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Nonlinear Regression Functions

• How to extend linear OLSmodel to be nonlinear? Two categories based on

which is nonlinear?

1. Nonlinear in Xs(the previous lecture)
• Polynomials,Logarithms and Interactions
• Themultiple regression framework can be extended to handle regression
functions that are nonlinear in one or more X.

• the difference from a standardmultiple OLS regression is how to explain estimating
coefficients.

• So far the dependent variable (Y) has been continuous:
• testscore
• average hourly earnings
• GDP growth rate

• What if the outcome variables(Y) is discrete or limited.
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Nonlinear Regression Functions

2. Nonlinear in β orNonlinear in Y

• Discrete(or Categorical) dependent variables
• employment status: full-time,part-time,or none
• ways to commute to work:by bus, car or walking
• occupation(or sector) choices�
• demand for products: buy A, B or C

• Linear function is not a good prediction function. Need a certain function which

parameters enter nonlinearly.

• OLS is not our first choice to estimate the model but theMaximum Likelihood

Estimation(MLE)with the cost of pre-assumption about the known distribution

families.

• Interpreting the results more difficult for the nonlinearity.
5 / 120



Discrete and Limited Dependent Variable Models

• DiscreteModels:

• Limited Dependent Variable
• Censored data(删截): The information on the dependent variable of some
observations is lost,but not data on the regressors.(Only some Xs are missing)

• Truncated data(断尾): Both dependent variable and independent. variables of
some observations are missing for some reasons.(Both X and Y are missing for Y)

• Sample selection(样本选择): The sample are not randomly selected but based in
part on values taken by a dependent variable.(Both X and Y are missing for Z)

• Binary outcomesmodels andMultinomial choicemodels are covered here.
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Binary OutcomeModels
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Binary OutcomeModels

• Binary outcomes

• Y= get into college, or not; X = parental income.
• Y= person smokes, or not; X = cigarette tax rate, income.
• Y=mortgage application is accepted, or not; X = race, income, house characteristics,
marital status �

• Binary outcomesmodels:

• Logit ProbabilityModel(LPM)
• Logit model
• Probit model
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The Linear Probability Model(LPM)
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The Conditional Expectation

• If a outcome variable Y is binary, thus

Y =
{

1 if D = 1
0 if D = 0

• The expectation of Y is

E[Y ] = 1 × Pr(Y = 1) + 0 × Pr(Y = 0) = Pr(Y = 1)

which is the probability of Y = 1.
• Then we can extend it to the conditional expectation of Y equals to the the

probability of Y = 1 conditional on Xs,thus

E[Y |X1i, ..., Xki] = Pr(Y = 1|X1i, ..., Xki)
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Multiple OLS Regression

• Suppose our regressionmodel is

Yi = β0 + β1X1i + β2X2i + ... + βkXki + ui

• Based on Assumption 1, thus

E[ui|X1i, ..., Xki] = 0

• Then

E[Y |X1i, ..., Xki] = β0 + β1X1i + β2X2i + ... + βkXki
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The Linear Probability Model

• The conditional expectation equals the probability that Yi = 1 conditional on
X1i, ..., Xki

E[Y |X1i, ..., Xki] = Pr(Y = 1|X1i, ..., Xki)
= β0 + β1X1i + β2X2i + ... + βkXki

• Now a Linear ProbabilityModel can be defined as following

Pr(Y = 1|X1i, ..., Xki) = β0 + β1X1i + β2X2i + ... + βkXki
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The Linear Probability Model

• Themodel does not change essentially.

Yi = β0 + β1X1i + β2X2i + ... + βkXki + ui

• The different part is the interpretation the coefficient.Now the population

coefficient βj

∂Pr(Yi = 1|X1i, ..., Xki)
∂Xj

= βj

• βj can be explained as the change in the probability that Y = 1 associated with
a unit change in Xj
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LPM andMultiple OLS

• Almost all of the tools of Multiple OLS regression can carry over to the LPM

model.

• Assumptions are the same as for general multiple regressionmodel.
• The coefficients can be also estimated byOLS.
• Both t-statistic and F-statistic can be constructed as before.
• The errors of the LPM are always heteroskedastic, so it is essential that
heteroskedasticity-robust s.e. be used for inference.

• One difference is that both original R2 and adjusted-R2 are not meaningful
statistics now.
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An Example: Mortgage Applications

• Most individuals who want to buy a house apply for a mortgage at a bank. And

not all mortgage applications are approved.

• Question: What determines whether an application is approved or denied?

• Boston HMDA data: a data set onmortgage applications collected by the Federal

Reserve Bank in Boston.

Variable Description Mean SD

deny = 1 if application is denied 0.120 0.325

pi_ratio monthly loan payments / monthly income 0.331 0.107

black = 1 if applicant is black 0.142 0.350

• Our linear probability model is

Pr(Y = 1|X1i, X2i) = β0 + β1X1i + β2X2i
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An Example: Mortgage Applications

• Does the payment to income ratio affect whether or not a mortgage application is

denied?

d̂eny = −0.080 + 0.604 P/I ratio

(0.032)(0.098)

• The estimated OLS coefficient on the payment to income ratio

β̂1 = 0.604

• The estimated coefficient is significantly different from 0 at a 1% significance

level as the t-statistic is over 6.
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An Example: Mortgage Applications

• How should we interpret β̂1 ?

• An original one: payments/monthly income ratio increase 1(100%),then probability
being deniedwill also increase 0.6(60%).

• Another more reasonable one: payments/monthly income ratio increase
10%(0.1),then probability being denied will also increase 6%(0.06).

• Question: Does the effect matter? Or themagnitude of the effect is economically

large enough.

• Answer: An option is comparing with themean of dependent variable.

• Here deny rate = 0.12 means that the deny ratio will increase
0.06/0.12 × 100% = 50% if P/I Ratio increases 10%.
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An Example: Mortgage Applications

• What is the effect of race on the probability of denial,holding constant the P/I ratio?

• the differences between black applicants andwhite applicants.

d̂eny = −0.091 + 0.559 P/I ratio + 0.177black

(0.029) (0.089) (0.025)

• The coefficient on black, 0.177, indicates that an African American applicant has

a 17.7% higher probability of having amortgage application denied than a white

applicant, holding constant their payment-to-income ratio.

• This coefficient is significant at the 1% level (the t-statistic is 7.11).
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LPMAssumptions Similar to an OLS Regression

• Assumptions are the same as for general multiple regressionmodel:

1.
2.
3.
4.

• Advantages of the linear probability model:

• Easy to estimate and inference
• Coefficient estimates are easy to interpret
• Very useful under some circumstances like using IV.
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LPM’s Weakness: Heteroskedasticity

• The conditional variance of the error term ui is always heteroskedasticity.

Var (ui | X1i, · · · , Xki) ̸= σ2
u

• Always use heteroskedasticity robust standard errorswhen estimating a linear

probability model!
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LPM’s Weakness: Predicted values

• More serious problem: the predicted probability can be below 0 or above 1!
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Nonlinear Probability Models
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Introduction

• Intuition: Probabilities must be bounded between 0 and 1.

• To address this limitation, we consider a general probability model:

Pr(Yi = 1|X1, ...Xk) = G(Z)
= G(β0 + β1X1,i + β2X2,i + ... + βkXk,i)

where Z = β0 + β1X1,i + β2X2,i + ... + βkXk,i

• The function G(·) must satisfy two essential conditions:

• 0 ≤ G(Z) ≤ 1
• Monotonicity and continuity

• The central challenge is identifying an appropriate function G(Z) that
constrains predicted probabilities to the interval (0, 1).

• The cumulative distribution function(c.d.f)
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Math Review: The cumulative distribution function(c.d.f)

• The cumulative distribution function (c.d.f) of a random variable X at a given

value x is defined as the probability that X is smaller than x

FX(x) = Pr(X ≤ x)

• Assume that the probability mass function or probability distribution function

is fX(x), then the c.d.f is

FX(x) =


∑

t∈X
t≤x

fX(t) if X is discrete∫ x
−∞ fX(t)dt if X is continuous

• More importantly,the c.d.f satisfies

• 0 ≤ FX(x) ≤ 1
• monotonicity and continuity
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Logit and Probit functions

• Two common nonlinear functions
1. Probit Model

G(Z) = Φ(Z) =
∫ Z

−∞
ϕ(Z)dZ = 1√

2π

∫ Z

−∞
e− t2

2 dt

which is the standard normal cumulative distribution function
2. Logit Model

G(Z) = 1
1 + e−Z

= eZ

1 + eZ

which is the logistic cumulative distribution function.

• where
Z = β0 + β1X1i + β2X2i + ... + βkXki

• Several reasons why these two are chosen:
• good shapes, thus the predictions makemore senses.
• relatively easy to use and interprete them.
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Probit Model

• Probit regressionmodels the probability that Y = 1

Pr(Yi = 1|X1, ...Xk) = Φ(β0 + β1X1,i + β2X2,i + ... + βkXk,i)

• where Φ(Z) is the standard normal c.d.f, then we have

0 ≤ Φ(Z) ≤ 1

• Then it make sure that the predicted probabilities of the probit model are

between 0 and 1.
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Probit Model: Shape and Prediction Value
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Probit Model: Explaination to the Coefficient

• How should we interpret β̂1 ?

• Recall Z = β0 + β1X1,i + β2X2,i + ... + βkXk,i

• The coefficient βj is the change in the Z-value rather than the probability arising
from a unit change in Xj , holding constant other Xis.

• The effect on the predicted probability of a change in a regressor should be

computed by the general formula in the nonlinear regressionmodel(Key

concept 8.3)

1. computing the predicted probability for the initial value of the regressors,
2. computing the predicted probability for the new or changed value of the

regressors,
3. taking their difference.
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Probit Model: Explaination to the Coefficient
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The Predicted Probability: one regressor

• Suppose the probit population regressionmodel with only one regressors, X1

Pr(Y = 1|X1) = Φ(Z) = Φ(β0 + β1X1)

• Suppose the estimate result is β̂0 = −2 and β̂1 = 3,whichmeans

Z = −2 + 3X1

• Question: how to compute the probability change of X1 with a change from 0.4 to 0.5?
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The Predicted Probability: one regressor

• The probability that Y = 1 when X1 = 0.4, then z = −2 + 3 × 0.4 = −0.8, then
the predicted probability is

Pr(Y = 1|X1 = 0.4) = Pr(z ≤ −0.8) = Φ(−0.8)

• Likewise the probability that Y = 1 when X1 = 0.5, then
z = −2 + 3 × 0.5 = −0.5,the predicted probability is

Pr(Y = 1|X1 = 0.5) = Pr(z ≤ −0.5) = Φ(−0.5)

• Then the difference is

Pr(Y = 1|X1 = 0.5) − Pr(Y = 1|X1 = 0.4) =
Φ(−.5) − Φ(−.8) = 0.3085 − 0.2119 = 0.097
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The Predicted Probability: one regressor

32 / 120



Example: Mortgage Applications

• The probit model:

Pr(Y = 1|X1) = Φ(Z) = Φ(β0 + β1X1)

• Question: Does the payment to income ratio affect whether or not a mortgage

application is denied?

̂Pr(deny = 1|P/I ratio) = Φ(−2.19 + 2.97P/I ratio)
(0.16) (0.47)

• Answer: Yes, the payment to income ratio affects whether or not a mortgage

application is denied.
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Example: Mortgage Applications

• Question: What is the change in the predicted probability that an application will be

denied if P/I ratio increases from 0.3 to 0.4?

• The probability of denial when P/I ratio = 0.3

Φ(−2.19 + 2.97 × 0.3) = Φ(−1.3) = 0.097

• The probability of denial when P/I ratio = 0.4

Φ(−2.19 + 2.97 × 0.4) = Φ(−1.0) = 0.159

• Answer: The estimated change in the probability of denial is

0.159 − 0.097 = 0.062, whichmeans that the P/I ratio increase from from 0.3 to

0.4, the denial probability increase 6.2%.
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Effect of a Change in X: When X is continuous

• the P/I ratio increase from

• 0.3 to 0.4, denial probability increase 6.2%.
• 0.4 to 0.5, denial probability increase 9.7%.

• Marginal Effects for Xj

∂Pr(Y = 1|X1, ...Xk)
∂Xj

= ϕ(β0 + β1X1,i + β2X2,i + ... + βkXk,i) × βj

• Where ϕ(·) is the probability distribution function(p.d.f) of the standard

normal c.d.f.

• Hence, the effect of a change in X depends on the starting value of X and other

Xs like other nonlinear functions.
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Effect of a Change in X: Marginal Effects

• Then theMarginal Effects varies with the point of evaluation

• Marginal Effect at a Representative Value (MER):ME at X = X∗ (at representative
values of the regressors)

• Marginal Effect at Mean (MEM): ME at X = X̄(at the sample mean of the
regressors)

• AverageMarginal Effect (AME): average of ME at each X = Xi (at sample values
and then average)

• Themost common one is MEMwhile the other two are not meaningless.
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Example: Mortgage Applications

• TheMarginal Effect

∂Pr(deny = 1|P/I ratio)
∂P/I ratio

= ϕ(−2.19 + 2.97P/I ratio) × 2.97

• ThenMarginal Effect at Mean (MEM):(at the sample mean of the regressors:

P/I ratiomean = 0.331

∂Pr(deny = 1|P/I ratio)
∂P/I ratio at mean

= ϕ(−2.19 + 2.97 × 0.331) × 2.97

= ϕ(−1.21) × 2.97

• The the effect of P/I ratio change 10%(0.1) on the probability of deny is

3.36%(0.0336)
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Effect of a Change in X: When X is discrete

• If Xj is a discrete variable, then we should not rely on calculus in evaluating the

effect on the response probability.

• Assume X2 is a dummy variable, then partial effect of X2 changing from 0 to 1:

G(β0 + β1X1,i + β2 × 1 + ... + βkXk,i) − G(β0 + β1X1,i + β2 × 0 + ... + βkXk,i)
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Example: Race inMortgage Applications

• Mortgage denial (deny) and the payment-income ratio (P/I ratio) and race

̂Pr(deny = 1|P/I ratio) = Φ(−2.26 + 2.74P/I ratio + 0.71black)
(0.16) (0.44) (0.083)

• Question: What is the effect of race on the probability of denial, holding

constant the P/I ratio?

• The probability of denial when black = 0,thus whites(non-blacks) is

Φ(−2.26 + 2.74 × 0.3 + 0.71 × 0) = Φ(−1.43) = 0.075

• The probability of denial when black = 1,thus blacks is

Φ(−2.26 + 2.74 × 0.3 + 0.71 × 1) = Φ(−0.73) = 0.233

• Answer: The difference between whites and blacks at P/Iratio = 0.3 is
0.233 − 0.075 = 0.158, whichmeans probability of denial for blacks is 15.8% higher
than that for whites. 39 / 120



Logit Model
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Logistic Function

• Using the standard logistic cumulative distribution function

Pr(Yi = 1|Z) = 1
1 + e−Z

= eZ

1 + eZ

• As in the Probit model

Z = β0 + β1X1,i + β2X2,i + ... + βkXk,i

• Since F (z) = Pr(Z ≤ z) we have that the predicted probabilities of the logit
model are also between 0 and 1.
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Logit Model: Predicted Probabilities

• Suppose we have only one regressor X and Z = −2 + 3X1

• We want to know the probability that Y = 1 when X1 = 0.4
• Then

Z = −2 + 3 × 0.4 = −0.8

• So the probability is

Pr(Y = 1|X1 = 0.4) =

Pr(Z ≤ −0.8)
=F (−0.8)

= 1
1 + e−0.8

=0.31
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Logit Model: Predicted Probabilities

• Pr(Y = 1) = Pr(Z ≤ −0.8) = 1
1+e−0.8 = 0.31
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Logit Model: Predicted Probabilities
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Logit Model: Explaination to the Coefficient

• How should we interpret β̂1 ?

• Similar to the Probit model,Z = β0 + β1X1,i + β2X2,i + ... + βkXk,i

• The coefficient βj can not be explained directly.
• the change in theZ-value rather than the probability arising from a unit change in

Xj , holding constant other Xi.

• However, Logit can be different from the Probit model in some way

• The odds ratio
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Logit Model: the Odds Ratio

• Let p is the conditional probability of Y = 1,then

p = Pr(Yi = 1|Z) = eZ

1 + eZ

• Then 1 − p is the probability of Y = 0

1 − p = Pr(Yi = 0|Z) = 1 − eZ

1 + eZ
= 1

1 + eZ

• Then the ratio of probability of Y = 1 to the probability of Y = 0 is

p

1 − p
= Pr(Yi = 1|Z)

Pr(Yi = 0|Z)
= ez

• the p
1−p is called asOdds Ratio .
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Logit Model: the Odds Ratio

• Then the logit model can be expressed as

ln
( p

1 − p

)
= Z = β0 + β1X1,i + β2X2,i + ... + βkXk,i

• Therefore 100 × β̂j can be expressed that the percentage change in odds ratio

arising from 1 unit change in Xj .
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Example: Mortgage Applications

• Logit Model: Mortgage denial (deny) and the payment-to-income ratio (P/I ratio)

̂Pr(deny = 1|P/I ratio) = F (−4.03 + 5.88P/I ratio)
(0.359) (1.000)

• If P/I ratio increases 10%(0.1), then odds ratio of deny to acceptwill be

increased 58.8%.

47 / 120



Marginal Effect in logit model

• ThenMarginal Effect at Mean (MEM):(at the sample mean of the regressors:

P/I ratiomean = 0.331

∂Pr(deny = 1|P/I ratio)
∂P/I ratio at mean

= f(−2.19 + 2.97 × 0.331) × 2.97

= f(−1.21) × 2.97
= 0.526

• The the effect of P/I ratio change 10%(0.1) on the probability of deny is

5.26%(0.0526)
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Example: Mortgage Applications on Race

• Logit Model: Mortgage denial (deny) and the payment-to-income ratio (P/I ratio)

and race

̂Pr(deny = 1|P/I ratio) = F (−4.13 + 5.37P/I ratio + 1.27black)
(0.35) (0.96) (0.15)
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Example: Mortgage Applications on Race

• The predicted denial probability of awhite applicant with P/I ratio = 0.3 is

1
1 + e−(−4.13+5.37×0.3+1.27×0) = 0.074

• The predicted denial probability of a black applicant with P/I ratio = 0.3 is

1
1 + e−(−4.13+5.37×0.3+1.27×1) = 0.222

• the difference is

0.222 − 0.074 = 0.148 = 14.8%

which indicates that the probability of denial for blacks is 14.8% higher than

that for whites when P/Iratio = 0.3.
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Maximum Likelihood Estimation(MLE) to Probit and Logit
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Estimation and Inference in Probit and Logit Models

• How do we estimate β0, β1, ..., βk?

• And how to get the sampling distribution of these estimators? σβ̂j

• Logit and Probit models are nonlinear in the coefficients β0, β1, ..., βk

• These models cannot be estimated directly by OLS, but requireNonlinear Least
Squares (NLS).

• In practice,Maximum Likelihood Estimation (MLE) is the most commonmethod
for estimating logit and probit models.
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Review: Maximum Likelihood Estimation

• The likelihood function is a joint probability distribution of the data, treated as a

function of the unknown coefficients.

• It describes the probability of the data we observed or the sample from the

population, given the unknown coefficients.

• Themaximum likelihood estimator (MLE) are the estimate values of the

unknown coefficients that maximize the likelihood function.

• MLE’s logic: the most likely function is the function to have produce the data we

observed.
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Review: Maximum Likelihood Estimation

• Random Variables Yi have n observations, thus Y1, Y2, Y3, ...Yn have a joint

density function denoted

fθ(Y1, Y2, ..., Yn) = f(Y1, Y2, ..., Yn|θ)

• where θ is an unknown parameter.

• Given observed values Y1 = y1, Y2 = y2, ..., Yn = yn,the likelihood of θ is the

function

likelihood(θ) = f(Y1 = y1, Y2 = y2, ..., Yn = yn|θ) = f(θ; y1, ..., yn)

• which can be considered as a function of θ.

• Then theMaximum Likelihood Estimation to θ is a solution to the question

arg max
θ̂

f(θ; Y1 = y1, ..., Yn = yn))
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Maximum Likelihood Estimation of a Binary Variable

• Suppose we flip a coin which is yields heads (Y = 1) and tails (Y = 0). We want

to estimate the probability p of heads(Y = 1).
• Therefore, let Yi = 1(heads) be a binary variable that indicates whether or not a
heads is observed.

Yi =
{

1 with probability p

0 with probability 1 − p

• Then the probabilitymass function for a single observation is a Bernoulli

distribution

Pr(Yi) =

p when Yi = 1

1 − p when Yi = 0

• Which can be transform into a probability density function as

Pr(Yi = y) = Pr(Yi = 1)y(1 − Pr(Yi = 1))1−y = py(1 − p)1−y
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Maximum Likelihood Estimation of a Binary Variable

MLE Step 1: write down the likelihood function, the joint probability distribution of the data

• Since Y1, ..., Yn are i.i.d,the joint probability distribution of the observations,

thus the Likelihood function is the product of the individual distributions

fbernouilli(p; Y1 = y1, ..., Yn = yn) = Pr(Y1 = y1, ..., Yn = yn)

= Pr(Y1 = y1) × ... × Pr(Yn = yn)
= py1(1 − p)1−y1 × ... × pyn(1 − p)1−yn

= p(y1+y2+...+yn)(1 − p)n−(y1+y2+...+yn)

= p
∑

yi(1 − p)n−
∑

yi
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Maximum Likelihood Estimation of a Binary Variable

MLE Step 2: Write down the maximization problem

• More easier to maximize the logarithm of the likelihood function

ln(fbernouilli(p; Y1 = y1, ..., Yn = yn)) = ln

( n∏
i=1

pyi(1 − p)1−yi

)

=
(∑

yi

)
ln(p) +

(
n −

∑
yi

)
ln(1 − p)

• Since the logarithm is a strictly increasing function, maximizing the likelihood

or the log likelihood will give the same estimator.

• Then themaximization problem is

arg max
p̂

ln(fbernouilli(p; Y1 = y1, ..., Yn = yn))
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Maximum Likelihood Estimation of a Binary Variable

MLE Step 3: Maximize the likelihood function

• F.O.C: taking the derivative and setting it to zero.

⇒ d

dp

[(∑
yi

)
ln(p) +

(
n −

∑
yi

)
ln(1 − p)

]
= 0

⇒
∑

yi

p
− n −

∑
yi

1 − p
= 0

⇒
∑

yi(1 − p) = (n −
∑

yi)p

⇒
∑

yi − p
∑

yi = np − p
∑

yi

⇒p = 1
n

∑
yi

• Then theMLE estimator for a binary variable, p, is p̂MLE = 1
n

∑
yi = Y
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MLE of the Probit Model

• Assume our probit model is

P (Yi = 1|Xi) = Φ(β0 + β1X1i + ... + βkXki) = pi

• Step 1: write down the likelihood function

fprobit(β0, ..., βk; Y1, ..., Yn|X1i, ..., Xki, i = 1, ..., n) = P r(Y1 = y1, .., Yn = yn)

= P r(Y1 = y1) × ... × P r(Yn = yn)

= py1 (1 − p)1−y1 × ... × pyn (1 − p)1−yn

=
[

Φ(β0 + β1X11 + ... + βkXk1)y1 (1 − Φ(β0 + β1X11 + ... + βkXk1))1−y1

]
×

... ×
[

Φ(β0 + β1X1n + ... + βkXkn)yn (1 − Φ(β0 + β1X1n + ... + βkXkn))1−yn

]
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MLE of the Probit Model

• Step 2: Maximize the log likelihood function

ln(fprobit(β0, ..., βk; Y1, ..., Yn|X1i, ..., Xki, i = 1, ..., n))

=
n∑
i

yi × ln[Φ(β0 + β1X1i + ... + βkXki)]

+
n∑
i

(1 − yi) × ln[1 − Φ(β0 + β1X1i + ... + βkXki)]

• Then the maximization problem is

arg max
β̂0,β̂1,..,β̂k

ln(fprobit(β0, β1, ..., βk; Y1 = y1, ..., Yn = yn|X1i, ..., Xki, i = 1, ..., n))
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MLE of the Logit Model

• Step 1write down the likelihood function

Pr(Y1 = y1, ..., Yn = yn) = py1(1 − p)1−y1 × ... × pyn(1 − p)1−yn

• Similar to the Probit model but with a different function for pi

pi = 1
1 + e−(β0+β1X1i+...+βkXki)
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MLE of the Logit Model

• Step 2: Maximize the log likelihood function

ln(flogit(β0, ..., βk; Y1, ..., Yn|X1i, ..., Xki, i = 1, ..., n))

=
∑

yi × ln

( 1
1 + e−(β0+β1X1i+...+βkXki)

)
+
∑

(1 − yi) × ln

( 1
1 + e−(β0+β1X1i+...+βkXki)

)
- Then themaximization problem is

arg max
β̂0,β̂1,..,β̂k

ln(flogit(β0, ..., βk; Y1 = y1, ..., Yn = yn|X1i, ..., Xki, i = 1, ..., n))
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Computation of MLE Estimators

• In most cases the computation of maximum likelihood estimators is not easy to

obtain since the first order conditions do not have closed form solutions

necessarily.

• We can still obtain the values of estimators using numerical algorithmwith

iterative methods.

• One of commonmethods isNewton-RaphsonMethod based on low order Taylor

series expansions.
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Measures of Fit

• R2 is a poor measure of fit for the linear probability model. This is also true for

probit and logit regression.

• Twomeasures of fit for models with binary dependent variables

1. fraction correctly predicted

• If Yi = 1 and the predicted probability exceeds 50% or if Yi = 0 and the predicted
probability is less than 50%, then Yi is said to be correctly predicted.
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Measures of Fit

2. The pseudo-R2

• The pseudo − R2 compares the value of the likelihood of the estimatedmodel to
the value of the likelihood when none of the Xs are included as regressors.

pseudo − R2 = 1 −
ln(fmax

probit)
ln(fmax

bernoulli)

• fmax
probit is the value of the maximized probit likelihood (which includes the X’s)

• fmax
bernoulli is the value of the maximized Bernoulli likelihood (the probit model
excluding all the X’s).
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Statistical inference based on theMLE

• It can be prove that under very general conditions,theMLE estimator is

unbiased,consistent, asymptotic normally distributed in large samples. See the

Appendix for MLE in OLS regression.

• Because theMLE is normally distributed in large samples, statistical inference

about the probit and logit coefficients based on theMLE proceeds in the same

way as inference about the linear regression function coefficients based on the

OLS estimator.

• That is, hypothesis tests are performed using the t-statistic(or z-statistic) and

confidence intervals are also formed using the normal distribution.

• For example, the 95% confidence intervals are formed as 1.96 standard errors.
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Statistical inference based on theMLE

• Testing of joint hypotheses onmultiple coefficients are very similar to the

F-statisticwhich is discussed inmultiple OLSmodel.

• The likelihood ratio test is based on comparing the log likelihood values of the

unrestricted and the restricted model. The test statistic is

LR = 2(logLur − LogLr) ∼ χ2
q

• where logLur is the log likelihood of the unrestricted model, logLr is the log
likelihood of the restricted model, and q is the number of restrictions being tested.

• Because theMLEmaximizes the log-likelihood function, dropping variables

generally leads to a smaller—or at least no larger—log-likelihood.

• The question is whether the fall in the log-likelihood is large enough to

conclude that the dropped variables are important.
• Therefore, the likelihood ratio test statistic is always non-negative.
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Comparing the LPM,Probit and Logit

• All threemodels: linear probability, probit, and logit are just approximations to the

unknown population regression function E(Y |X) = Pr(Y = 1|X).
• LPM is easiest to use and to interpret, but it cannot capture the nonlinear nature of
the true population regression function.

• Probit and logit regressions model this nonlinearity in the probabilities, but their
regression coefficients are more difficult to interpret.

• So which should you use in practice?

• There is no one right answer, and different researchers use different models.
• Probit and logit regressions frequently produce similar results.
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Logit v.s. Probit
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Comparing the LPM,Probit and Logit

• Themarginal effects and predicted probabilities are muchmore similar across

models.

• Coefficients can be compared across models, using the following rough

conversion factors (Amemiya 1981)

β̂logit ≃ 4β̂ols

β̂probit ≃ 2.5β̂ols

β̂logit ≃ 1.6β̂probit
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Example: Mortgage Applications(short regression)
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Multinomial RegressionModels
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Introduction

• Themultinomial regressionmodel is an extension of the binary dependent

variable model to allow for more than two categories of the dependent variable,

shuch as the choice of occupation, transportationmode, etc.

• Occupation choice: self-employed, government employee, private sector employee,
etc.

• Major Choices: Economics, Statistics, Computer Science, etc.
• Transportationmode: car, bus, bike, subway, etc.
• Demand for goods: Coke, Pepsi, Sprite, etc.

• One important feature: the outcomes cannot be ordered in any natural way.
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Multinomial RegressionModels

• There are m mutually-exclusive alternatives:
• Yi takes value j if the outcome is alternative j , j = 1, ..., m, where m ≥ 2.

Yi =



1 if the outcome is A

2 if the outcome is B
...

...

m if the outcome is M

• The respondents face thosem alternatives and can only choose one among them.

• Question: Can we use an OLS regression to model this situation? Like

Yi = β0 + β1X1i + β2X2i + ... + ui

• Answer: No, because the dependent variable’s values lack a meaningful order.
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Multinomial RegressionModels

• Naturally we can use a binary choicemodel(LPM, probit, logit) to model the

situation by grouping all categories into twomajor ones.

• Suppose the i individual’s choice is J ,then we can turn the Yij into a binary

variable.

Yij =

1 if the outcome is J

0 if the outcome is not J

• Yij = 1 if alternative J is chosen and Yij = 0 for all non-chosen alternatives for any
individual i.

• Though Binary choicemodels could potentially be used,this is not ideal.

• We can not compare the coefficients across different alternatives directly.
• Those alternatives are mutually exclusive.
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Multinomial RegressionModels

• However, if Yi takes value j if the outcome is alternative j , j = 1, ..., m, then the

probability that the outcome is alternative j can bemodeled as

P (Yi = J |X1i, ..., Xki) = fij(β : X) = pij

• Then the p.d.f of individual i’ choice among alternatives j is

fi(β : X) = pyi1
i1 × pyi2

i2 × . . . × pyim
im =

m∏
j=1

p
yij

ij

• UsingMLE estimation to maximize the log-likelihood function to solve the

parameters β.

ln L(·) = ln
(

N∏
i=1

fij (β : X)
)

= ln

 N∏
i=1

m∏
j=1

p
yj

j

 =
N∑

i=1

m∑
j=1

yij ln pij
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Multinomial Logit Model

• The functional form is the key to solve the multinomial regression

model.Likewise, there are two functional forms for the multinomial models:

• Logit and Probit

• Themultinomial logit model orM-logit is the most common form of

multinomial regressionmodel.

• As dealing with the categorized independent variables in linear regression

models, we still need a reference category, the base category, to compare with

alternatives.

• Which is the necessary condition for the identification of the model.
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Multinomial Logit Model

• The base category will not be included in the model, as we avoid the dummy

variable trap in linear regression with categorized independent variables.

• Assume the reference category is J = 1, and let β1 = 0, then the probability that

the outcome is alternative j can be expressed as following:

P (Yi = J |X1i, ..., Xki) =


1

1+
∑M

j=2 exp(X′βj)
if J=1

exp(X′βJ )
1+
∑M

j=2 exp(X′βj)
if J=2,3,...,M
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Multinomial Logit Model: Coefficients Interpretation

• Then the probability that the outcome is alternative J can be expressed as following

under the distributional assumption of the error term:(Skip the derivation, you

can prove it by yourself.)

pij = P (Yi = J |X1i, ..., Xki) = exp(X ′βJ)
ΣM

j=1exp(X ′βj)

• Question: How to interpret the coefficients?

• Answer:the parameters of the multinomial logit model are difficult to interpret.

Neither the sign nor the magnitude of the parameter has an direct intuitive

meaning.
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Multinomial Logit Model: Marginal Effects

• Themarginal probability effects of the multinomial logit model for a change of

Xk for choice J can be calculated as follows:

MPEijk = ∂pij

∂Xik
= pij

βjk −
M∑

j=1
pijβjk


• Then the averagemarginal probability effects (AMPE) for a change ofXk can be

calculated as follows:

̂AMPEjk = 1
n

n∑
i=1

M̂PEijk (j = 1, . . . , M)

• themarginal probability effects at mean(MPEM) for a change of Xk can be

calculated as

M̂PEM jk = p̄ij

β̂jk −
M∑

j=1
p̄ij

 (j = 1, . . . , M)
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Multinomial Logit Model: odds/risk ratio

• Recall the odds ratio in the binary choice model, thus the ratio of probability of

Y = 1 to the probability of Y = 0 is

p

1 − p
= Pr(Yi = 1|Z)

Pr(Yi = 0|Z)
= ez

• Then the odds ratio of themultinomial logitmodel is the ratio of the probability

of choosing alternative J to the probability of choosing the base category 1 is

pj

p1
= Pr(Yi = j|Z)

Pr(Yi = 1|Z)
=

exp(X′βJ )
1+
∑M

j=2 exp(X′βj)
1

1+
∑M

j=2 exp(X′βj)

= exp(X ′βJ)

• Therefore 100 × β̂k can be expressed that the percentage change in odds ratio

for choice J relative to the base category 1 arising from a unit change in Xk .
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Multinomial Logit Model: Strong Assumption

• Likewise,the odds between two alternatives j and k is

pj

pk
= Pr(Yi = j|Z)

Pr(Yi = k|Z)
=

exp(X′βj)
1+
∑M

j=2 exp(X′βj)

exp(X′βk)
1+
∑M

j=2 exp(X′βj)

= exp(X ′(βj − βk))

• Then the log odds ratio is

log( pj

pk
) = X ′(βj − βk)

• It only depends on the corresponding two probabilities (but not those of other

alternatives). This is known as independence of irrelevant alternatives (IIA).

• Essentially, the IIA assumption requires that all the alternatives are

independent of each other.
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Independence of Irrelevant Alternatives (IIA)

• The IIA assumption is a strong assumption, which is not always satisfied in

practice.

• Example: TransportationMode Choice: suppose a person chooses between car,
subway, and bus

• Under IIA, the ratio of probabilities between any two choices (e.g., car vs subway)
should not change if a third option (bus) is added or removed.

• However, in reality, if bus service is removed, many bus riders might switch to
subway rather than car, violating IIA

• This is because subway and bus are closer substitutes than car and bus.

• Therefore, we havemore flexible models to relax the IIA assumption as nested

logit model andmixed logit model.(Youmay learn them in some advanced

courses in your future study.)
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Wrap-up

• Multinomial Probit Model

• Themultinomial probit model is a generalization of the probit model to the case of
more than two outcomes.

• Themodel assumes that the error terms are normally distributed.
• Themodel is more flexible than the multinomial logit model, but it is
computationally more demanding.

• Extension for relaxing the IIA assumption:

• Nested Logit Model
• Mixed Logit Model
• Conditional Logit Model

• Another extension: Ordered Probit or Logit models

• The ordered probit or logit models are used when the dependent variable is ordinal.
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A Lastest Application: Jia,Lan andMiquel(2021)
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Parental background and Entrepreneurship in China

• Ruixue Jia(贾瑞雪), Xiaohuan Lan(兰小欢) and Gerard Padrói Miquel, “Doing

Business in China: Parental background and government intervention

determine who owns business”,The Journal of Development Economics,Volume

151, June 2021.

• Main Question:

1. the parental determinants of entrepreneurship in China.
2. how the parental determinants of entrepreneurship vary with government

intervention in the economy.
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Jia,Lan andMiquel(2021): Data

1. Individual-level data:

• China General Social Survey (GCSS) 2006,2008,2010,2012,2013
• 31 provinces, 22801 urban respondents.

2. Province-level data:

• China Statistic Yearbooks.
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Jia,Lan andMiquel(2021): Main Variables

• Independent Variables: cadre parents and entrepreneur parents

• cadre parents: “does a parent work in government or in a public organization affiliated
with the government?”

• entrepreneur parents: business owner + self-employed

• Dependent Variables: whether the respondent is

• business owner: all owners of incorporated businesses, whomust pay corporation
tax and follow corporation law.

• self-employment: owners of non-incorporated small businesses.
• goverment employee: work in government or in a public organization affiliated
with the government.
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Parental Background and Doing Business

• Goal: examine the difference in the probability of being in different occupations

between those with entrepreneur parents, cadre parents and others.

• Linear Probability Model:

P r(Y = 1|X) = β1CardreParenti + β2EntreParenti + γXi + P rovp × Y eart + uipt

• Yi is a dummy indicating the respondent’s occupation,all the other occupations
grouped together in the reference group.

• Xi are individual-level characteristics such as gender,age, marital status, college
education or not, andminority status.

• Provp × Y eart are the province-by-year fixed effects.
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Empirical Results: LPM

• Cadre Parents increase the probability of being government workers(11.5%).

• Entrepreneur Parents do not.
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Empirical Results: LPM

• Entrepreneur Parents increase the probability of being business owner(1.6%).

• Cadre Parents also increase the probability of being business owner(0.6%).

However, the effect will go away when controlling individual characteristics.
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Empirical Results: LPM

• Entrepreneur Parents increase the probability of being self-employed(6%).

• Cadre Parents decrease the probability of self-employment(1.1%).
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Empirical Results: Multinomial Logit

Work in government

• Cadre Parents increase the odds of being
a government relative to be a firm
employee by over 2 times significantly.

• Entrepreneur Parents increase the odds
of being a government relative to be a
firm employee but the effect is not
significant.
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Empirical Results: Multinomial Logit

Being a business owner

• Cadre Parents increase the odds of being
a business owner relative to be a firm
employee by over 1.4 times significantly.

• Entrepreneur Parents increase the odds
of being a business owner relative to be a
firm employee by over 1.7 times
significantly.
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Empirical Results: Multinomial Logit

Being self-employed

• Cadre Parents don’t increase the odds of
being self-employed relative to be a firm
employee.

• Entrepreneur Parents increase the odds
of self-employed relative to be a firm
employee by over 1.6 times significantly.
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Summary of LPM andMultinomial Logit

Parents Model Government Business Owner Self-employ

Cadre LPM ↑ ↑ ↓
Cadre MLogit ↑ ↑ −

Entrepreneur LPM − ↑ ↑
Entrepreneur MLogit − ↑ ↑

• The LPM andMLogit models provide very similar results.
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Parental Background and Local Economic Context

• Measurement: Provincial Government Expenditure on Business-related

activities(PGEB) as a measure of the role of government on the private business

environment.

• Expenditure on Business-related activities: Infrastructure andMCF
(Manufacturing/Commerce/Finance).

• Robustness:

• weakly correlated with GDP
• negatively correlatedmarketization index.
• relatively smaller share of private sector.
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Descriptive patterns: cross-provinces

98 / 120



Descriptive patterns: cross-provinces
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Descriptive patterns: cross-provinces
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Parental Background and Local Economic Context

• Question: Whether the association between parental occupation and business

ownership varies with the level of government intervention in the business

environment?.

• Linear ProbabilityModel: Interacted with PGEB

Pr(Y = 1|X) = β1CardreParenti + β2CardreParenti × PGEBpt

+β3EntreParentsi + β4EntreParentsi × PGEBpt

+γXi + γXi × PGEBpt + Provp × Y eart + uipt

• Question: Which parameter is our interest? and how to interpret it?

• Answer: β2 and β4 are the coefficients of the interaction terms between parental

occupation and PGEB.

• Thinking 1: Why there is no PGEB term in the model?
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Empirical Results: LPM+Interactions
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Empirical Results: LPM+Interactions
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Empirical Results: LPM+Interactions
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Jia,Lan andMiquel(2021): Main Findings

1. Is there intergenerational transmission of entrepreneurship in China?

• Yes, and the magnitude is similar to findings elsewhere.

2. Do children of government officials have a higher likelihood of becoming

entrepreneurs?

• Yes, in particular they have a high likelihood of owning incorporated businesses.

3. Do parental determinants depend on the role of government?

• Yes. the larger is government involvement in business-related spending, the larger
the business-ownership propensity of children of government officials, and the
smaller the propensity of children of entrepreneurs.
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Wrap Up
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Summary

• The key assumptions of these models are similar to those of OLS regression.

• If it suffers OVB or other potential endogenous bias, then the coefficient estimates
are biased and inconsistent even we use theMLE to estimate the parameters rather
than OLS.

• Although Probit and Logit offer some advantages in model specifications over

LPM, LPM is more intuitive and easier to interpret.

• This is particularly useful when we want to deal with the endogeneity problem.

• When the dependent variable is binary,evenmultinomial, the LPM remains a

good starting point for empirical analysis.
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Appendix 1
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Appendix 1: MLE in Simple Linear Regression

• Suppse the simple linear regressionmodel is

Yi = β0 + β1Xi + ui

• Nowwe have two estimation approaches:

• OLS
• MLE

• Recall the Simple OLS estimator is

β̂1,OLS =
∑n

i=1(Xi − X̄)(Yi − Ȳ )∑n
i=1(Xi − X̄)2

• How to get theMLE estimator of β0 and β1?
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MLE Estimation of Simple Linear Regression

• Wemaintain the same three assumptions as in OLS:

• MLE Assumption 1: X1i is exogenous, thus E(ui|X1i) = 0
• MLE Assumption 2: ui is independently distributed.
• MLE Assumption 3: Large outliers are unlikely.

• Additionally, MLE requires twomore assumptions:

• MLE Assumption 4: ui is normally distributed, thus

ui ∼ N(0, σ2)

• MLE Assumption 5: ui is homoskedastic, thus

V ar(ui|X1i) = σ2
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MLE Estimation of Simple Linear Regression

• Step 1: Write down the likelihood function

L(β0, β1, σ2) =
n∏

i=1
f(Yi|Xi, β0, β1, σ2)

• where

f(Yi|Xi, β0, β1, σ2) = 1√
2πσ2

exp

(
−(Yi − β0 − β1Xi)2

2σ2

)
• Step 2: Maximize the log likelihood function

ln(L(β0, β1, σ2)) =
n∑

i=1
ln

(
1√

2πσ2
exp

(
−(Yi − β0 − β1Xi)2

2σ2

))
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MLE Estimation of Simple Linear Regression

• First order conditions(FOC):

• For β0: ∂ ln L
∂β0

=
∑n

i=1(Yi − β0 − β1Xi) = 0
• For β1: ∂ ln L

∂β1
=
∑n

i=1(Yi − β0 − β1Xi)Xi = 0
• For σ2: ∂ ln L

∂σ2 = − n
2σ2 + 1

2σ4

∑n
i=1(Yi − β0 − β1Xi)2 = 0

• MLE Solutions:

• β̂0 = Ȳ − β̂1X̄

• β̂1 =
∑n

i=1
(Yi−Ȳ )(Xi−X̄)∑n

i=1
(Xi−X̄)2
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MLS vs OLS

• For slope and intercept:

β̂MLE
0 = β̂OLS

0

β̂MLE
1 = β̂OLS

1

• Therefore, the MLE estimator is identical to the OLS estimator.

• However, for variance:

σ̂2
MLE = 1

n

n∑
i=1

(Yi − β̂0 − β̂1Xi)2

σ̂2
OLS = 1

n − 2

n∑
i=1

(Yi − β̂0 − β̂1Xi)2

• When n is small, σ̂2
MLE < σ̂2

OLS (MLE underestimates the variance)

• When n is large, σ̂2
MLE and σ̂2

OLS are very close to each other

• Note: While we focus more on the properties of coefficient estimates (β), the

variance estimator is important for statistical inference (standard errors and

hypothesis testing).
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MLS vsMLE

• Under the assumption of normality and homoskedasticity, OLS andMLE give

identical point estimates for β0 and β1.

• OLS estimator is BLUE (Best Linear Unbiased Estimator)

• MLE provides theoretical justification for OLS under normality

• When error distribution is non-normal, MLEmay differ from OLS

• This relationship extends to multiple regression: Y = Xβ + u

• If these assumptions fail, more specialized estimationmethods may be needed.
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Appendix 2: Newton-RaphsonMethod
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Math Review: Taylor Expressions

• Recall Taylor series of a function f(x) at a certain value of x,thus x0,

f(x) = f(x0) + f ′(x0)
1!

(x − x0) + f ′′(x0)
2!

(x − x0)2 + ...
∞∑

n=0

f (n)(x0)
n!

(x − x0)n

• Then we can have the Taylor expression of f(x) at first and second orders

f(x) ≃ f(x0) + f ′(x0)(x − x0)

f(x) ≃ f(x0) + f ′(x0)(x − x0) + f ′′(x0)
2

(x − x0)2
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Newton-RaphsonMethod

• Objective: find the solution of x to a equation: f(x) = 0
• An alternative way: find some x make

f(x0) + f ′(x0)(x − x0) = 0

• Here the x0 is some initial value that we guess, which is close to the desired

solution. And then we obtain a better approximation x1, based on

x1 = x0 − f(x0)
f ′(x0)

• We do not stop repeating this procedure until

f(xj) = 0

where the xj is the solution to the function.
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Newton-RaphsonMethod
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Newton-RaphsonMethod

• Objective: find the solution of x to the F.O.C equation: f ′(x) = 0
• Then we need the Taylor expression of f(x) at second order

f(x) ≃ f(x0) + f ′(x0)(x − x0) + f ′′(x0)
2

(x − x0)2

• F.O.C for f ′(x) = 0

d

d(x − x0)

[
f (x0) + f ′ (x0) (x − x0) + 1

2
f ′′ (x0) (x − x0)2

]
= 0

⇒f ′ (x0) + f ′′ (x0) (x − x0) = 0

⇒x = x0 − f ′ (x0)
f ′′ (x0)

• Repeating this procedure until f ′(xj) = 0 where the xj is the solution to the

function.
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Computation of MLE estimators

• For simplicity, assume only one parameter θ, the maximum likelihood function

is L(θMLE).
• Then the F.O.C for the problem of maximization is as following

∂L(θMLE)
∂θ

= 0

• A initial guess of the parameter value, which denotes as θ0. Then theMLE

estimator,θ̂1 can be calculated by

θ̂1 ≃ θ0 −
[

∂2L(θ0)
∂θ2

]−1 ∂L(θ0)
∂θ

• We do not stop repeating this procedure until

∂L(θ̂MLE,j)
∂θ

= 0

,where the θ̂MLE,j is the solution to the function.
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