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Accessing Regression Studies

• The validity of regression studies

• Internal and External validity
• The population and settings are studies and the generalizability of the results.
• The internal validity of a regression study is the top priority in causal inference
studies.
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Internal Validity in OLS Regression

• Suppose we are interested in the causal effect of X1 on Y and we estimate the

followingmultiple regressionmodel

Yi = β0 + β1X1,i + β2X2,i + ... + βkXk,i + ui, i = 1, ..., n

• Internal validity has three components:

1. The estimators of β1 should be unbiased and consistent. This is the most critical

aspect.

2. Hypothesis tests and confidence intervals should have the desired significance

level (at least 5% significant).

3. The value of β1 should be large enough to be meaningful or economically

significant.
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Threats to Internal Validity

• Threats to internal validity:

1. Omitted Variables
2. Misspecification
3. Measurement Error
4. Simultaneous Causality
5. Missing Data and Sample Selection
6. Heteroskedasticity and/or Correlated error terms
7. Significant coefficients ormarginal effects

• In a narrow sense,

• Internal Invalidity = endogeneity in the estimationwhich is caused by the above
1-5 threats.

• In a broad sense,

• Internal Invalidity = 1-5 threats + 6-7 threats
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OLS Regression Estimators in partitioned regression

• OLS estimator inMultiple OLS

Yi = β0 + β1Xi,1 + β2Xi,2 + ... + βkXi,k + ui, i = 1, ..., n

• The OLS estimator of βj is

β̂j =
∑n

i=1 X̃ij , Yi∑n
i=1(X̃ij)2

• The asymptotic OLS estimator of βj

plimβ̂j = Cov(X̃ij , Yi)
V ar(X̃ij)

• Where X̃ij is the fitted OLS residual of regressing Xij on other regressors,thus

Xij = γ̂0 + γ̂1Xi1 + γ̂2Xi2 + ... + γ̂j−1Xi,j−1 + γ̂j+1Xi,j+1 + ... + γ̂kXi,k + X̃ij
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the Standard Error of β̂

The Variance of β̂j under Homoskedasticity

V ar
(
β̂j

)
= σ2

β̂j
= σ2

u

(n − 1)s2
j (1 − R2

j )

• How does the variance of β̂j change with the following factors?

Factors symbols V ar
(
β̂j

)
the variance of ui σ2

u ↑ ↑
the sample variance of Xj s2

j ↑ ↓
the R2

j R2
j ↑ ↑

the sample size n ↑ ↓
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Control Variables: W

• We will discuss the potential bias or the precise of the OLS estimators when the

control variable is as follows:

W Irrelevant to Y Relevant to Y

Uncorrelated
with X

Irrelevant Variables Non-Omitted Variables

Correlatedwith
X

Irrelevant Variables Omitted Variables

Highly-
Correlatedwith
X

(Worse)Irrelevant Variables Omitted Variables and
Multicollinearity
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Control Variables: Guides

• Irrelevant Variables: Drop

• Relevant Variables

• Non-Omitted Variables: Keep
• Omitted Variables: It depends.

• High Correlation with X: Be cautious
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Good Control v.s Bad Control

• DAGs can help us to identify

• Building Blocks

• Chains
• Confounders
• Colliders

• Good Control: Block the backdoor path

• Confounders

• Bad Control : Open the backdoor path

• Colliders and Chains
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Tips for Control Variables

1. Identify the variable’s category to decide.

2. Use economic theory as a guide.

3. Use Directed Acyclic Graphs (DAGs) to visualize and evaluate variable

relationships.

4. Gain insights from papers published in reputable journals.
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Internal Validity: Measurement error
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Introduction

• When a variable ismeasured imprecisely,then it might make OLS estimator

biased.

• This bias persists even in very large samples, so the OLS estimator is

inconsistent if there is measurement error.

• for example: recall last year’s earnings
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Types of Measurement errors

There are different types of measurement error

1. Measurement error in the dependent variable Y

• Less problematic thanmeasurement error in X
• Usually not a violation of internal validity
• But leads to less precise estimates

2. Measurement error in the independent variable X(errors-in-variables bias)

• Classical measurement error
• Measurement error correlated with X
• Both types of measurement error in X are a violation of internal validity
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Measurement error in the dependent variable Y

• Suppose the true population regressionmodel(Simple OLS) is

Yi = β0 + β1Xi + ui with E[ui|Xi] = 0

• Because Y ismeasured with errors, we can not observe Yi but observe Ỹi, which is

a noisy measure of Yi,thus

Ỹi = Yi + ωi

• The noisy part of Ỹi, ωi, satisfies

E[ωi|Yi] = 0

• It means that Cov(ωi, Yi) = 0 and Cov(ωi, ui) = 0,which is a key hypothesis and
is called classical measurement error

• For example: measurement error due to someonemaking randommistakes

when imputing data in a database.
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Measurement error in the dependent variable Y

• And we can only estimate

Ỹi = β0 + β1Xi + ei

where ei = ui + ωi

• The OLS estimate β̂1 will be unbiased and consistent because E[ei|Xi] = 0
• Nevertheless,the estimate will be less precise because

V ar(ei) > V ar(ui)

• Measurement error in Y is generally less problematic thanmeasurement error

in X
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Measurement error in X: classical measurement error

• The true model is

Yi = β0 + β1X1i + ui

with E[ui|Xi] = 0
• Due to the classical measurement error,we only have X∗

1i thus

X∗
1i = X1i + wi,we have to estimate the model is

Yi = β0 + β1X∗
1i + ei

• where ei = −β1wi + ui
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Measurement error in X: classical measurement error

• Similar to OVB bias in simple OLSmodel

plim
(
β̂1
)

= Cov(Yi, X∗
1i)

V ar(X∗
1i)

=
Cov

[
β0 + β1X1i + ui, (X1i + wi)

]
V ar(X1i + wi)

= β1Cov(X1i, X1i)
V ar(X1i + wi)

= β1

(
V ar(X1i)

V ar(X1i) + V ar(wi)

)
= β1

σ2
X1i

σ2
X1i

+ σ2
w
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Measurement error in X: classical measurement error

• Because

0 ≤
σ2

X1i

σ2
X1i

+ σ2
w

≤ 1

• we have

plim
(
β̂1
)

= β1
σ2

X1i

σ2
X1i

+ σ2
w

≤ β1

• The classical measurement error β1 is biased towards 0, which is also called

attenuation bias.
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Measurement error in X: classical measurement error
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Solutions to errors-in-variables bias

• The best way to solve the errors-in-variables problem is to get an accurate

measure of X.

• Say nothing useful!

• Instrumental Variables

• It relies on having another variable (the “instrumental” variable) that is correlated
with the actual value Xi but is uncorrelated with the measurement error. We will
discuss it later on.
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Simultaneous Causality
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Introduction

• So far we assumed that X affects Y, but what if Y also affects X simultaneously ?
• thus we have Yi = β0 + β1X1 + ui

• we also have Xi = γ0 + γ1Y1 + vi

• Assume that Cov(vi, ui) = 0, then

Cov(Xi, ui) = Cov(γ0 + γ1Y1 + vi, ui)

= Cov(γ1Yi, ui)
= Cov(γ1(β0 + β1X1 + ui), ui)
= γ1β1Cov(Xi, ui) + γ1V ar(ui)

• Simultaneous causality leads to biased & inconsistent OLS estimate.

Cov(Xi, ui) = γ1
1 − γ1β1

V ar(ui)
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Simultaneous causality bias

• Substituting Cov(Xi, ui) in the formula for the β̂1

plimβ̂1

= β1 + Cov(Xi, ui)
V ar(X1i)

= β1 + γ1V ar(ui)
(1 − γ1β1)V ar(Xi)

̸= β1

• OLS estimate is inconsistent if simultaneous causality bias exits.
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Solutions to simultaneous causality bias

• Themost effective solution is to employ Instrumental Variables or other

experimental designs.

• Simultaneous EquationsModels offer a classical alternative, though they are

somewhat outdated inmodern practice.
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Functional formmisspecification
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Functional formmisspecification

• Functional formmisspecification also makes the OLS estimator biased and

inconsistent.

• It can be seen as an special case of OVB,in which the omitted variables are the

terms that reflect the missing nonlinear aspects of the regression function.

• It often can be detected by plotting the data and the estimated regression

functions, and it can be corrected by using different functional forms.

• More general way is to use semi-parametric or nonparametricmethods.

• **Matching and Propensity Scores Matching(we will cover it in the next lecture).
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Missing Data and Sample Selection
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Introduction

• Missing data is a common characteristic of economic data sets. It can threaten

internal validity if it violates the assumption that our data is a random sample

from the population of interest.

• In Stata and R, normally values are denoted as “.” or “NA” to indicate missing

data.

• Whether it poses a threat to internal validity depends on the reasonwhy the data

is missing.
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Three types of missing data

• We consider three types of missing data:

1. Missing completely at random

• This does not pose a threat to internal validity. The effect is a reduced sample size,
whichmay impact efficiency but does not introduce bias.

2. Missing based on X: This shouldn’t introduce significant bias into our analysis of
the effect of X on Y, as long as the number(or share) of missing data points is
relatively small.

• Ensentially, the key assumption for OLS regression is still hold.

E(ui|Xi) = 0

• And the conditional relationship between Y and X, thus the causal effect of X on Y,
remains unbiasedwithin the observed data.
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Class Size and Test Score (STR>18)
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Class Size and Test Score(STR>20)
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Missing data based on Y

3. Data is missing based on Y: This is the most problematic type ofmissing data.

It can introduce significant bias into our analysis of the effect of X on Y.

• Essentially, the key assumption for OLS regression is not hold anymore in this

case.

• Using OLS regression to analyze the effect of X on Y will introduce bias.

• These models are called Limited dependent variablemodels, which normally are
non-linear models and can be estimated byMLE or Two-step estimation.

• Based on themissing data mechanism, we can classify three types of missing

data in Y .
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Missing data: Censored Data

(A) Data missing(only Y) because of a selection process that is related to the value of

the dependent variable (Y), which is called censored data(删失数据）.

• An simple example: the effect of education on income.
• Our income data comes from administrative taxation records. However, some
households do not report their income, because their income is less than the
reporting threshold(like 5000 RMB).

• Therefore, their income data(Y) is missing, though still have the information of
X ,like education, age, gender, etc.

• Two improperways to deal with this problem:
1. Listwise deletion: Drop the missing data points.
2. Imputation: Use the top-coded income data (like 5000 RMB) to impute the missing

data.

• Bothmethods will introduce bias into our analysis of the effect of education on

income.
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Missing data: Censored Data

• A special but useful case: corner-solutionmodels.

• The key feature of the behavior is that the decision can be divided into two parts:

• The first part is the decision to participate in the behavior.
• The second part is the decision on the level of the behavior.

• Example: Education on financial investment decision.

• Many families does not have participation in financial investment. Then the
investment data for these families is 0.

• Other families have participation in financial investment. The investment data can
be observed.
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Missing data: Truncated Data

(B) Data are total missing(both X and Y) because of a selection process that is related

to the value of the dependent variable (Y), which is called truncated data.

• Example: Innovation Investment on Totol Revenue of firms

• Our data comes from a survey of firms across years,like Chinese industrial
enterprises database(全部国有及规模以上非国有工业企业数据库).

• Except SOEs, only firms over 500million RMB in revenue, over 2000million RMB
in revenue after 2011 are included in the sample.

• Except SOEs, the firms below 500million RMB in revenue, below 2000million
RMB in revenue after 2011 are totally missing.

• Only use the firms in the sample to estimate the effect of innovation investment

on total revenue will introduce bias.
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Missing data: Sample Selection

(C) Data are missing in Y because of a selection process that is related to another

variable Z , which is called sample selection data(样本选择数据).

• The selection process depends on another variableZ , meaning that the selection

process can be endogenous.

• This is the key distinction between Sample Selection Data and both Censored

Data and Truncated Data.

• Example: Wage determination of married women(we will cover it in detail later

on)

• NOTE: sample selection or self-selection bias v.s selection bias.
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Survivorship Bias fromWWII Aircrafts

• The bullet holes of a bomber that,
crucially, survived

• How to reinforce the armor to increase
the survival of allied bombers?

• Which part of the bomber is more
important?
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Missing data in Limited Dependent Variable Models

Type Y is available X is available Selection Process

Censored only Y ∈ C+,other

missing or zero

All samples in X are

available.

Exogenous

Truncated only Y ∈ C+,other

missing or zero

Only non-missing

samples are available.

Exogenous

Sample

Selec-

tion

only Y ∈ C+,other

missing or zero

All samples in X and Z

are available.

Endogenous
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Class Size and Test Score(Test Score>640)
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Class Size and Test Score(Test Score>650)
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Censored and Truncated RegressionModels

• Consider a latent variable regressionmodel is

Y∗ = X′β + u =


Y ∗

1
Y ∗

2
...

Y ∗
n

 =


1 X11 · · · Xk1

1 X12 · · · Xk2
...

...
. . .

...

1 X1n · · · Xkn




β0

β1
...

βk

+


u1

u2
...

un


• Thus Y ∗

i = X ′
iβ + ui

• Y ∗
i : latent dependent variable

• X ′
i : observed independent variables vector(only one variable we care most)

• β: parameter vector(only one parameter we care most)
• ui: error term
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Censored and Truncated RegressionModels

• The regression satisfies all the assumptions of OLS regression.

• And we need additional assumptions to ui:

ui|Xi ∼ N(0, σ2)

• where the expectation of ui conditional on Xi is 0, because the regressionmodel

satisfies the 1st assumption of OLS regression, thus E(ui|Xi) = 0.
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Censored and Truncated RegressionModels

• Censored Data: The dependent variable is observed only if it exceeds(or less) a

certain threshold.

1. Corner SolutionModels: Y is censored at 0.
2. Censored RegressionModels: Y is censored at a certain threshold.

• Suppose the latent variable is observed only if it exceeds a certain threshold 0,
thus

Y ∗
i =

Yi if Y ∗
i > 0

0 or missing if Y ∗
i ≤ 0
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The Expectation of Censored Data at Zero

• When the dependent variable is censored at 0, the expectation of Y ∗
i is

E(Yi) = E(Y ∗
i |Y ∗

i > 0)
= E(X ′

iβ + ui|X ′
iβ + ui > 0)

= X ′
iβ + E(ui|ui > −X ′

iβ)

= X ′
iβ + σE

(
ui

σ
|ui

σ
>

−X ′
iβ

σ

)
• where Yi is the observed dependent variable
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Math Review: Truncated Density Function

Truncated Density Function

If a continuous random variableX has p.d.f. f(x) and c.d.f. F (x) and a is a constant,

then the conditional density function

f(x|x > a) =


f(x)

1−F (a) if x > a

0 if x ≤ a

• Please see the derivation in Appendix.
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Math Review: Truncated Density Function

• It amounts merely to scaling the density so that it integrates to one over the

range above c.
50 / 109



Standard Normal Truncated Density Function

• If X is distributed as standard normal, thus X ∼ N (0, 1), then the p.d.f and c.d.f are as
follow

ϕ(x) = 1√
2π

e− x2
2

Φ(x) = 1√
2π

∫ x

−∞
e− t2

2 dt

• And c is a scalar, then we can get the Truncated Density Function of a R.V. distributed in
Standard Normal

f (x | x > c) =
ϕ (x)

1 − Φ (c)
• The Expectation of in a standard normal truncated p.d.f

E(x|x > c) =
f(c)

1 − Φ (c)
≡ λ (c)

(see the proof in Appendix) where λ (c) is called by InverseMills Ratio(逆米尔斯比率).
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The Expectation of Censored Data at Zero

• Recall we just obtain the expectation of Yi(observed dependent variable)

E(Yi) = X ′
iβE

(
ui

σ
|ui

σ
>

−X ′
iβ

σ

)
= X ′

iβ + σλ(−X ′
iβ

σ
)

• Where the λ( −X′
iβ

σ ) is the InverseMills Ratio.

• Then the population regression function or the CEF of Y on X is

E(Yi|Xi) = X ′
iβ + σλ(−X ′

iβ

σ
)
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The Bias of OLS Estimator in Censored RegressionModel

• The unbiased regression equation should be

Yi = X ′
iβ + σλ(−X ′

iβ

σ
) + ui

• If you use the original regressionmodel, which is

Yi = X ′
iβ̃ + vi

• whichmeans that you put σλ( −X′
iβ

σ ) into the error term vi, it makes the error term
vi correlated with the independent variable Xi,

• thus the OLS estimator β̃ will suffer theOVB bias.
• The bias can not be corrected by controllingmore independent variable Xi.

• We could useMLEmethod to estimate the parameter vector β and σ in the

unbiased regressionmodel, which is the Tobit model.
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The Tobit Model Regression in Graphs
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The Tobit Model Regression in Graphs
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The Tobit Model Regression in Graphs
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Morz(1987):Labor Supply of MarriedWomen

• Our regression equation is

Yi = β0 + β1Xi + Z ′
iβ2 + ui

• The dependent variable Yi is the hours worked per week

• The treatment variables Xi are education,

• The control variables Zi are experience, age, and number of children under 6.

• However, the working hours are not observed for those who do not work, thus

we only have a censored sample.
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Morz(1987):Labor Supply of MarriedWomen
Histogram of hours worked per week
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Table 4: Labor Supply of MarriedWomen

Dependent variable:

hours hours2 hours

OLS OLS Tobit

(1) (2) (3)

educ 27.086∗∗ −16.462 73.291∗∗∗

(12.240) (15.581) (20.475)
exper 48.040∗∗∗ 33.936∗∗∗ 80.535∗∗∗

(3.642) (5.009) (6.288)
age −31.308∗∗∗ −17.108∗∗∗ −60.768∗∗∗

(3.961) (5.458) (6.888)
kidsl6 −447.855∗∗∗ −305.309∗∗∗ −918.918∗∗∗

(58.413) (96.449) (111.661)
Constant 1, 335.306∗∗∗ 1, 829.746∗∗∗ 1, 349.876∗∗∗

(235.649) (292.536) (386.299)

Observations 753 428 753
Adjusted R2 0.253 0.117
Log Likelihood -3,827.143
F Statistic 64.711∗∗∗ (df = 4; 748) 15.123∗∗∗ (df = 4; 423)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
hours are the observed hours worked per week for all observations, and hours2 is the observed hours worked per week only for those who work.
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Tobit Model in R

• Following the general principle of the nonlinear models, the estimate

coefficients are not meaningful.

• We need to use themarginal effects to interpret the results.

#> Marg. Eff. Std. Error t value Pr(>|t|)
#> educ 44.3724 12.3299 3.5988 0.0003408 ***
#> exper 48.7583 3.7685 12.9383 < 2.2e-16 ***
#> age -36.7905 4.1097 -8.9522 < 2.2e-16 ***
#> kidsl6 -556.3382 66.4736 -8.3693 4.441e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Sample SelectionModels
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Example: Wage determination of married women

• A Classical Example: wage determination for MarriedWomen

Yi = β0 + β1Xi + ui

• Yi is logwage
• Xi is schooling years

• The sample selection problem arises in that the sample consists only of women

who chose to work.

• If the selection to work is random,then OK.
• But in reality, married women choose to work probably they are smarter,more
ambitious andmore risk-preferent which normally can not observed or measured
in the data(Z).
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Heckman Sample SelectionModel(I)

• A two-equation behavioral model

1. selection equation

Z∗
i = W ′

i γ + ei

where Zi is a latent variable which indicates the propensity of working for a

married woman

• the error term ei satisfies

E[ei|Wi] = 0

• Then Zi is a dummy variable to represent whether a woman to work or not

actually,thus

Zi =

1 if Z∗ > 0

0 if Z∗ ≤ 0
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Heckman Sample SelectionModel(II)

2. outcome equation

Y ∗
i = X ′

iβ + ui

• where the outcome(Y ∗
i ) can be observed only when Zi=1 or Z∗

i > 0

Y ∗
i =

Yi if Zi = 1

0 or missing if Zi = 0

• The error term ui satisfies E[ui|Xi] = 0
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Heckman Sample SelectionModel(III)

• The conditional expectation of wages on Xi is

E[Y ∗
i |Xi] = X ′

iβ

• The conditional expectation of wages onXi is only for womenwhowork(Z∗ > 0)

E[Y ∗
i |Xi, Z∗

i > 0] = E[Yi|Xi, Z∗
i > 0]

= E[X ′
iβ + ui|Xi, Z∗

i > 0]
= X ′

iβ + E[ui|Z∗
i > 0]

= X ′
iβ + E[ui|ei > −W ′

i γ]
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Heckman Sample SelectionModel(III)

• The conditional expectation of wages on Xi is

E[Y ∗
i |Xi] = X ′

iβ

• The conditional expectation of wages onXi is only for womenwhowork(Z∗ > 0)

E[Y ∗
i |Xi, Z∗

i > 0] = E[Yi|Xi, Z∗
i > 0]

= E[X ′
iβ + ui|Xi, Z∗

i > 0]

= X ′
iβ + E[ui|Z∗

i > 0]
= X ′

iβ + E[ui|ei > −W ′
i γ]
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Heckman Sample SelectionModel(III)
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Heckman Sample SelectionModel(III)
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Heckman Sample SelectionModel(IV)

• If ui and ei is independent, then E[ui|ei > −W ′
i γ] = 0, then

E[Y ∗
i |Xi, Z∗

i > 0] = E[Y ∗
i |Xi] = X ′

iβ

• It means using sample-selected data does not make the estimation of β biased.

• But in reality, unobservables in the two equations, thus ui and ei, are likely to be

correlated
• eg. innate ability,ambitions,�

• Instead assume that ui and ei are jointly normal distributed, which can be

standardized easily, thus(
ui

ei

)
∼ N

((
µu

µe

)
,

(
σ2

u σeu

σue σ2
e

))
=

N
((

0
0

)
,

(
σ2

u ρσu

ρσu 1

))

• where we let σ2
e = 1, and ρ is the correlation coefficient between ui and ei
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Heckman Sample SelectionModel(IV)

• If ui and ei is independent, then E[ui|ei > −W ′
i γ] = 0, then

E[Y ∗
i |Xi, Z∗
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)
,

(
σ2

u σeu

σue σ2
e
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((
0
0

)
,

(
σ2

u ρσu

ρσu 1

))
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Math Review: Two Normal Distributed R.V.s

Two Normal Distributed R.V.s

For any two normal variables (n0, n1) with zero mean, we can write n1 = α0n0 + η,

where η ∼ N (0, ση) and E (η|n0) = 0.Then we have

α0 = Cov(n0, n1)
V ar(n0)

or

E (n1 | n0) = Cov(n0, n1)
V ar(n0)

n0

Then

n1 = E (n1 | n0) + η = Cov(n0, n1)
V ar(n0)

n0 + η
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Heckman Sample SelectionModel(V)

• For two normal variables ui and ei with zero means, we have

α0 = Cov(ui, ei)
V ar(ei)

= σue

σ2
e

• Then

ui = α0ei + η = σue

σ2
e

ei + η

where η ∼ N (0, ση) and E (η|ei) = 0
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Heckman Sample SelectionModel(VI)

• Then the conditional expectation of ui

E[ui|ei > −W ′
i γ]

= E[σue

σ2
e

ei + η|ei > −W ′
i γ]

= σue

σ2
e

E[ei|ei > −W ′
i γ] + E[η|ei > −W ′

i γ]

= σue

σ2
e

E[ei|ei > −W ′
i γ]
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Heckman Sample SelectionModel(VI)

• Then the conditional expectation of ui

E[ui|ei > −W ′
i γ] = E[σue

σ2
e

ei + η|ei > −W ′
i γ]

= σue

σ2
e

E[ei|ei > −W ′
i γ] + E[η|ei > −W ′

i γ]

= σue

σ2
e

E[ei|ei > −W ′
i γ]
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Heckman Sample SelectionModel(VI)

• Then the conditional expectation of ui

E[ui|ei > −W ′
i γ] = E[σue

σ2
e

ei + η|ei > −W ′
i γ]

= σue

σ2
e

E[ei|ei > −W ′
i γ] + E[η|ei > −W ′

i γ]

= σue

σ2
e

E[ei|ei > −W ′
i γ]
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Heckman Sample SelectionModel(VI)

• Then the conditional expectation of ui
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Heckman Sample SelectionModel(VII)

• Then the conditional expectation of ui

E[ui|ei > −W ′
i γ] = σue

σ2
e

E[ei|ei > −W ′
i γ]

= σue

σe
E[ ei

σe
| ei

σe
>

−W ′
i γ

σe
]

= σue

σe

ϕ(−W ′
i γ/σe)

1 − Φ(−W ′
i γ/σe)

= σue

σe

ϕ(W ′
i γ/σe)

Φ(W ′
i γ/σe)

for the pdf and cdf of a standard normal dis.

= σue

σe
λ(W ′

i γ/σe) where λ(x) = ϕ(x)
Φ(x)

= σλλ(W ′
i γ) for σe = 1 and σλ = σue
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Heckman Sample SelectionModel(VII)

• Then the conditional expectation of ui

E[ui|ei > −W ′
i γ] = σue

σ2
e

E[ei|ei > −W ′
i γ]

= σue

σe
E[ ei

σe
| ei

σe
>

−W ′
i γ

σe
]

= σue

σe

ϕ(−W ′
i γ/σe)

1 − Φ(−W ′
i γ/σe)

= σue

σe

ϕ(W ′
i γ/σe)

Φ(W ′
i γ/σe)

for the pdf and cdf of a standard normal dis.

= σue

σe
λ(W ′

i γ/σe) where λ(x) = ϕ(x)
Φ(x)

= σλλ(W ′
i γ) for σe = 1 and σλ = σue
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Heckman Sample SelectionModel(VII)

• Then the conditional expectation of ui
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−W ′
i γ
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Heckman Sample SelectionModel(VII)
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Heckman Sample SelectionModel(VII)
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Heckman Sample SelectionModel(VII)

• Then the conditional expectation of ui
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Heckman Sample SelectionModel(VIII)

• Then the conditional expectation of wages on Xi is only for women who

work(Z∗ > 0)

E[Y ∗
i |Xi, Z∗

i > 0] = E[Yi|Xi, Zi = 1] = X ′
iβ + σλλ(W ′

i γ)

• Turning it into a regression form

Yi = X ′
iβ + σλλ(W ′

i γ) + ui

• Recall our original wage determination equation

Yi = X ′
iβ̃ + vi

• Likewise, the error term vi is correlated with the independent variable Xi, thus

the OLS estimator β̃ will suffer theOVB bias.
71 / 109



Heckman Sample SelectionModel(IX)

• It means that if we could include λ(W ′
i γ) as an additional regressor into the

outcome equation, thus we run

Yi = X ′
iβ + σλλ(W ′

i γ) + ui

obtaining the unbiased and consistent estimate β using a self-selected sample.

• The coefficient before λ(·) can be testing significance to indicate whether the

term should be included in the regression, in other words,whether the selection

should be corrected.
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Heckit Model Estimation: a two-stepmethod

1. Estimate selection equation using all observations,thus

Zi = W ′
i γ + eI

• obtain estimates of parameters γ̂

• computer the InverseMills Ratio(IMR)
ϕ(W ′

i γ̂)
Φ(W ′

i γ̂)
= λ̂(W ′

i γ̂)

2. Estimate the outcome equation using only the selected observations.

Yi = X ′
iβ + σλλ̂(W ′

i γ̂) + ui

• Note: standard error is not right, have to be adjusted because we use λ̂(W ′
i γ̂)

instead of λ(W ′
i γ) in the estimation.
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An Example: Wage Equation for MarriedWomen
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Wrap Up

• Missing data is a common problem in practice for empirical researchers.

• Missing data can be caused bymany reasons, such as non-response, attrition,

non-sampling error, etc.

• Missing data can bemissing completely at random (MCAR),missing at random

(MAR), ormissing not at random (MNAR).

• Normally, missing values in Xmay not be a serious problem.
• Missing values in Y are problematic.

• Limited Dependent Variable Models are using to deal with missing data in Y.

• Tobit model
• Heckman Sample SelectionModel
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Sources of Inconsistency of OLS Standard Errors
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Introduction

• A different threat to internal validity.Even if the OLS estimator is consistent and

the sample is large, inconsistent standard errorswill let youmake a bad

judgment about the effect of the interest in the population.

• There are twomain reasons for inconsistent standard errors:

1. Heteroskedasticity: The solution to this problem is to use

heteroskedasticity-robust standard errors and to construct F-statistics using a

heteroskedasticity-robust variance estimator.
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Sources of Inconsistency of OLS Standard Errors

2. Correlation of the error term across observations:
• This will not happen if the data are obtained by sampling at random from the
population.(i.i.d)

• Sometimes, however, sampling is only partially random.
• When the data are repeated observations on the same entity over time.(time series)
• Another situation in which the error term can be correlated across observations is
when sampling is based on a geographical or other group unit.(cluster)

• Both situationmeans that the assumptions

Cov(ui, uj) ̸= 0

the second key assumption in OLS is partially violated.
• In this case, the OLS estimator is still unbiased and consistent, but the standard
errors are inconsistent.
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Clustering Standard Error: A Simple Example

• Suppose we still focus on the topic of class size and student performance, but

now the data are collecting on students rather than school district.

• Our regressionmodel is

TestScoreig = β0 + β1ClassSizeg + uig

• TestScoreig is the dependent variable for student i in class g, with G groups.

• ClassSizeg the independent variable(or treatment variable), varies only at the

group level(class).

• Intuitively,the test score of students in the same class(g) tend to be correlated.

Thus

Cov[uig, ujg] = ρσ2
u

where ρ is the intraclass correlation coefficient.
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Clustering Standard Error(I)

• Recall the variance of the OLS estimator:

V ar(β̂j) = V ar

(
βj +

∑n
i=1 X̃ijui∑n

i=1 X̃2
ij

)
=

V ar
(∑n

i=1 X̃ijui

)
(∑n

i=1 X̃2
ij

)2

With clustering, we reorganize the sum by clusters:

V ar(β̂j) =
V ar

(∑G
g=1

∑
i∈g X̃ijuig

)
(∑n

i=1 X̃2
ij

)2
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Clustering Standard Error(II)

• When the sample is clustered, whichmeans that the observations are only

randomly sampled across clusters, g and G is the number of clusters.

• Then the numerator of the variance of the OLS estimator is:

V ar

(
n∑

i=1
X̃ijui

)
=

V ar

 G∑
g=1

∑
i∈g

X̃ijuig


=

G∑
g=1

V ar

∑
i∈g

X̃ijuig

 for i.i.d sample in g level

=
G∑

g=1

∑
i∈g

∑
k∈g

X̃ijX̃kjCov(uig, ukg)
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Clustering Standard Error(III)

• Substituting Cov(uig, ukg) =

σ2
u if i = k

ρσ2
u if i ̸= k

:

V ar(β̂j) =
∑G

g=1

[
σ2

u

∑
i∈g X̃2

ij + ρσ2
u

∑
i ∈ g

∑
k∈g,k ̸=i X̃ijX̃kj

]
(∑n

i=1 X̃2
ij

)2

=
σ2

u

∑G
g=1

[∑
i∈g X̃2

ij + ρ
∑

i ∈ g
∑

k∈g,k ̸=i X̃ijX̃kj

]
(∑n

i=1 X̃2
ij

)2

• This final expression shows how intraclass correlation ρ inflates the variance

through the additional cross-product terms.
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Clustering Standard Error(IV)

• Stata: use optionvce(cluster clustvar). Whereclustvar is a variable
that identifies the groups in which on observables are allowed to correlate.

• R: the vcovHC() function from plm package
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Magnitude of β1
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Introduction

• The criteria for determining the magnitude of β1 are as follows:

• large enough to make sense.
• Question: How large is considered large enough?

• Themagnitude of β1 is not only determined by the actual relationship between

X and Y , but also by the units in which X and Y are measured.

• Recall the class size and student performance example, the coefficient β1 is

−2.38, whichmeans that if class size increases by 1, then student performance

decreases by 2.38 points.

• Whether the −2.38 is large or small depends on the scale of the variables and
distribution of the data.

• Normally, we compare the magnitude of β1 to themean value of Y or the

standard deviation of Y .
85 / 109



Standardized Variables

• Assume Xs and Y are all continuous variables, then we run amultiple

regressionmodel

Yi =β̂0 + β̂1Xi1 + β̂2Xi2 + · · · + β̂kXik + ûi

• Because Σûi = 0 and Y = β̂0 + β̂1X̄1 + · · · + β̂kX̄k ,then

Yi − Ȳ =β̂1(Xi1 − X̄1) + β̂2(Xi2 − X̄2) + · · · + β̂k(Xik − X̄k) + ûi

• Then, we obtain following expressions

Yi − Ȳ

σy
=β̂1

σx1

σy

(Xi1 − X̄1)
σx1

+ β̂2
σx1

σy

(Xi2 − X̄2)
σx2

+ · · · +

β̂k
σx1

σy

(Xi2 − X̄k)
σxk

+ ûi

σy
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Standardized Variables

• Then we have a standardized regressionmodel

Zy = ϕ̂1Z1 + ϕ̂2Z2 + · · · + ϕ̂kZk + vi

where Zy denotes the Z-score of Y , Z1 denotes the Z-score of X1,and so on.

• The estimate coefficients

ϕ̂j = (σ̂j/σ̂y) β̂j for j = 1, . . . , k

• ϕ̂j are traditionally called standardized coefficients or beta coefficients，which

can be explained as ifXj increases by 1 standard deviation, then Y changes by ϕ

standard deviations.
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Standardized Only One X

• Consider a linear regressionmodel as usual

Yi = β0 + β1Xi1 + β2Xi2 + · · · + βkXik + ui

• Or

Yi = β0 + β1Xi1 + CΓ′ + ui

• Where Γ = (β2, ..., βk), Ci = (X2i, ..., Xki)
• If we only standardize X1 and leave other variables as they are, then the

standardized version of X1 is defined as

Z1 = X1 − X̄1
σx1

• Then we have the standardized regressionmodel
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Standardized Only One X

• Substitute Z1 back into the original regression equation in place of X1, we have

Yi =β0 + β1

(
X1 − X̄1

σx1

)
+ CΓ′ + ui

=β0 − X̄1
σx1

+ β1
X1
σx1

+ CΓ′ + ui

• Then we have the marginal effect of X1 on Y as

∂Y

∂X1
= β1

1
σx1

⇒ β1 = ∂Y
∂X1
σx1

• The estimate coefficients β̂1 is can be interpreted as follows:
• if X1 increases by 1 standard deviation, then Y changes by β1 units.
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Standardized Only Y

• If we only standardize Y and leave other variables as they are, then the

standardized version of Y is defined as

ZY = Y − Ȳ

σY

• Then the regressionmodel becomes

ZY = β0 + β1X1 + CΓ′ + ui

⇒Y − Ȳ

σY
= β0 + β1X1 + CΓ′ + ui

⇒ Y

σY
= β0 + Ȳ

σY
+ β1X1 + CΓ′ + ui
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Standardized Only Y

• Then we have the marginal effect of X1 on Y as

∂Y

∂X1
= β1σy

⇒ β1 =
∂Y
σy

∂X1

• The estimate coefficients β̂1 is can be interpreted as follows:

• if X1 increases by 1 unit, then Y changes by β1 standard deviation.
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Wrap Up

• There are five primary threats to the internal validity of a multiple regression

study:

1. Omitted variables
2. Functional formmisspecification
3. Errors in variables (measurement error in the regressors)
4. Missing Data and Sample selection
5. Simultaneous causality

• Besides, the data structure may violate the 2th OLS regression assumption, thus

random sampling.

1. Times series
2. Cluster data
3. Spatial data

• Last but not least, themagnitude of β1 matters.
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Wrap Up

• Each of these, if present, results in failure of the first least squares

assumption,which in turnmeans that the OLS estimator is biased and

inconsistent.

• Incorrect calculation of the standard errors also poses a threat to internal

validity.

• Applying this list of threats to a multiple regression study provides a systematic

way to assess the internal validity of that study.
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External validity
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Definition

• Suppose we estimate a regressionmodel that is internally valid.

• Can the statistical inferences be generalized from the population and setting

studied to other populations and settings?
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Threats to external validity

1. Differences in populations

• The population fromwhich the sample is drawnmight differ from the population
of interest

• For example, if you estimate the returns to education formen, these results might
not be informative if you want to know the returns to education forwomen.

2. Differences in settings

• The setting studiedmight differ from the setting of interest due to differences in
laws, institutional environment and physical environment.

• For example, the estimated returns to education using data from the U.S might not
be informative for China.

• Because the educational system is different and different institutions of the labor
market.
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Application to the case of class size and test score

• This analysis was based on test results for California school districts.

• Suppose for the moment that these results are internally valid. To what other

populations and settings of interest could this finding be generalized?

• generalize to colleges: it is implausible
• generalize to other U.S. elementary school districts: it is plausible
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Wrap up

• It is not easy to make your studies valid internally.

• Even harder when you consider generalize your findings.

• Then common way to generalize the findings actually is to repeat to make the

studies internal valid.

• Then wemake a generalizing conclusions based on a bunch of internal valid

studies.
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Example: Test Scores and Class Size
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External Validity

• Whether the California analysis can be generalized—that is, whether it is

externally valid—depends on the population and setting to which the

generalization is made.

• we consider whether the results can be generalized to other elementary public

school districts in the United States.

• more specifically, 220 public school districts inMassachusetts in 1998.
• if we find similar results in the California andMassachusetts, it would be evidence
of external validity of the findings in California.

• Conversely, finding different results in the two states would raise questions about
the internal or external validity of at least one of the studies.
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Comparison of the California andMassachusetts data.
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Test scores and class size inMA
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Test scores and class size inMA
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Internal Validity

• The similarity of the results for California andMassachusetts does not ensure

their internal validity.

• Omitted variables: teacher quality or a low student-teacher ratio might have

families that are more committed to enhancing their children’s learning at

home or migrating to a better district.

• Functional form: Although further functional form analysis could be carried

out, this suggests that the main findings of these studies are unlikely to be

sensitive to using different nonlinear regression specifications.

• Errors in variables: The average student-teacher ratio in the district is a broad

and potentially inaccurate measure of class size.
• Because students’ mobility, the STRmight not accurately represent the actual class
sizes, which in turn could lead to the estimated class size effect being biased
toward zero.
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Internal Validity

• Selection: data cover all the public elementary school districts in the state that

satisfy minimum size restrictions, so there is no reason to believe that sample

selection is a problem here.

• Simultaneous causality: it would arise if the performance on tests affected the

student–teacher ratio.

• Heteroskedasticity and correlation of the error term across observations.

• It does not threaten internal validity.
• Correlation of the error term across observations, however, could threaten the
consistency of the standard errors because the assumption of simple random
sampling is violated.
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Appendix
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Math Review: Truncated Density Function

Truncated Density Function

The proof follows from the definition of a conditional probability is

Pr(A|B) = Pr(AB)
Pr(B)

then,

F (x|X > c) =

Pr(X < x, X > c)
Pr(X > c)

= Pr(c < X < x)
1 − F (c)

= F (x) − F (c)
1 − F (c)

then,

f(x|x > c) = d

dx
F (x|X > c) =

d
dx [F (x)] − 0

1 − F (c)
= f(x)

1 − F (c)
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The Expectation in a Standard Normal Truncated
Proof

E(x|x > c) =

∫ +∞

c

xf(x|x > c)dx =
∫ +∞

c

x
ϕ (x)

1 − Φ (c)
dx

=
1

1 − Φ (c)

∫ +∞

c

x
1√
2π

e− x2
2 dx

=
1

1 − Φ (c)

∫ +∞

c

1√
2π

e− x2
2 d(x2

2
)

=
1

1 − Φ (c)

∫ +∞

c2
2

1√
2π

e−td(t)

=
1

1 − Φ (c)
× 1√

2π
− e−t |+∞

c2
2

=
1

1 − Φ (c)
× 1√

2π
e− c2

2 =
ϕ(c)

1 − Φ (c)
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