0 = −1.09

• The effect of class size on test scores depends on the share of English learners.

• However, the difference between these estimated effects is not statistically

significant.
• The t-statistic testing whether the coefficient on the interaction term is zero is 0.06,
which is not statistically significant at the 10% level.
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Application: STR and Test Scores in a Summary

• Although these nonlinear specifications extend our knowledge about the

relationship between STR and Testscore, it must be augmented with control

variables such as economic background to avoid OVB bias.

• Twomeasures of the economic background of the students:

1. the percentage of students eligible for a subsidized lunch
2. the logarithm of average district income.

77 / 102



Application: STR and Test Scores in a Summary

• Then three specific questions about test scores and the student–teacher ratio.

1. After controlling for differences in economic characteristics, does the effect on test
scores of STR depend on the fraction of English learners?

2. Does this effect depend on the value of the student–teacher ratio(STR)?
3. Most important, after taking economic factors and nonlinearities into

account,what is the estimated effect on test scores of reducing the student–teacher
ratio by 1 students per teacher?
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score
(1) (2) (3) (4) (5) (6) (7)

str −1.00∗∗∗ −0.73∗∗ −0.97 −0.53 64.34∗∗ 83.70∗∗ 65.29∗∗

(0.27) (0.26) (0.59) (0.34) (24.86) (28.50) (25.26)
I(str̂ 2) −3.42∗∗ −4.38∗∗ −3.47∗∗

(1.25) (1.44) (1.27)
I(str̂ 3) 0.06∗∗ 0.07∗∗ 0.06∗∗

(0.02) (0.02) (0.02)
str:HiEL −1.28 −0.58 −123.28∗

(0.97) (0.50) (50.21)
I(str̂ 2):HiEL 6.12∗

(2.54)
I(str̂ 3):HiEL −0.10∗

(0.04)
english −0.12∗∗∗ −0.18∗∗∗ −0.17∗∗∗

(0.03) (0.03) (0.03)
HiEL 5.64 5.50 −5.47∗∗∗ 816.08∗

(19.51) (9.80) (1.03) (327.67)
lunch −0.55∗∗∗ −0.40∗∗∗ −0.41∗∗∗ −0.42∗∗∗ −0.42∗∗∗ −0.40∗∗∗

(0.02) (0.03) (0.03) (0.03) (0.03) (0.03)
log(income) 11.57∗∗∗ 12.12∗∗∗ 11.75∗∗∗ 11.80∗∗∗ 11.51∗∗∗

(1.82) (1.80) (1.77) (1.78) (1.81)
Constant 700.15∗∗∗ 658.55∗∗∗ 682.25∗∗∗ 653.67∗∗∗ 252.05 122.35 244.81

(5.57) (8.64) (11.87) (9.87) (163.63) (185.52) (165.72)
N 420 420 420 420 420 420 420
Adjusted R2 0.77 0.79 0.31 0.79 0.80 0.80 0.80

∗p < .05; ∗∗p < .01; ∗∗∗p < .001
Robust S.E. are shown in the parentheses
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(5.57) (8.64) (11.87) (9.87) (163.63) (185.52) (165.72)
N 420 420 420 420 420 420 420
Adjusted R2 0.77 0.79 0.31 0.79 0.80 0.80 0.80

∗p < .05; ∗∗p < .01; ∗∗∗p < .001
Robust S.E. are shown in the parentheses

84 / 102



score
(1) (2) (3) (4) (5) (6) (7)

str −1.00∗∗∗ −0.73∗∗ −0.97 −0.53 64.34∗∗ 83.70∗∗ 65.29∗∗

(0.27) (0.26) (0.59) (0.34) (24.86) (28.50) (25.26)
I(str̂ 2) −3.42∗∗ −4.38∗∗ −3.47∗∗

(1.25) (1.44) (1.27)
I(str̂ 3) 0.06∗∗ 0.07∗∗ 0.06∗∗

(0.02) (0.02) (0.02)
str:HiEL −1.28 −0.58 −123.28∗

(0.97) (0.50) (50.21)
I(str̂ 2):HiEL 6.12∗

(2.54)
I(str̂ 3):HiEL −0.10∗

(0.04)
english −0.12∗∗∗ −0.18∗∗∗ −0.17∗∗∗

(0.03) (0.03) (0.03)
HiEL 5.64 5.50 −5.47∗∗∗ 816.08∗

(19.51) (9.80) (1.03) (327.67)
lunch −0.55∗∗∗ −0.40∗∗∗ −0.41∗∗∗ −0.42∗∗∗ −0.42∗∗∗ −0.40∗∗∗

(0.02) (0.03) (0.03) (0.03) (0.03) (0.03)
log(income) 11.57∗∗∗ 12.12∗∗∗ 11.75∗∗∗ 11.80∗∗∗ 11.51∗∗∗

(1.82) (1.80) (1.77) (1.78) (1.81)
Constant 700.15∗∗∗ 658.55∗∗∗ 682.25∗∗∗ 653.67∗∗∗ 252.05 122.35 244.81

(5.57) (8.64) (11.87) (9.87) (163.63) (185.52) (165.72)
N 420 420 420 420 420 420 420
Adjusted R2 0.77 0.79 0.31 0.79 0.80 0.80 0.80

∗p < .05; ∗∗p < .01; ∗∗∗p < .001
Robust S.E. are shown in the parentheses
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Three Regressions on graph
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Interaction on graph
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Warp up

• Interaction term is a powerful tool to study the effect of one variable on another,

while controlling for other variables.

• In one case, interaction termwith high order polynomial terms are used to

model nonlinear relationship to avoidmisspecification.

• In this case, the coefficient of interaction term is not of interest.(interaction terms
as control variables)

• In another case, interaction term is used to study the effect of one variable on

another, while controlling for other variables.

• In this case, the coefficient of interaction term is of interest as
Difference-in-Difference estimator.
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A Lastest and Smart Application: Jia and Ku(2019)
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Jia and Ku(2019)

• Ruixue Jia and Hyejin Ku, “Is China’s Pollution the Culprit for the Choking of

South Korea?Evidence from the Asian Dust”,The Economic Journal,Volume 129,

Issue 624, November 2019, Pages 3154–3188.

• Main Question:

• Does air pollution from China spill over to South Korea, and if so, how does it affect
the health of South Koreans?
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Empirical Strategy

• A naive strategy:
• Dependent variable: Deaths in South Korea (respiratory and cardiovascular
mortality)

• Independent variable: Chinese pollution(Air Quality Index)

Mortalityijk = β0 + β1ChinesePollutionjk + δXijk + uijk

• Because the observed or measured air pollution in Seoul increases in periods

when China is more polluted does not mean that the pollutionmust have

originated from China.

• uijk can be correlated with ChinesePollutionjk , like Korean’s local activities,

leading to endogeneity.

• Question: Can we find a exogenous variable that is uncorrelated with

ChinesePollutionjk but correlated with Mortalityijk?

• Answer: Yes, it is Asian Dust.
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Jia and Ku(2019): Asian Dust as a carrier of pollutants

• Asian Dust (also yellow dust, yellow sand, yellow wind or China dust storms) is a

meteorological phenomenonwhich affects much of East Asia year round but

especially during the springmonths.

• The dust originates in the deserts of Mongolia, Kazakhstan and China(Inner
Mongolia),where high-speed surface winds and intense dust storms kick up dense
clouds of fine, dry soil particles.

• These clouds are then carried eastward by prevailing winds and pass over China,
North and South Korea, and Japan, as well as parts of the Russian Far East.

• In recent decades,Asian Dust brings with pollution as well as its by-productsmost
originated from China.
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Jia and Ku(2019): Asian Dust as a carrier of pollutants
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Jia and Ku(2019): Asian Dust as a carrier of pollutants

• Key features of Asian Dust for this paper:

1. A clear directional aspect where winds transport Chinese pollutants to Korea but
not vice versa.

2. Exogenous to South Korea’s local economic activities, with wind patterns and
topography creating rich spatial and temporal variation in its occurrence.

3. Due to its visual prominence, Asian dust ismonitored and recorded at monitoring
stations throughout South Korea.
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Jia and Ku(2019):Estimation Strategy

• Interaction Variable: Asian dust(the number of Asian dust days in South Korea)

• Control Variables: Time, Regions, Weather,Local Economic Conditions�

• The impact of Chinese pollution on district-levelmortality that operates via

Asian dust

Mortalityijk = β0 + β1AsianDustijk + β2ChinesePollutionjk

+ β3AsianDustijk × ChinesePollutionjk + δ1Xijk + uijk

• Main coefficient of interest is β3, whichmeasures the effect of Chinese pollution

in year j andmonth k carried by Asian Dust onmortality in district i of South

Korea.
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Jia and Ku(2019): the result of interaction terms
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Jia and Ku(2019): the result of interaction terms
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Jia and Ku(2019): the result of interaction terms
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Jia and Ku(2019): the result of interaction terms
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Jia and Ku(2019): Placebo Test
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Summary
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Wrap up

• We extend our multiple ols model form linear to nonlinear in Xs(the

independent variables)

• Polynomials,Logarithms and Interactions
• Themultiple regression framework can be extended to handle regression
functions that are nonlinear in one or more Xs.

• the difference between a standardmultiple OLS regression and a nonlinear OLS
regressionmodel in Xs is mainly how to explain estimating coefficients.

• All of these are very useful and common tools with OLS regressions. It’s

important to understand them clearly.
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