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Review of the last lecture

Binary Outcome Models

The Linear Probability Model(LPM)

Nonlinear Probability Models

Logit Model

Maximum Likelihood Estimation(MLE) to Probit and Logit
Multinomial Regression Models

A Lastest Application: Jia,Lan and Miquel(2021)
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Nonlinear Regression Functions

* How to extend linear OLS model to be nonlinear? Two categories based on
which is nonlinear?

1. Nonlinear in Xs(the previous lecture)
* Polynomials,Logarithms and Interactions
* The multiple regression framework can be extended to handle regression
functions that are nonlinear in one or more X.
¢ the difference from a standard multiple OLS regression is how to explain estimating
coefficients.

¢ So far the dependent variable (Y) has been continuous:
e testscore
* average hourly earnings
* GDP growth rate

* What if the outcome variables(Y) is discrete or limited.
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Nonlinear Regression Functions

2. Nonlinear in 5 or Nonlinear in Y

* Discrete(or Categorical) dependent variables
 employment status: full-time,part-time,or none
* ways to commute to work:by bus, car or walking
* occupation(or sector) choices
¢ demand for products: buy A, B or C
* Linear function is not a good prediction function. Need a certain function which
parameters enter nonlinearly.
* OLS is not our first choice to estimate the model but the Maximum Likelihood
Estimation(MLE) with the cost of pre-assumption about the known distribution
families.

* Interpreting the results more difficult for the nonlinearity.
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Discrete and Limited Dependent Variable Models

¢ Discrete Models:

* Limited Dependent Variable
* Censored data(ffi&): The information on the dependent variable of some
observations is lost,but not data on the regressors.(Only some Xs are missing)
* Truncated data(l#ff€): Both dependent variable and independent. variables of
some observations are missing for some reasons.(Both X and Y are missing for Y)
» Sample selection(# A% #%): The sample are not randomly selected but based in
part on values taken by a dependent variable.(Both X and Y are missing for Z)
* Binary outcomes models and Multinomial choice models are covered here.
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Binary Outcome Models

* Binary outcomes
* Y= getinto college, or not; X = parental income.
* Y= person smokes, or not; X = cigarette tax rate, income.
* Y=mortgage application is accepted, or not; X = race, income, house characteristics,
marital status

* Binary outcomes models:

* Logit Probability Model(LPM)
* Logit model
* Probit model
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The Conditional Expectation

* If a outcome variable Y is binary, thus

lifD =1
0if D=0

* The expectation of Y is
EY|=1xPr(Y =1)4+0xPr(Y =0)=Pr(Y =1)

which is the probability of Y = 1.

* Then we can extend it to the conditional expectation of Y equals to the the
probability of Y = 1 conditional on Xs,thus

E[Y|X11, ceey sz] = P’I“(Y = 1’X1i7 7sz)
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Multiple OLS Regression

* Suppose our regression model is
Yi = Bo + B1X1i + BaXoi + ... + Be X + u
* Based on Assumption 1, thus
Elui| X1y .o, Xii]) =0

e Then

ElY|X1i, ..., Xii) = Bo + B1X1i + BoXoi + ... + BrXki
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The Linear Probability Model

* The conditional expectation equals the probability that Y; = 1 conditional on
X 1iy--ey X ki

E[Y’XM, 7Xk:z] = PT‘(Y = 1|X12, ,X]“)
= o+ L1 X1 + BaXoi + ... + B Xk

* Now a Linear Probability Model can be defined as following

Pr(Y =1|X1, ..., Xki) = Bo + L1 X1 + B2 Xoi + ... + B X
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The Linear Probability Model

* The model does not change essentially.

Y = Po + f1X1i + BoXoi + oo+ B X +us

¢ The different part is the interpretation the coefficient.Now the population
coefficient j3;
8P’I”(Y; = 1’X1i7 ceey X]“>
0X;

* [3j can be explained as the change in the probability that Y = 1 associated with

:ﬁj

aunit change in X
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LPM and Multiple OLS

¢ Almost all of the tools of Multiple OLS regression can carry over to the LPM
model.

* Assumptions are the same as for general multiple regression model.

* The coefficients can be also estimated by OLS.

* Both t-statistic and F-statistic can be constructed as before.

¢ The errors of the LPM are always heteroskedastic, so it is essential that
heteroskedasticity-robust s.e. be used for inference.

* One difference is that both original R? and adjusted-R? are not meaningful
statistics now.
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An Example: Mortgage Applications

* Most individuals who want to buy a house apply for a mortgage at a bank. And
not all mortgage applications are approved.

* Question: What determines whether an application is approved or denied?

* Boston HMDA data: a data set on mortgage applications collected by the Federal
Reserve Bank in Boston.

Variable Description Mean SD

deny =1if application is denied 0120 0.325
pi_ratio monthlyloan payments / monthly income 0.331 0.107
black = 1if applicant is black 0.142 0350

* Our linear probability model is

Pr(Y = 11X, X2i) = Bo + f1. X1 + B2 X0
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An Example: Mortgage Applications

* Does the payment to income ratio affect whether or not a mortgage application is
denied?

deny = —0.080 + 0.604 P/I ratio
(0.032)(0.098)

* The estimated OLS coefficient on the payment to income ratio
By = 0.604

¢ The estimated coefficient is significantly different from 0 at a 1% significance

level as the t-statistic is over 6.
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An Example: Mortgage Applications

« How should we interpret 3, ?
* An original one: payments/monthly income ratio increase 1(100%),then probability
being denied will also increase 0.6(60%).
* Another more reasonable one: payments/monthly income ratio increase
10%(0.1),then probability being denied will also increase 6%(0.06).
* Question: Does the effect matter? Or the magnitude of the effect is economically
large enough.
* Answer: An option is comparing with the mean of dependent variable.

* Here deny rate = 0.12 means that the deny ratio will increase
0.06/0.12 x 100% = 50% if P/I Ratio increases 10%.
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An Example: Mortgage Applications

* What is the effect of race on the probability of denialholding constant the P/I ratio?

* the differences between black applicants and white applicants.

deny = —0.091 + 0.559 P/I ratio + 0.177black
(0.029) (0.089) (0.025)

¢ The coefficient on black, 0.177, indicates that an African American applicant has
a 17.7% higher probability of having a mortgage application denied than a white
applicant, holding constant their payment-to-income ratio.

¢ This coefficient is significant at the 1% level (the t-statistic is 7.11).
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LPM Assumptions Similar to an OLS Regression

* Assumptions are the same as for general multiple regression model:

1
2.
3.
4.

* Advantages of the linear probability model:

* Easy to estimate and inference
* Coefficient estimates are easy to interpret
* Very useful under some circumstances like using IV.
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LPM’s Weakness: Heteroskedasticity

¢ The conditional variance of the error term u; is always heteroskedasticity.
2
Var (u; | Xi, -+, Xii) # 03,

 Always use heteroskedasticity robust standard errors when estimating a linear
probability model!
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LPM’s Weakness: Predicted values

* More serious problem: the predicted probability can be below 0 or above 1!

m Scatterplot of Mortgage Application Denial and the Payment-to-Income Ratio ‘

Mortgage applicants with Deny
a high ratio of debt payments 1.4 —
to income (P/I ratio) are more 12
likely to have their application
denied (deny = 1if denied, 1.0 foomommmmmmom oo et Wortgage denied
deny = 0if approved). The 0.8 -
linear probability model 0.6
uses a straight line to model Linear probability model
the probability of denial, 0.4 -
conditional on the P/l ratio. 0.2 -
] R = _.“__““—““_“““i\'l_n_rl_g_a_géappmved
02
—0.4 1 1 1 L L L L ]
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
P/I ratio
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Introduction

e Intuition: Probabilities must be bounded between 0 and 1.

* To address this limitation, we consider a general probability model:

Pr(Y; = 1|X1, ..Xp) = G(2)
=G(Bo+ P1 X1+ PoXoi+ ... + BrXi)

where 7 = 3y + £1.X1; + foXo; + ... + B X
* The function G(-) must satisfy two essential conditions:
c0<G(2)<1
* Monotonicity and continuity
¢ The central challenge is identifying an appropriate function G(Z) that
constrains predicted probabilities to the interval (0, 1).
* The cumulative distribution function(c.d.f)
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Math Review: The cumulative distribution function(c.d.f)

* The cumulative distribution function (c.d.f) of a random variable X ata given
value z is defined as the probability that X is smaller than x

Fx(z) =Pr(X <x)

 Assume that the probability mass function or probability distribution function
is fx (), then the c.d fis

Ytex fx(t) if X is discrete
FX (1’) = t<z

ff; fx (t)dt if X is continuous

* More importantly,the c.d.f satisfies
* monotonicity and continuity
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Logit and Probit functions

¢ Two common nonlinear functions
1. Probit Model

z z 2
G(Z)=d(2) :[ $(2)dZ = \/%L e~ T dt

which is the standard normal cumulative distribution function

2. Logit Model
B 1 e?
S l4eZ 14eZ

which is the logistic cumulative distribution function.

G(2)

* where
Z = Bo+ f1X1i + BoXoi + ... + BruXpi

* Several reasons why these two are chosen:
* good shapes, thus the predictions make more senses.

* relatively easy to use and interprete them.
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* Probit regression models the probability thatY =1
Pr(Y; = 11Xy, .. Xy) = ®(Bo + B1X1,; + PoXoi+ ... + BrXps)
» where ®(7) is the standard normal c.d.f, then we have

0<®(2)<1

¢ Then it make sure that the predicted probabilities of the probit model are
between 0 and 1.
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Probit Model: Shape and Prediction Value

' m Probit Model of the Probability of Denial, Given P/l Ratio

The probit model uses the Deny
cumulative normal distribution 1.4 —
function to model the probability 12
of denial given the payment-to-
1.0 ========emmmmmeaeo S0eee Soem RS-0 ——--—_ ====

income ratio or, more generally,
to model Pr(Y = 1|X). Unlike 0.8 —
the linear probability model,
the probit conditional
probabilities are always
between 0and 1. 02 —

Mortgage denied

Probit model

Mortgage approved

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
P/I ratio
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Probit Model: Explaination to the Coefficient

* How should we interpret 3; ?

e Recall Z7 = 50 + BIXI,i + ﬂ2X2,i + ...+ ﬁka,i
* The coefficient 3; is the change in the Z-value rather than the probability arising

from a unit change in X, holding constant other X;s.

¢ The effect on the predicted probability of a change in a regressor should be

computed by the general formula in the nonlinear regression model(Key

concept 8.3)

1
2.

computing the predicted probability for the initial value of the regressors,
computing the predicted probability for the new or changed value of the
regressors,

taking their difference.
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Probit Model: Explaination to the Coefficient

The Expected Change on Y of a Change in X, | KEY CONCEPT |
in the Nonlinear Regression Model (8.3)

The expected change in ¥, AY, associated with the change in X, AX|. holding
Aoy oo X constant, is the difference between the value of the population regres-
sion function before and after changing X7, holding X5, . . ., X} constant. That is,
the expected change in Y is the difference:

AY =f(X1 + AX],Xz, e 'XF() _I(XI'XZ ..... Xk} (84)

The estimator of this unknown population difference is the difference between
the predicted values for these two cases. Let f(Xy, X5, . .., X;) be the predicted
value of Y based on the estimator f of the population regression function. Then
the predicted change in Y is

AY = (X + AXL X, ... X)) — (XL X, . .., X)) (8.5)
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The Predicted Probability: one regressor

* Suppose the probit population regression model with only one regressors, X
Pr(Y =1|X1) = ®(Z) = ®(Bo + f1X1)

* Suppose the estimate result is Bg = —2and Bl = 3,which means

Z:—2+3X1

* Question: how to compute the probability change of X1 with a change from 0.4 t0 0.5?
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The Predicted Probability: one regressor

* The probability that Y = 1 when X| = 0.4,thenz = —2 + 3 x 0.4 = —0.8, then
the predicted probability is

Pr(Y =1|X; = 0.4) = Pr(z < —0.8) = ®(—0.8)

¢ Likewise the probability that Y = 1 when X; = 0.5, then
z = —24 3 x 0.5 = —0.5,the predicted probability is

Pr(Y =1/X; =0.5) = Pr(z < —0.5) = ®(—0.5)
e Then the difference is

Pr(Y =1|X; =0.5) — Pr(Y = 1|X; = 0.4) =
®(—.5) — ®(—.8) = 0.3085 — 0.2119 = 0.097
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The Predicted Probability: one regressor

The Cumulative Standard Normal Distribution Function, ®{z) =Pr{Z" z]

TABLE 1
Ared = PriZ <)
I Il
T T
0 z
Second Decimal Value of £
z 0 1 2 3 4 5 L] 7 8 9
=29 0.0019 00018 0.0018 00017 00016 00016 00015 00015  0.0014 00014
=28 00026 00025 0.0024  0.0023  0.0023 0.0022  0.0021 0.0021 0.0020  0.0019
08 {02119 52090  0.2061 0.2005 01977 01949 01922 01894 0.1867
0.7 TU0T 02389 02358 02327 02296 02266 0,2236 00,2206 02177 02148
0.6 302709 02676 0.2643 02611 02578 0.2546  0.2514  0.2483  0.2451
0.5 03050 03015 02981 02946 02912 02877 02843 02810 02776
< a [EF¥TR N (33727 03336 N3N 0A4 0% 0 31aR N35a 03
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Example: Mortgage Applications

¢ The probit model:
Pr(Y =1|X1) = ®(Z) = ®(Bo + f1X1)

* Question: Does the payment to income ratio affect whether or not a mortgage

application is denied?

Pr(deny :/mD/I ratio) = ®(—2.19 + 2.97P/I ratio)
(0.16)  (0.47)

* Answer: Yes, the payment to income ratio affects whether or not a mortgage
application is denied.
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Example: Mortgage Applications

* Question: What is the change in the predicted probability that an application will be
denied if P/I ratio increases from 0.3 to 0.4?

* The probability of denial when P/ ratio = 0.3
P(—2.19+2.97 x 0.3) = ¢(—1.3) = 0.097

* The probability of denial when P/ ratio = 0.4
®(—2.19+2.97 x 0.4) = ¢(—1.0) = 0.159

* Answer: The estimated change in the probability of denial is
0.159 — 0.097 = 0.062, which means that the P/I ratio increase from from 0.3 to
0.4, the denial probability increase 6.2%.
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Effect of a Change in X: When X is continuous

e the P/I ratio increase from

* 0.3 10 0.4, denial probability increase 6.2%.
* 0.4 10 0.5, denial probability increase 9.7%.

* Marginal Effects for X

OPr(Y = 1|X1, .. X3)
0X;

= ¢(Bo+ B1 X1 + PoXoi+ ...+ BpXpi) X By

Where ¢(-) is the probability distribution function(p.d.f) of the standard
normal c.d.f.

* Hence, the effect of a change in X depends on the starting value of X and other
Xs like other nonlinear functions.
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Effect of a Change in X: Marginal Effects

¢ Then the Marginal Effects varies with the point of evaluation
* Marginal Effect at a Representative Value (MER):ME at X = X* (at representative
values of the regressors)
+ Marginal Effect at Mean (MEM): ME at X = X (at the sample mean of the
regressors)
 Average Marginal Effect (AME): average of ME at each X = X (at sample values
and then average)

* The most common one is MEM while the other two are not meaningless.
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Example: Mortgage Applications

* The Marginal Effect

OPr(deny = 1|P/I ratio)
OP/I ratio

= ¢(—2.1942.97P/I ratio) x 2.97
* Then Marginal Effect at Mean (MEM):(at the sample mean of the regressors:
P/I ratiomeqn = 0.331

OPr(deny = 1|P/I ratio)
OP/I ratio

= $(—2.19 + 2.97 x 0.331) x 2.97

at mean

= ¢(—1.21) x 2.97

¢ The the effect of P/I ratio change 10%(0.1) on the probability of deny is
3.36%(0.0336)
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Effect of a Change in X: When X is discrete

* If X, is a discrete variable, then we should not rely on calculus in evaluating the
effect on the response probability.

* Assume X is a dummy variable, then partial effect of X, changing from 0 to 1:

G(Bo+ BiX1,i+ P x 14 ..+ BeXpi) —G(Bo + 1 X1, + P2 x 0+ ... + B Xk i)

38/120



Example: Race in Mortgage Applications

* Mortgage denial (deny) and the payment-income ratio (P/I ratio) and race

Pr(deny :/1|\P/I ratio) = ®(—2.26 + 2.74P/I ratio + 0.71black)
(0.16)  (0.44)  (0.083)

* Question: What is the effect of race on the probability of denial, holding
constant the P/I ratio?

* The probability of denial when black = 0,thus whites(non-blacks) is
P(—2.26 +2.74 x 0.3+ 0.71 x 0) = &(—1.43) = 0.075

* The probability of denial when black = 1,thus blacks is
$(—2.26 +2.74 x 0.3+ 0.71 x 1) = ®(—0.73) = 0.233

¢ Answer: The difference between whites and blacks at P/Iratio = 0.3 is
0.233 — 0.075 = 0.158, which means probability of denial for blacks is 15.8% higher

than that for whites. 39/120
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Logistic Function

* Using the standard logistic cumulative distribution function

1
PT(}/; = 1‘2) :1 +e_Z

¢ Asin the Probit model
Z = Bo+ 1 X1+ PoXoi+ ... + BpXi

* Since F'(z) = Pr(Z < z) we have that the predicted probabilities of the logit
model are also between 0 and 1.
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Logit Model: Predicted Probabilities

* Suppose we have only one regressor Xand Z = —2 + 3X
* We want to know the probability that Y = 1 when X; = 0.4
* Then

Z=-243x04=-0.8

* So the probability is

Pr(Y =1|X; =04) =
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Logit Model: Predicted Probabilities

* Suppose we have only one regressor Xand Z = —2 + 3X
* We want to know the probability that Y = 1 when X; = 0.4
* Then

Z=-243x04=-0.8

* So the probability is

Pr(Y =1|X; =0.4) = Pr(Z < —0.8)

42/120



Logit Model: Predicted Probabilities

* Suppose we have only one regressor Xand Z = —2 + 3X
* We want to know the probability that Y = 1 when X; = 0.4
* Then

Z=-243x04=-0.8

* So the probability is

Pr(Y =1|X; =0.4) = Pr(Z < —0.8)
=F(—0.8)
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Logit Model: Predicted Probabilities

* Suppose we have only one regressor Xand Z = —2 + 3X
* We want to know the probability that Y = 1 when X; = 0.4
* Then

Z=-24+3x04=-08
* So the probability is
Pr(Y =1|X, =04) = Pr(Z < -0.8)
=F(—0.8)

_ 1
1408

42/120



Logit Model: Predicted Probabilities

* Suppose we have only one regressor Xand Z = —2 + 3X
* We want to know the probability that Y = 1 when X; = 0.4
* Then

Z=-243x04=-0.8

* So the probability is

Pr(Y = 1|X; = 0.4) = Pr(Z < —0.8)
—F(~0.8)
_ 1
1408
=0.31
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Logit Model: Predicted Probabilities

« Pr(Y =1)=Pr(Z <—08) = =0.31

1
14_64f048
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Logit Model: Predicted Probabilities

« Pr(Y =1)= Pr(Z < —0.8) = === = 0.31

Standard logistic density

Area = Pr(Z <=-0.8)
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Logit Model: Explaination to the Coefficient

+ How should we interpret j3; ?

* Similar to the Probit model,Z = 3y + $1.X1; + S X2 + ... + Br Xk
* The coefficient 8; can not be explained directly.
¢ the change in the Z-value rather than the probability arising from a unit change in
X, holding constant other X;.
* However, Logit can be different from the Probit model in some way
* The odds ratio
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Logit Model: the Odds Ratio

* Letpis the conditional probability of Y = 1,then

€Z
P =1|Z
p=Prvi=12)= -,
* Then 1 — pis the probability of Y = 0
e? 1

l—-p=Pr¥V;=0/2)=1-

1+eZ 1+4¢Z
¢ Then the ratio of probability of Y = 1 to the probability of Y = 0 is

p _ Pr(Yi=1|2) _
1-p Pr(Y;=02)

o the 1%10 is called as Odds Ratio.
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Logit Model: the Odds Ratio

* Then the logit model can be expressed as

p

ln(l—p

) =2 =po+ b1 X1,i+ BoXoi+ ... + BuXp

« Therefore 100 » /}; can be expressed that the percentage change in odds ratio
arising from | unit change in X;.
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Example: Mortgage Applications

* Logit Model: Mortgage denial (deny) and the payment-to-income ratio (P/I ratio)

Pr(deny ;FP/I ratio) = F(—4.03 + 5.88P/I ratio)
(0.359)  (1.000)

« If P/I ratio increases 10%(0.1), then odds ratio of deny to accept will be
increased 58.8%.
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Marginal Effect in logit model

* Then Marginal Effect at Mean (MEM):(at the sample mean of the regressors:
P/I ratiopmeqn = 0.331

OPr(deny = 1|P/I ratio)
OP/I ratio

= f(—2.19 4 2.97 x 0.331) x 2.97

at mean

= f(~1.21) x 2.97
= 0.526

¢ The the effect of P/I ratio change 10%(0.1) on the probability of deny is
5.26%(0.0526)
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Example: Mortgage Applications on Race

* Logit Model: Mortgage denial (deny) and the payment-to-income ratio (P/I ratio)
and race

Pr(deny :/ITP/I ratio) = F(—4.13 4+ 5.37P/I ratio 4+ 1.27black)
(0.35)  (0.96) (0.15)
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Example: Mortgage Applications on Race

¢ The predicted denial probability of a white applicant with P/I ratio = 0.3 is

1

1 + e~ (—413+5.37x0.3+127x0) 0.074

¢ The predicted denial probability of a black applicant with P/I ratio = 0.3 is

1

1+ o (—4134537x03+1.27x1) 0.222

o the difference is
0.222 — 0.074 = 0.148 = 14.8%

which indicates that the probability of denial for blacks is 14.8% higher than
that for whites when P/Iratio = 0.3.
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Estimation and Inference in Probit and Logit Models

e How do we estimate [, 31, ..., O;?

* And how to get the sampling distribution of these estimators? o 3
* Logit and Probit models are nonlinear in the coefficients Jy, 31, ..., B
* These models cannot be estimated directly by OLS, but require Nonlinear Least
Squares (NLS).
¢ In practice, Maximum Likelihood Estimation (MLE) is the most common method
for estimating logit and probit models.
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Review: Maximum Likelihood Estimation

¢ The likelihood function is a joint probability distribution of the data, treated as a
function of the unknown coefficients.

* Itdescribes the probability of the data we observed or the sample from the
population, given the unknown coefficients.

* The maximum likelihood estimator (MLE) are the estimate values of the
unknown coefficients that maximize the likelihood function.

* MLE’s logic: the most likely function is the function to have produce the data we
observed.
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Review: Maximum Likelihood Estimation

* Random Variables Y; have n observations, thus Y7, Y5, Y3, ...Y,, have a joint
density function denoted

f@(YhYQu ceey Yn) = f(Y].7Y27 7Yn|0)

 where § is an unknown parameter.
* Given observed values Y7 = y1, Y5 = 19, ..., Y;, = ypn,the likelihood of 6 is the
function

likelihood(0) = f(Y1 = y1,Y2a = Y2, ..., Yy, = yn|0) = f(0; 91, .-, Yn)

* which can be considered as a function of 6.
* Then the Maximum Likelihood Estimation to  is a solution to the question
argmax f(6;Y1 =y1,.... Yo = yn))
0
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Maximum Likelihood Estimation of a Binary Variable

¢ Suppose we flip a coin which is yields heads (Y = 1) and tails (Y" = 0). We want
to estimate the probability p of heads(Y = 1).
* Therefore, let Y; = 1(heads) be a binary variable that indicates whether or not a

heads is observed.
Vi — { 1 with probability p

0 with probability 1 — p
* Then the probability mass function for a single observation is a Bernoulli

distribution

P whenY; =1
1—p whenY; =0
* Which can be transform into a probability density function as

Pr(Y;=y)=Pr(Y;=1)Y1 - Pr(Y; = 1))1_y =pY(1 —p)l_y
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Maximum Likelihood Estimation of a Binary Variable

MLE Step 1: write down the likelihood function, the joint probability distribution of the data

* Since Y7, ..., Y, are i.i.d,the joint probability distribution of the observations,
thus the Likelihood function is the product of the individual distributions

fbernouilli(p; Yi=uy,...Yn = yn) = Pr(Yl = Y1,y Y = yn)
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Maximum Likelihood Estimation of a Binary Variable

MLE Step 1: write down the likelihood function, the joint probability distribution of the data

* Since Y7, ..., Y, are i.i.d,the joint probability distribution of the observations,
thus the Likelihood function is the product of the individual distributions
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Maximum Likelihood Estimation of a Binary Variable

MLE Step 1: write down the likelihood function, the joint probability distribution of the data

* Since Y7, ..., Y, are i.i.d,the joint probability distribution of the observations,
thus the Likelihood function is the product of the individual distributions

fbernouilli(p; Yi=uy,...Yn = yn) = Pr(Yl = Y1,y Y = yn)
=Pr(Yi=uy1) X ... x Pr(Y,, = yn)

— pyl (1 _p)l_yl X ... X pyn(l _p)l_yn
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Maximum Likelihood Estimation of a Binary Variable

MLE Step 1: write down the likelihood function, the joint probability distribution of the data

* Since Y7, ..., Y, are i.i.d,the joint probability distribution of the observations,
thus the Likelihood function is the product of the individual distributions

fbernouilli(p; Yi=uy,...Yn = yn) = Pr(Yl = Y1,y Y = yn)
=Pr(Yi=uy1) X ... x Pr(Y,, = yn)

— pyl (1 _p)l_yl X ... X pyn(l _p)l_yn
_ p(y1+yz+-..+yn)(1 _ p)n—(y1+y2+...+yn)

= pzyi(l _p)n—z Yi
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Maximum Likelihood Estimation of a Binary Variable

MLE Step 2: Write down the maximization problem

* More easier to maximize the logarithm of the likelihood function
ln(fbernouilli(p§ Yi=uy1,...Yn = yn ln( prl 1 yi)

= (Z yi>ln(p) + <n - Zyi)ln(l —p)

* Since the logarithm is a strictly increasing function, maximizing the likelihood
or the log likelihood will give the same estimator.

* Then the maximization problem is
arg {nax ln(fbernouilli(p§ Y, = Yty -y Y, = yn))
p
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Maximum Likelihood Estimation of a Binary Variable

MLE Step 3: Maximize the likelihood function

 F.0.C: taking the derivative and setting it to zero.
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MLE Step 3: Maximize the likelihood function

 F.0.C: taking the derivative and setting it to zero.

#% KZ%)”‘(P) + <n - Zyi)ln(l —p)} =0
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Maximum Likelihood Estimation of a Binary Variable

MLE Step 3: Maximize the likelihood function
 F.0.C: taking the derivative and setting it to zero.
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Maximum Likelihood Estimation of a Binary Variable

MLE Step 3: Maximize the likelihood function

 F.0.C: taking the derivative and setting it to zero.

#% KZ%)ln(p) + <n— Zyi)ln(l —p)} =0
:>Zpyz' B n_Zpyz -0
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Maximum Likelihood Estimation of a Binary Variable

MLE Step 3: Maximize the likelihood function

 F.0.C: taking the derivative and setting it to zero.

#% KZ%)ln(p) + <n— Zyi)ln(l —p)} =0
:>Zpyz' B n_Zpyz -0

=Y yill—p)=(m—Y y)p

= yi—pY_ yi=np—pYy v

=p= %Zyz

 Then the MLE estimator for a binary variable, p,is py.p = % Nyi=Y
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MLE of the Probit Model

* Assume our probit model is
P(Y; =11X;) = ®(Bo + B1X1i + .. + BuXpi) = pi

¢ Step 1: write down the likelihood function

fPTObit(ﬁov 7ﬁk7yi7 "'7Yn|X1iu ,X]“,’L = 17 ,’I’L) = PT(Yl = Y1, ..7Yn = yn)
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MLE of the Probit Model

* Assume our probit model is
P(Y; =11X;) = ®(Bo + B1X1i + .. + BuXpi) = pi

¢ Step 1: write down the likelihood function
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MLE of the Probit Model

* Assume our probit model is
P(Y; =11X;) = ®(Bo + B1X1i + .. + BuXpi) = pi

¢ Step 1: write down the likelihood function

forovit (Bo, o B; Y1, ooy Yo | Xuiy oo, Xpiyt =1, m) = Pr(Yr =y, ., Yo = yn)
= Pr(Yi =) X o X Pr(Ya = yn)
=p"(1—p)' ™" x . xp(1—p) T

= {Cb(ﬂo + 01 X114 o+ LX)V (1 — @(Bo + 1 X1 + ...+ Bkal))l_yl} X

X [q’(ﬁo + A1 X1n + o+ BeXin )" (1 = (Bo + f1Xin + ... + ﬂkan))l‘y”}
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MLE of the Probit Model

* Step 2: Maximize the log likelihood function

ln(fprobit(/307 "'75k;Y17 ey Yn‘Xlia ceey Xkl)Z - 17 7”))
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MLE of the Probit Model

* Step 2: Maximize the log likelihood function
ln(fprobit(/307 vy 5k7 Y17 ey Yn‘Xlia ceey Xkl)Z - 17 ceey TL))

:Zyi X In[®(By + B1X1i + - + BrXwi)]

+Z(1 —yi) x In[l — (B + f1X1i + ... + BrpXki)]
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MLE of the Probit Model

* Step 2: Maximize the log likelihood function
ln(fprobit(/307 vy 5k7 Y17 ey Yn‘Xlia ceey Xkl)Z - 17 ceey TL))

:Zyi X In[®(By + B1X1i + - + BrXwi)]

+Z(1 —yi) x In[l — (B + f1X1i + ... + BrpXki)]

* Then the maximization problem is

(}T’gAmaiX ln(fp?‘obit(ﬂ[)aﬁh 7/8k7Y'1 = Y1, 7Yn = yn’X1i7 7Xk‘27Z - 17 7n))
Bo,B1,-5Bk
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MLE of the Logit Model

* Step 1 write down the likelihood function
Pr(Yi=y1, ... Yp = yn) = p" (1 —p) 7% x ... x p¥n(1 — p)t=¥m

 Similar to the Probit model but with a different function for p;

1
pi= 1 4+ e~ (BotPLXrit ..+ Bk Xki)
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MLE of the Logit Model

* Step 2: Maximize the log likelihood function

ln(flogit(/B()u ceey 6/67 Y17 ceey Yn‘Xliv 7Xkla7' = 17 7n))
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MLE of the Logit Model

* Step 2: Maximize the log likelihood function
ln(flogit(/B()u ceey 6/67 Y17 ceey Yn‘Xliv ceey Xkl'a 1= 17 ceey n))

1
= Zyi X ln(l i 6(ﬁ0+,51X1¢+~~-+Bkai))

1
+ Z(l —Yi) X ln<1 4 e—(ﬂo+51X1i+---+5ka))
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MLE of the Logit Model

* Step 2: Maximize the log likelihood function

ln(flogit(/B()u ceey 6/67 Y17 ceey Yn‘Xliv ceey Xklal = 17 ceey n))
- Zyz X 1 + e~ (Bo+B1Xrit...+BrXki)

1
+ Z(l —yi) ¥ ln<1 4 e—(ﬂo+51X1i+---+5ka))

- Then the maximization problem is

arg max In( fiogit(Bo, -, Brei Y1 = Y1, s Yo = yn| X140, Xpiy i = 1,...,m))
B0:515-,8k
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Computation of MLE Estimators

* In most cases the computation of maximum likelihood estimators is not easy to
obtain since the first order conditions do not have closed form solutions

necessarily.

* We can still obtain the values of estimators using numerical algorithm with

iterative methods.

* One of common methods is Newton-Raphson Method based on low order Taylor

series expansions.
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Measures of Fit

+ R?is a poor measure of fit for the linear probability model. This is also true for
probit and logit regression.

* Two measures of fit for models with binary dependent variables

1. fraction correctly predicted

* If Y; = 1 and the predicted probability exceeds 50% or if ¥; = 0 and the predicted
probability is less than 50%, then Y; is said to be correctly predicted.
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Measures of Fit

2. The pseudo-R2

« The pseudo — R? compares the value of the likelihood of the estimated model to
the value of the likelihood when none of the Xs are included as regressors.

l’I’L max.
pseudo — R2 =1 ( pTObzt)

)
* [probit is the value of the maximized probit likelihood (which includes the X’s)

o finax .1 is the value of the maximized Bernoulli likelihood (the probit model
excluding all the X’s).
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Statistical inference based on the MLE

¢ It can be prove that under very general conditions,the MLE estimator is
unbiased,consistent, asymptotic normally distributed in large samples. See the
Appendix for MLE in OLS regression.

* Because the MLE is normally distributed in large samples, statistical inference
about the probit and logit coefficients based on the MLE proceeds in the same
way as inference about the linear regression function coefficients based on the
OLS estimator.

* That is, hypothesis tests are performed using the t-statistic(or z-statistic) and
confidence intervals are also formed using the normal distribution.

* For example, the 95% confidence intervals are formed as 1.96 standard errors.
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Statistical inference based on the MLE

* Testing of joint hypotheses on multiple coefficients are very similar to the
F-statistic which is discussed in multiple OLS model.

* The likelihood ratio test is based on comparing the log likelihood values of the
unrestricted and the restricted model. The test statistic is

LR =2(logLy, — LogL,) ~ XZ

* where logL,, is the log likelihood of the unrestricted model, log L. is the log
likelihood of the restricted model, and ¢ is the number of restrictions being tested.
* Because the MLE maximizes the log-likelihood function, dropping variables
generally leads to a smaller—or at least no larger—log-likelihood.
* The question is whether the fall in the log-likelihood is large enough to

conclude that the dropped variables are important.
* Therefore, the likelihood ratio test statistic is always non-negative.
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Comparing the LPM,Probit and Logit

* All three models: linear probability, probit, and logit are just approximations to the
unknown population regression function E(Y|X) = Pr(Y = 1|X).
* LPM is easiest to use and to interpret, but it cannot capture the nonlinear nature of
the true population regression function.
* Probit and logit regressions model this nonlinearity in the probabilities, but their
regression coefficients are more difficult to interpret.
* So which should you use in practice?

* There is no one right answer, and different researchers use different models.
* Probit and logit regressions frequently produce similar results.
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Comparing the LPM,Probit and Logit

* The marginal effects and predicted probabilities are much more similar across
models.

* Coefficients can be compared across models, using the following rough
conversion factors (Amemiya 1981)
/Blogit = 450[5
Bprobit = 2-5ﬂol5

Blogit ~1 -65probit
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Example: Mortgage Applications(short regression)

Dependent variable: deny = 1 if mortgage application is denied, = 0 if accepted

regression model LPM Probit Logit
black 0.177FF* (.71%** 1.274%*
(0.025) (0.083) (0.15)
P/1 ratio 0.5H0%+* PAE e D.3THEE
(0.089) (0.44) (0.96)
constant -0.091*** SDDEREE —4.13%FF
(0.029) (0.16) (0.35)
difference Pr(deny=1) between black 17.7% 15.8% 14.8%

and white applicant when P/T ratio=0.3
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Introduction

* The multinomial regression model is an extension of the binary dependent
variable model to allow for more than two categories of the dependent variable,
shuch as the choice of occupation, transportation mode, etc.

* Occupation choice: self-employed, government employee, private sector employee,
etc.

* Major Choices: Economics, Statistics, Computer Science, etc.

+ Transportation mode: car, bus, bike, subway;, etc.

» Demand for goods: Coke, Pepsi, Sprite, etc.

* One important feature: the outcomes cannot be ordered in any natural way.
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Multinomial Regression Models

* There are m mutually-exclusive alternatives:

¢ Y, takes value j if the outcome is alternative j,j = 1, ..., m, where m > 2.

1 if the outcomeis A

2  if the outcome is B
)/i —

m if the outcome is M

* The respondents face those m alternatives and can only choose one among them.

* Question: Can we use an OLS regression to model this situation? Like
Y, = Bo + i X + BoXoi+ ... +uy

* Answer: No, because the dependent variable’s values lack a meaningful order.
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Multinomial Regression Models

* Naturally we can use a binary choice model(LPM, probit, logit) to model the
situation by grouping all categories into two major ones.

* Suppose the i individual’s choice is .J,then we can turn the Y;; into a binary
variable.
v 1 if the outcomeis]
)
0 if the outcome is notJ
* Y;; = lifalternative J is chosen and Y;; = 0 for all non-chosen alternatives for any
individual s.

* Though Binary choice models could potentially be used,this is not ideal.

* We can not compare the coefficients across different alternatives directly.

* Those alternatives are mutually exclusive.

75/120



Multinomial Regression Models

» However, if Y; takes value j if the outcome is alternative j, j = 1, ..., m, then the
probability that the outcome is alternative j can be modeled as

P(Y; = J| X1, ... Xpi) = [i;(8: X) = pij

¢ Then the p.d.f of individual 7’ choice among alternatives j is
m ..
fi(B:X) =plit x pl2 x ... x plim = Hp‘qj;]
=1

* Using MLE estimation to maximize the log-likelihood function to solve the
parameters [3.

N

N m N m
InL(-) = In (H fij (B X)) =In (H Hpgj) =3 yijInp;
i—1 i—1j=1 im1 =1
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Multinomial Logit Model

¢ The functional form is the key to solve the multinomial regression
model Likewise, there are two functional forms for the multinomial models:
* Logit and Probit
* The multinomial logit model or M-logit is the most common form of

multinomial regression model.

* As dealing with the categorized independent variables in linear regression
models, we still need a reference category, the base category, to compare with
alternatives.

* Which is the necessary condition for the identification of the model.
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Multinomial Logit Model

* The base category will not be included in the model, as we avoid the dummy
variable trap in linear regression with categorized independent variables.

+ Assume the reference categoryis J = 1, and let 3! = 0, then the probability that
the outcome is alternative j can be expressed as following:
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Multinomial Logit Model

* The base category will not be included in the model, as we avoid the dummy
variable trap in linear regression with categorized independent variables.

+ Assume the reference categoryis J = 1, and let 3! = 0, then the probability that
the outcome is alternative j can be expressed as following:

14)° 7, eap(X'B9) ifJ=1

exp(Xﬁ ) CT_
Sy EIRAM

P(Y; = J| X1y, Xpi) =
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Multinomial Logit Model: Coefficients Interpretation

* Then the probability that the outcome is alternative J can be expressed as following
under the distributional assumption of the error term:(Skip the derivation, you
can prove it by yourself.)

exp(X'B7)
pij = P(Y; = J| X4, ..., Xpi) = YM exp(X'37)
=

* Question: How to interpret the coefficients?

* Answer:the parameters of the multinomial logit model are difficult to interpret.
Neither the sign nor the magnitude of the parameter has an direct intuitive
meaning.
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Multinomial Logit Model: Marginal Effects

* The marginal probability effects of the multinomial logit model for a change of
X, for choice J can be calculated as follows:

Opii M
MPE;j, = aXka = Dij <5jk — > pijBi
(2 j=1

¢ Then the average marginal probability effects (AMPE) for a change of X}, can be
calculated as follows:

— 1 —
AMPE;, ==Y MPE;j;, (j=1,...,M)
n
i=1
* the marginal probability effects at mean(MPEM) for a change of X}, can be
calculated as

M
MPEM ji. = pij (ﬁjk—ZPig) (G=1...,M)
Jj=1
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Multinomial Logit Model: odds/risk ratio

* Recall the odds ratio in the binary choice model, thus the ratio of probability of
Y = 1to the probability of Y = 0is

p__ PriYi=1[2) _

1—-p Pr(Y;=012)

* Then the odds ratio of the multinomial logit model is the ratio of the probability
of choosing alternative .J to the probability of choosing the base category 1 is

eap(X'87)
p;  Pr(Y;=j|Z) 1+Zj42ezp(xw)

— = T = 1 (X /3 )
p Pryi=12) 14320, eap(X'59)

« Therefore 100 x 3 can be expressed that the percentage change in odds ratio
for choice J relative to the base category 1 arising from a unit change in Xj,.
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Multinomial Logit Model: Strong Assumption

¢ Likewise,the odds between two alternatives j and k is

eﬁp(X’ﬁj)
Dj PT’(Y; = j’Z) 1-5—2:]:2 exp(X'B7) , ) N
— = = = X3 —
e Pr(Y; =k|Z) cap(X'5Y) exp(X' (B — B))
1+Z].:2 exp(X'B7)

* Then the log odds ratio is

log(*2) = X'(87 — B%)
Pk
* It only depends on the corresponding two probabilities (but not those of other

alternatives). This is known as independence of irrelevant alternatives (IIA).

* Essentially, the ITA assumption requires that all the alternatives are
independent of each other.
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Independence of Irrelevant Alternatives (IIA)

* The IIA assumption is a strong assumption, which is not always satisfied in
practice.

* Example: Transportation Mode Choice: suppose a person chooses between car,
subway, and bus

* Under IIA, the ratio of probabilities between any two choices (e.g., car vs subway)
should not change if a third option (bus) is added or removed.

* However, in reality, if bus service is removed, many bus riders might switch to
subway rather than car, violating ITA

* This is because subway and bus are closer substitutes than car and bus.

¢ Therefore, we have more flexible models to relax the IIA assumption as nested
logit model and mixed logit model.(You may learn them in some advanced
courses in your future study.)
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* Multinomial Probit Model
* The multinomial probit model is a generalization of the probit model to the case of
more than two outcomes.
* The model assumes that the error terms are normally distributed.
* The model is more flexible than the multinomial logit model, but it is
computationally more demanding.
+ Extension for relaxing the IIA assumption:
* Nested Logit Model
* Mixed Logit Model
* Conditional Logit Model

* Another extension: Ordered Probit or Logit models

¢ The ordered probit or logit models are used when the dependent variable is ordinal.
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Parental background and Entrepreneurship in China

¢ Ruixue Jia(FEIRE), Xiaohuan Lan(=/\3k) and Gerard Padréi Miquel, “Doing
Business in China: Parental background and government intervention
determine who owns business”, The Journal of Development Economics,Volume
151, June 2021.
* Main Question:
1. the parental determinants of entrepreneurship in China.

2. how the parental determinants of entrepreneurship vary with government

intervention in the economy.
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Jia,Lan and Miquel(2021): Data

1. Individual-level data:

* China General Social Survey (GCSS) 2006,2008,2010,2012,2013
* 31provinces, 22801 urban respondents.

2. Province-level data:

» China Statistic Yearbooks.
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Jia,Lan and Miquel(2021): Main Variables

* Independent Variables: cadre parents and entrepreneur parents
* cadre parents: “does a parent work in government or in a public organization affiliated
with the government?”

* entrepreneur parents: business owner + self-employed

* Dependent Variables: whether the respondent is
* business owner: all owners of incorporated businesses, who must pay corporation
tax and follow corporation law.
+ self-employment: owners of non-incorporated small businesses.

 goverment employee: work in government or in a public organization affiliated
with the government.
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Parental Background and Doing Business

* Goal: examine the difference in the probability of being in different occupations
between those with entrepreneur parents, cadre parents and others.
* Linear Probability Model:

Pr(Y = 1|X) = f1CardreParent; + 2EntreParent; + vX; + Prov, x Years + wipt

* Y, is a dummy indicating the respondent’s occupation,all the other occupations
grouped together in the reference group.

* X, are individual-level characteristics such as gender,age, marital status, college
education or not, and minority status.

* Prov, x Year; are the province-by-year fixed effects.
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Empirical Results: LPM

Table 3A
Parent background and child occupations: OLS estimates.
[¢3)] (2) 3 (4) ) ©)
Government worker (0/1, mean = 0.217) Business owner (0/1, mean = 0.022) Self-employed (0/1, mean = 0.107)
Cadre Parent 0.144#% 0.115%** 0.006%* 0.003 —0.009* —0.011%**
(0.009) (0.009) (0.003) (0.003) (0.005) (0.005)
Entrepreneur Parent —0.006 —0.006 0.016*** 0.014** 0.063*** 0.057***
(0.012) (0.011) (0.006) (0.006) (0.013) (0.013)
Provinee FE*Year FE Y Y Y Y Y Y
Individual Characteristics Y Y Y
Observations 22,801 22,801 22,801 22,801 22,801 22,801
R-squared 0.057 0.139 0.015 0.022 0.039 0.067

* Cadre Parents increase the probability of being government workers(11.5%).

* Entrepreneur Parents do not.
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Empirical Results: LPM

Table 3A
Parent background and child occupations: OLS estimates.
1 (2) 3) (4) ®) 6)
Government worker (0/1, mean = 0.217) Business owner (0/1, mean = 0.022) Self-employed (0/1, mean = 0.107)
Cadre Parent 0.144%** 0.115%** 0.006** 0.003 —0.009* —0.011**
(0.009) (0.009) (0.003) (0.003) (0.005) (0.005)
Entrepreneur Parent —0.006 —0.006 0.016*** 0.014%* 0.063*** 0.057***
(0.012) (0.011) (0.006) (0.006) (0.013) (0.013)
Province FE*Year FE Y Y Y Y
Individual Characteristics Y Y Y
Observations 22,801 22,801 22,801 22,801 22,801 22,801
R-squared 0.057 0.139 0.015 0.022 0.039 0.067

* Entrepreneur Parents increase the probability of being business owner(1.6%).

* Cadre Parents also increase the probability of being business owner(0.6%).

However, the effect will go away when controlling individual characteristics.
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Empirical Results: LPM

Table 3A
Parent background and child occupations: OLS estimates.
[¢3)] (2) 3 (4) ) ©)
Government worker (0/1, mean = 0.217) Business owner (0/1, mean = 0.022) Self-employed (0/1, mean = 0.107)
Cadre Parent 0.144# 0.115%** 0.006%* 0.003 —0.009* —0.011%**
(0.009) (0.009) (0.003) (0.003) (0.005) (0.005)
Entrepreneur Parent —0.006 —0.006 0.016*** 0.014** 0.063*** 0.057***
(0.012) (0.011) (0.006) (0.006) (0.013) (0.013)
Provinee FE*Year FE Y Y Y Y Y Y
Individual Characteristics Y Y Y
Observations 22,801 22,801 22,801 22,801 22,801 22,801
R-squared 0.057 0.139 0.015 0.022 0.039 0.067

* Entrepreneur Parents increase the probability of being self-employed(6%).

¢ Cadre Parents decrease the probability of self-employment(1.1%).

92/120



Empirical Results: Multinomial Logit

Table 3B
Relative risk ratios in diff. Occupations by parental background —multinomial
logit estimates.

@ 2) )

Work in government Work in government
Cadre Parents 2.327%** 2.056*** 2.043%**
(0.122) (0.120) (0.104)
Entrepreneur Parents 1.116 1.047 1.047 ° 1 1
s e e Cadre Parents increase the odds of being
Being a business owner a government relative to be a firm
Cadre Parents 1.656*** 1.406*** 1.413*** . . .
©187) ©162) ©.167) employee by over 2 times significantly.
Entrepreneur Parents 2.225%** 1.912%** 1.750%**
(0.379) (0.315) (0.300)
Being self-employed  Entrepreneur Parents increase the odds
Cadre Parents 1.120* 1.058 1.080 . .
(0.075) (0.070) 0.073) Ofbell'lg a government relative to be a
Entrepreneur Parents 1.921%** 1.763*** 1.579*** . .
©.186) ©.169 ©015) firm employee but the effect is not
Individual Characteristics Y Y . LY ol
Province FE*Year FE Y SIgnlflcant'
Observations 22,801 22,801 22,801

Notes: In Table 3A, the comparison group is all other occupations. In Table 3B, the
reference group is being a firm employee. Individual characteristics include: age,
gender, marital status, ethnic minority status and college education. Standard
errors are clustered at the province-year level. Significance level: *p < 0.1, **p <
0.05, ***p < 0.01. 93/120



Empirical Results: Multinomial Logit

Table 3B
Relative risk ratios in diff. Occupations by parental background —multinomial
logit estimates.

) (@) 3
Reference group: being a firm employee
Work in government Being a business owner
Cadre Parents 2.327%** 2.056*** 2.043%**

(0.122) (0.120) (0.104)
Entrepreneur Parents s e e * Cadre Parents increase the odds of being
Being a business owner a business owner relative to be a firm
Cadre Parents 1.656*** 1.406*** 1.413***

©.187) (©.162) ©.167) employee by over 1.4 times significantly.
Entrepreneur Parents 2.225%** 1.912%** 1.750%**

(0.379) (0.315) (0.300)
Being self-cmplayed * Entrepreneur Parents increase the odds
Cadre Parents 1.120* 1.058 1.080 . . .

©.075) ©.070) ©073) of being a business owner relative to be a
Entrepreneur Parents 1.921%** 1.763*** 1.579*** . .

©.186) ©.169 ©015) firm employee by over 1.7 times
Individual Characteristics Y Y . s fe
Province FE*Year FE Y Slgnlflcantly‘
Observations 22,801 22,801 22,801

Notes: In Table 3A, the comparison group is all other occupations. In Table 3B, the
reference group is being a firm employee. Individual characteristics include: age,
gender, marital status, ethnic minority status and college education. Standard
errors are clustered at the province-year level. Significance level: *p < 0.1, **p <
0.05, ***p < 0.01. 94/120



Empirical Results: Multinomial Logit

Table 3B

Relative risk ratios in diff. Occupations by parental background —multinomial

logit estimates.

@ 2) )
Reference group: being a firm employee
Work in government
Cadre Parents 2.327%** 2.056*** 2.043%**
(0.122) (0.120) (0.104)
Entrepreneur Parents 1.116 1.047 1.047
(0.095) (0.093) (0.092)
Being a business owner
Cadre Parents 1.656*** 1.406*** 1.413***
(0.187) (0.162) (0.167)
Entrepreneur Parents 2.225%** 1.912%** 1.750%**
(0.379) (0.315) (0.300)
Being self-employed
Cadre Parents 1.120* 1.058 1.080
(0.075) (0.070) (0.073)
Entrepreneur Parents 1.921%** 1.763*** 1.579%**
(0.186) (0.169) (0.015)
Individual Characteristics Y Y
Province FE*Year FE Y
Observations 22,801 22,801 22,801

Notes: In Table 3A, the comparison group is all other occupations. In Table 3B, the
reference group is being a firm employee. Individual characteristics include: age,
gender, marital status, ethnic minority status and college education. Standard
errors are clustered at the province-year level. Significance level: *p < 0.1, **p <

0.05, ***p < 0.01.

Being self-employed

» Cadre Parents don’t increase the odds of

being self-employed relative to be a firm
employee.

* Entrepreneur Parents increase the odds

of self-employed relative to be a firm
employee by over 1.6 times significantly.
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Summary of LPM and Multinomial Logit

Parents Model Government Business Owner Self-employ
Cadre LPM 0 0 !
Cadre MLogit 0 0 _

Entrepreneur LPM — 0 1
Entrepreneur MlLogit — 0 1

* The LPM and MLogit models provide very similar results.
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Parental Background and Local Economic Context

* Measurement: Provincial Government Expenditure on Business-related
activities(PGEB) as a measure of the role of government on the private business
environment.

 Expenditure on Business-related activities: Infrastructure and MCF
(Manufacturing/Commerce/Finance).
* Robustness:

 weakly correlated with GDP
* negatively correlated marketization index.
* relatively smaller share of private sector.
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Descriptive patterns: cross-provinces

(a) Prob. Being a Business Owner
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Descriptive patterns: cross-provinces

(b) Diff b/w Cadre Children and Others
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Descriptive patterns: cross-provinces

(c) Diff b/w Entrepreneur Children and Others
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Parental Background and Local Economic Context

* Question: Whether the association between parental occupation and business
ownership varies with the level of government intervention in the business

environment?.

* Linear Probability Model: Interacted with PGEB

Pr(Y =1|X) = g1CardreParent; + >CardreParent; x PGEB,,
+psEntreParents; + FintreParents; x PGEDB,,
+vX; +vX; X PGEBy + Prov, x Years + wipt

* Question: Which parameter is our interest? and how to interpret it?

* Answer: 3 and 3, are the coefficients of the interaction terms between parental
occupation and PGEB.

 Thinking 1: Why there is no PGEB term in the model?
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Empirical Results: LPM+Interactions

Table 4
The impact of cadre Parent x PGEB in determining business ownership.
) (2) 3) ) ) (6)
Y = business owner (mean = 0.022)
Cadre Parent * PGEB (sd) 0.004* 0.004* 0.005** 0.007**
(0.002) (0.002) (0.002) (0.003)
Cadre Parent 0.006** 0.003 0.003 0.003 0.003 0.003
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
Entrepreneur Parent * PGEB (sd) —0.008* —0.008** —0.008* —0.006
(0.004) (0.004) (0.004) (0.008)
Entrepreneur Parent 0.016%** 0.014%* 0.014%** 0.014%* 0.013%* 0.014**
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
Cadre Parent * GDP Per Capita (sd) —0.001 —0.001
(0.002) (0.002)
Entre. Parent * GDP Per Capita (sd) —0.006 —0.006
(0.005) (0.004)
Cadre Parent * Other Expend (sd) 0.003 —0.002
(0.003) (0.004)
Entrepreneur Parent * Other Expend (sd) —-0.007 —0.003
(0.005) (0.010)
Province FE*Year FE Y Y Y Y Y Y
Individual Characteristics Y Y Y Y Y
PGEB *Individual Characteristics Y Y Y Y
Observations 22,801 22,801 22,801 22,801 22,801 22,801
R-squared 0.015 0.023 0.023 0.023 0.023 0.023
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Empirical Results: LPM+Interactions

Table 4
The impact of cadre Parent x PGEB in determining business ownership.
) (2) 3) ) ) (6)
Y = business owner (mean = 0.022)
Cadre Parent * PGEB (sd) 0.004* 0.004* 0.005** 0.007**
(0.002) (0.002) (0.002) (0.003)
Cadre Parent 0.006** 0.003 0.003 0.003 0.003 0.003
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
Entrepreneur Parent * PGEB (sd) —0.008* —0.008** —0.008*! —0.006
(0.004) (0.004) (0.004) (0.008)
Entrepreneur Parent 0.016%** 0.014%* 0.014%** 0.014%* 0.013%* 0.014**
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
Cadre Parent * GDP Per Capita (sd) —0.001 —0.001
(0.002) (0.002)
Entre. Parent * GDP Per Capita (sd) —0.006 —0.006
(0.005) (0.004)
Cadre Parent * Other Expend (sd) 0.003 —0.002
(0.003) (0.004)
Entrepreneur Parent * Other Expend (sd) —-0.007 —0.003
(0.005) (0.010)
Province FE*Year FE Y Y Y Y Y Y
Individual Characteristics Y Y Y Y Y
PGEB *Individual Characteristics Y Y Y Y
Observations 22,801 22,801 22,801 22,801 22,801 22,801
R-squared 0.015 0.023 0.023 0.023 0.023 0.023
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Empirical Results: LPM+Interactions

Table 4
The impact of cadre Parent x PGEB in determining business ownership.
) (2) 3 O] (5) 6) 7)
Y = business owner (mean = 0.022) Y = self-employed (mean = 0.107)
Cadre Parent * PGEB (sd) 0.004* 0.004* 0.005** 0.007** 0.002
(0.002) (0.002) (0.002) (0.003) (0.007)
Cadre Parent 0.006** 0.003 0.003 0.003 0.003 0.003 —0.011**
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
Entrepreneur Parent * PGEB (sd) —0.008* —0.008** —0.008* —0.006
(0.004) (0.004) (0.004) (0.008)
Entrepreneur Parent 0.016*** 0.014** 0.014** 0.014** 0.013** 0.014**
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
Cadre Parent * GDP Per Capita (sd) —0.001 —0.001
(0.002) (0.002)
Entre. Parent * GDP Per Capita (sd) -0.006 —0.006
(0.005) (0.004)
Cadre Parent * Other Expend (sd) 0.003 —0.002
(0.003) (0.004)
Entrepreneur Parent * Other Expend (sd) —0.007 —0.003
(0.005) (0.010)
Province FE*Year FE Y Y Y Y Y Y Y
Individual Characteristics Y Y Y Y Y Y
PGEB *Individual Characteristics Y Y Y Y Y
Observations 22,801 22,801 22,801 22,801 22,801 22,801 22,801
R-squared 0.015 0.023 0.023 0.023 0.023 0.023 0.068

Notes: This table shows that the advantage in becoming a business owner (1) increases with PGEB for those with cadre parents and (2) decreases with PGEB for those
with entrepreneur parents. Individual characteristics include: age, gender, marital status, ethnic minority status, and college education. Standard errors are clustered at
the province-year level. Significance level: *p < 0.1, **p < 0.05, ***p < 0.01.
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Jia,Lan and Miquel(2021): Main Findings

1. Is there intergenerational transmission of entrepreneurship in China?
* Yes, and the magnitude is similar to findings elsewhere.
2. Do children of government officials have a higher likelihood of becoming
entrepreneurs?

* Yes, in particular they have a high likelihood of owning incorporated businesses.

3. Do parental determinants depend on the role of government?

* Yes. the larger is government involvement in business-related spending, the larger
the business-ownership propensity of children of government officials, and the
smaller the propensity of children of entrepreneurs.
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Summary

¢ The key assumptions of these models are similar to those of OLS regression.

+ If it suffers OVB or other potential endogenous bias, then the coefficient estimates
are biased and inconsistent even we use the MLE to estimate the parameters rather
than OLS.

* Although Probit and Logit offer some advantages in model specifications over
LPM, LPM is more intuitive and easier to interpret.

* This is particularly useful when we want to deal with the endogeneity problem.

* When the dependent variable is binary,even multinomial, the LPM remains a
good starting point for empirical analysis.
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Appendix 1: MLE in Simple Linear Regression

* Suppse the simple linear regression model is
Yi=D5o+ b5 Xi+u

* Now we have two estimation approaches:

* OLS
* MLE

* Recall the Simple OLS estimator is

S (X = X)(Yi - )
(X - XP

BioLs =

* How to get the MLE estimator of /5y and /3;?
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MLE Estimation of Simple Linear Regression

* We maintain the same three assumptions as in OLS:
¢ MLE Assumption 1: X;; is exogenous, thus E(u;|X1;) =0
* MLE Assumption 2: u; is independently distributed.
* MLE Assumption 3: Large outliers are unlikely.

* Additionally, MLE requires two more assumptions:

¢ MLE Assumption 4: u; is normally distributed, thus
u; ~ N(0,0%)
* MLE Assumption 5: u; is homoskedastic, thus

Var(u;| X1;) = o
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MLE Estimation of Simple Linear Regression

* Step 1: Write down the likelihood function
L(/B07 ﬂlv 02) - H f(YZ|X27 507 /617 02)
i=1
e where

f(}/;|X17 60751a 02) =

( (E—ﬁo—&Xz')Q)
exp | —

2 202

yea

* Step 2: Maximize the log likelihood function

In(L(Bo, B1,0” Zm< ﬁexp<— — 5
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MLE Estimation of Simple Linear Regression

* First order conditions(FOC):

» For fo: G5L = 1L, (Yi — Bo — 1 X;) = 0
* For f1: L =570 (Vi — fo — S1Xi) Xi = 0
« Foro% 2L — —n 4 LS (Y- Bo— i X;)2 =0
* MLE Solutions:
¢ Bo =Y - 315( B -
A i e
1= T (X;—X)?

=1
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MLS vs OLS

* For slope and intercept:
AMLE _ AOLS
o = o

AMLE AOLS
51 = 51

e Therefore, the MLE estimator is identical to the OLS estimator.
» However, for variance:

. 1 A 4
012\/[LE = n Z(Yz —Bo— ﬁle‘)z
i=1
1 < _
Y; — Bo — 1X:)?
n—2z( i — Bo — B1.Xi)

=1

A2 _
0oLs =

» When nissmall, 63, » < 6%, s (MLE underestimates the variance)

» When n is large, 6%, » and 62 4 are very close to each other
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MLS vs MLE

* Under the assumption of normality and homoskedasticity, OLS and MLE give
identical point estimates for 3y and /.

* OLS estimator is BLUE (Best Linear Unbiased Estimator)

* MLE provides theoretical justification for OLS under normality

* When error distribution is non-normal, MLE may differ from OLS
* This relationship extends to multiple regression: Y = X3 + u

* If these assumptions fail, more specialized estimation methods may be needed.
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Math Review: Taylor Expressions

¢ Recall Taylor series of a function f(z) at a certain value of z,thus z,
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Math Review: Taylor Expressions

¢ Recall Taylor series of a function f(z) at a certain value of z,thus z,

f'(zo)

fl@) = flao) + 51

(z — xp)
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Math Review: Taylor Expressions

¢ Recall Taylor series of a function f(z) at a certain value of z,thus z,

f'(zo) f"(x0)

1 o (&~ )

f(z) = flzo) +

(r —xo) +
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Math Review: Taylor Expressions

¢ Recall Taylor series of a function f(z) at a certain value of z,thus z,

"2 ”,1‘ (n
f(x):f($o)+f(1!0)(ﬂf560)+fé! )x—x Zf (@ —z0)"
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Math Review: Taylor Expressions

¢ Recall Taylor series of a function f(z) at a certain value of z,thus z,

f'(zo)
1!

//.1‘ (n
(.’L’*SEQ)ij( )SC*:E Zf 7560)71

F(@) = flwo) + > _

* Then we can have the Taylor expression of f(z) at first and second orders

116 /120



Math Review: Taylor Expressions

¢ Recall Taylor series of a function f(z) at a certain value of z,thus z,

f'(zo)
1!

//.1‘ (n
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* Then we can have the Taylor expression of f(z) at first and second orders
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Math Review: Taylor Expressions

¢ Recall Taylor series of a function f(z) at a certain value of z,thus z,

"2 ”,1‘ (n
f(x):f($o)+f(l!0)(ﬂf560)+fé! )x—x Zf (@ —z0)"

* Then we can have the Taylor expression of f(z) at first and second orders
f(@) = f(wo) + (o) (z — x0)
f(@) = f(zo) + f(xo)(z — o) +
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Newton-Raphson Method

¢ Objective: find the solution of  to a equation: f(x) =0

* An alternative way: find some x make

f(@o) + f'(zo)(z — x0) = 0

* Here the 7 is some initial value that we guess, which is close to the desired
solution. And then we obtain a better approximation z, based on

o (o)
f'(zo)
* We do not stop repeating this procedure until
flzj) =0

where the z; is the solution to the function.

r1 =
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Newton-Raphson Method

A

4

y=to)
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Newton-Raphson Method

¢ Objective: find the solution of x to the F.0.C equation: f'(x) = 0
 Then we need the Taylor expression of f(z) at second order

f" (o)

5 (x — x0)2

f@) = f(zo) + f'(z0)(x — x0) +

e FOCfor f'(z) =0

119/120



Newton-Raphson Method

¢ Objective: find the solution of x to the F.0.C equation: f'(x) = 0
 Then we need the Taylor expression of f(z) at second order

f" (o)

5 (x — x0)2

f@) = f(zo) + f'(z0)(x — x0) +

e FOCfor f'(z) =0

d

Ty | @0+ 1 (@) (e = 20) + 51" ) (2 = 02| =0
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Newton-Raphson Method

¢ Objective: find the solution of x to the F.0.C equation: f'(x) = 0

 Then we need the Taylor expression of f(z) at second order

f" (o)

f(x) ~ f(z0) + f(z0)(x — m0) + : (¢ — z0)?
e FOCfor f'(z) =0
T [ )+ ) = 20) 317 0 207 =0

=f"(z0) + f" (x0) (x — 20) =0
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Newton-Raphson Method

¢ Objective: find the solution of x to the F.0.C equation: f'(x) = 0
 Then we need the Taylor expression of f(z) at second order

f" (o)

5 (x — x0)2

f@) = f(zo) + f'(z0)(x — x0) +

e FOCfor f'(z) =0
T [ )+ ) = 20) 317 0 207 =0
=f" (w0) + f" (w0) (x — x9) = 0
f' (o)
f// (xO)

=T = T9 —
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Newton-Raphson Method

¢ Objective: find the solution of x to the F.0.C equation: f'(x) = 0
 Then we need the Taylor expression of f(z) at second order

f" (o)

5 (x — x0)2

f@) = f(zo) + f'(z0)(x — x0) +

e FOCfor f'(z) =0

T [ )+ ) = 20) 317 0 207 =0
=f" (w0) + f" (w0) (x — x9) = 0
s
=T = f” (xo)

* Repeating this procedure until f/(x;) = 0 where the z; is the solution to the

function.
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Computation of MLE estimators

* For simplicity, assume only one parameter 6, the maximum likelihood function

is L(9 MLE ) .
¢ Then the F.O.C for the problem of maximization is as following
8[/(9 ML E) —0
06

* A initial guess of the parameter value, which denotes as 6. Then the MLE

estimator,f; can be calculated by

P [GQL(HO)} A
P 96° 90
* We do not stop repeating this procedure until
OL(Onrm;) _ 0
00

,where the 0/, ; is the solution to the function.
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