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Review of previous lectures

Internal Validity: Measurement error

Simultaneous Causality

Functional form misspecification

Missing Data and Sample Selection

Sample Selection Models

Sources of Inconsistency of OLS Standard Errors

Magnitude of 5;
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Accessing Regression Studies

* The validity of regression studies
¢ Internal and External validity
* The population and settings are studies and the generalizability of the results.
* The internal validity of a regression study is the top priority in causal inference

studies.
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Internal Validity in OLS Regression

* Suppose we are interested in the causal effect of X; on Y and we estimate the
following multiple regression model

Yi =080+ 1 X1+ feXoi+ ...+ BeXps +uii=1,...,n
* Internal validity has three components:

1. The estimators of 51 should be unbiased and consistent. This is the most critical
aspect.

2. Hypothesis tests and confidence intervals should have the desired significance
level (at least 5% significant).

3. The value of 3; should be large enough to be meaningful or economically

significant.
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Threats to Internal Validity

¢ Threats to internal validity:

1. Omitted Variables

. Misspecification

. Measurement Error

. Simultaneous Causality

. Missing Data and Sample Selection

. Heteroskedasticity and/or Correlated error terms

9 0 U A W

. Significant coefficients or marginal effects

¢ In a narrow sense,
¢ Internal Invalidity = endogeneity in the estimation which is caused by the above
1-5 threats.

e In abroad sense,
* Internal Invalidity = 1-5 threats + 6-7 threats
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OLS Regression Estimators in partitioned regression

* OLS estimator in Multiple OLS
=080+ 1 Xi1+ feXio+ ... + B Xip +uii=1,...,n

* The OLS estimator of 3; is

n
z]yifz

b= S R

* The asymptotic OLS estimator of (3;

s Cov(Xi, V)
l L AT T
b lmlBJ VGT(XZ'J’)

* Where X;; is the fitted OLS residual of regressing X, on other regressors,thus

Xij =40 + N1 Xi1 + 32 Xio + oo + Y1 Xijo1 + Fje1 X1 o+ A Xin + X
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the Standard Error of }

The Variance of 3; under Homoskedasticity

2

Ou

Var (BJ) = U;} =

(n— 1)5?(1 — R?)

* How does the variance of ﬁj change with the following factors?

Factors

symbols Var (BJ)

the variance of u;

the sample variance of X
the R?

the sample size

i
s?T
R
nt

— = =
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Control Variables: 1V

» We will discuss the potential bias or the precise of the OLS estimators when the

control variable is as follows:

%4 Irrelevant to Y Relevantto Y
Uncorrelated Irrelevant Variables Non-Omitted Variables
with X

Correlated with Irrelevant Variables Omitted Variables
X

Highly- (Worse)Irrelevant Variables Omitted Variables and
Correlated with Multicollinearity

X
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Control Variables: Guides

¢ Irrelevant Variables: Drop

¢ Relevant Variables

* Non-Omitted Variables: Keep
* Omitted Variables: It depends.

* High Correlation with X: Be cautious

10/109



Good Control v.s Bad Control

* DAGs can help us to identify

Building Blocks

e Chains
* Confounders
* Colliders

* Good Control: Block the backdoor path

» Confounders

* Bad Control : Open the backdoor path

e Colliders and Chains
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Tips for Control Variables

1. Identify the variable’s category to decide.
2. Use economic theory as a guide.

3. Use Directed Acyclic Graphs (DAGs) to visualize and evaluate variable

relationships.

4. Gain insights from papers published in reputable journals.
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Introduction

* When a variable is measured imprecisely,then it might make OLS estimator
biased.

* This bias persists even in very large samples, so the OLS estimator is
inconsistent if there is measurement error.

* for example: recall last year’s earnings
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Types of Measurement errors

There are different types of measurement error

1. Measurement error in the dependent variable Y

2. Measurement error in the independent variable X(errors-in-variables bias)
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Measurement error in the dependent variable Y

* Suppose the true population regression model(Simple OLS) is

¢ Because Y is measured with errors, we can not observe Y; but observe Y;, which is

a noisy measure of Y;,thus

« The noisy part of Y;, w;, satisfies
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Measurement error in the dependent variable Y

* And we can only estimate
Y; = Bo+ B Xi + e
where e; = u; + w;
« The OLS estimate /3, will be unbiased and consistent because E[e;| X;] = 0

* Nevertheless,the estimate will be less precise because

* Measurement error in Y is generally less problematic than measurement error
in X.
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Measurement error in X: classical measurement error

¢ The true model is

* Due to the classical measurement error,we only have X7, thus
X7{; = X1; + w;,we have to estimate the model is

e wheree; = —1w; + u;
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Measurement error in X: classical measurement error

* Similar to OVB bias in simple OLS model
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Measurement error in X: classical measurement error

e Because

e we have

* The classical measurement error 31 is biased towards 0, which is also called
attenuation bias.
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Measurement error in X: classical measurement error

w0

® True data © Mismeasured data
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Solutions to errors-in-variables bias

* The best way to solve the errors-in-variables problem is to get an accurate
measure of X.

* Say nothing useful!

o Instrumental Variables

* Itrelies on having another variable (the “instrumental” variable) that is correlated
with the actual value X; but is uncorrelated with the measurement error. We will
discuss it later on.
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Introduction

¢ So far we assumed that X affects Y, but what if Y also affects X simultaneously ?

e thuswehaveY; = 3y + 1 X1 + u;
e wealso have X; = vy + 71 Y1 +v;

¢ Assume that Cov(v;, u;) = 0, then

* Simultaneous causality leads to biased & inconsistent OLS estimate.

Cov(X;,u;) = 1_77711&Var(ui)
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Simultaneous causality bias

« Substituting C'ov(X;, u;) in the formula for the 3,

* OLS estimate is inconsistent if simultaneous causality bias exits.
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Solutions to simultaneous causality bias

* The most effective solution is to employ Instrumental Variables or other
experimental designs.

 Simultaneous Equations Models offer a classical alternative, though they are
somewhat outdated in modern practice.
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Functional form misspecification

* Functional form misspecification also makes the OLS estimator biased and

inconsistent.

¢ Itcan be seen as an special case of OVB,in which the omitted variables are the
terms that reflect the missing nonlinear aspects of the regression function.

* It often can be detected by plotting the data and the estimated regression
functions, and it can be corrected by using different functional forms.

* More general way is to use semi-parametric or nonparametric methods.

* Matching and Propensity Scores Matching(we will cover it in the next lecture).
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Introduction

* Missing data is a common characteristic of economic data sets. It can threaten
internal validity if it violates the assumption that our data is a random sample
from the population of interest.

* In Stata and R, normally values are denoted as “” or “NA” to indicate missing
data.

* Whether it poses a threat to internal validity depends on the reason why the data
is missing.
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Three types of missing data

* We consider three types of missing data:
1. Missing completely at random

2. Missing based on X: This shouldn’t introduce significant bias into our analysis
of the effect of X on Y, as long as the number(or share) of missing data points is

relatively small.

* And the conditional relationship between Y and X, thus the causal effect of X on

Y, remains unbiased within the observed data.
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Class Size and Test Score (STR>16)

STR>16

Test Score

° ° Al data (pink line)

22 2 26
Student-Teacher Ratio
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Class Size and Test Score (STR>18)

STR>18

Test Score

Student-Teacher Ratio
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Class Size and Test Score(STR>20)

STR>20

O str<=20
® si>20

Test Score

° All data (pink line)

Student-Teacher Ratio
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Missing data based on' Y

3. Data is missing based on Y: This is the most problematic type of missing data.
It can introduce significant bias into our analysis of the effect of Xon Y.

* Essentially, the key assumption for OLS regression is not hold any more in this

case.

* Using OLS regression to analyze the effect of X on Y will introduce bias.

* Based on the missing data mechanism, we can classify three types of missing
datainY.
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Missing data: Censored Data

(A) Data missing(only Y) because of a selection process that is related to the value of
the dependent variable (Y), which is called censored data(fi| SR ##E) .

* Ansimple example: the effect of education on income.

* Two improper ways to deal with this problem:
1. Listwise deletion: Drop the missing data points.
2. Imputation: Use the top-coded income data (like 5000 RMB) to impute the missing
data.
* Both methods will introduce bias into our analysis of the effect of education on

income.
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Missing data: Censored Data

* A special but useful case: corner-solution models.

¢ The key feature of the behavior is that the decision can be divided into two parts:

+ Example: Education on financial investment decision.

* Many families does not have participation in financial investment. Then the
investment data for these families is 0.

¢ Other families have participation in financial investment. The investment data can
be observed.
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Missing data: Truncated Data

(B) Data are total missing(both X and Y) because of a selection process that is related
to the value of the dependent variable (Y), which is called truncated data.

* Example: Innovation Investment on Totol Revenue of firms

* Only use the firms in the sample to estimate the effect of innovation investment
on total revenue will introduce bias.
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Missing data: Sample Selection

(C) Data are missing in Y because of a selection process that is related to another
variable Z, which is called sample selection data(BAEF L)

* Example: Wage determination of married women(we will cover it in detail later
on)

* NOTE: sample selection or self-selection bias v.s selection bias.
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Survivorship Bias from WWII Aircrafts
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Survivorship Bias from WWII Aircrafts

e The bullet holes of a bomber that,

M AS TERS crucially, survived

OF THE

AIR

AMERICA'S BOMBER BOYS WHO FOUGHT
THE AIR WAR AGAINST NAZI GERMANY

» How to reinforce the armor to increase
the survival of allied bombers?

DONALD L. M ' * Which part of the bomber is more

AUTHOR OF THE STORY OF WORLD

important?
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Missing data in Limited Dependent Variable Models

Type Y is available X is available Selection Process

Censored only Y € C*,other All samples in X are Exogenous
missing or zero available.

Truncated only Y € C*,other Only non-missing Exogenous
missing or zero  samples are available.

Sample onlyY € C*,other AllsamplesinXandZ Endogenous
Selec- missing or zero are available.

tion
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Class Size and Test Score(Test Score>620)

Testscrore>620

Testscore<=620

Testscore>620

Test Score

Student-Teacher Ratio
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Class Size and Test Score(Test Score>640

Testscrore>640

Testscore<=640

Testscore>640

Test Score

Student-Teacher Ratio

43/109



Class Size and Test Score(Test Score>650)

Testscrore>650

Testscore<=650

O Testscore>650

Test Score

Student-Teacher Ratio
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Censored and Truncated Regression Models(I)

* Consider a latent variable regression model is

* Thus
 Y;*: latent dependent variable
 X!: observed independent variables vector(only one variable we care most)
 [3: parameter vector(only one parameter we care most)
* u;: error term
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Censored and Truncated Regression Models(II)

* The regression satisfies all the assumptions of the classical linear regression
model.

* And we need additional assumptions to u;:
w| Xi ~ N(0,0%)

* where the expectation of u; conditional on Xj is 0, because the regression model
satisfies the 1st assumption of OLS regression, thus E(u;|X;) = 0.

46 /109



Censored and Truncated Regression Models(III)

* Censored Data: The dependent variable is observed only if it exceeds(or less) a
certain threshold.
1. Corner Solution Models: Y is censored at 0.
2. Censored Regression Models: Y is censored at a certain threshold.
* Suppose the latent variable is observed only if it exceeds a certain threshold 0,
thus
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The Expectation of Censored Data at Zero

* When the dependent variable is censored at 0, the expectation of Y;* is

* where Y is the observed dependent variable
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Math Review: Truncated Density Function

Truncated Density Function

If a continuous random variable X has p.d.f. f(z) and c.d.f. F'(x) and a is a constant,

then the conditional density function

f(x) .
f(z|z >a) = {1—F(a) ifx>a

0 ife<a
* Please see the derivation in Appendix.
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Math Review: Truncated Density Function
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* Itamounts merely to scaling the density so that it integrates to one over the

range above c.
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Standard Normal Truncated Density Function

o If Xis distributed as standard normal, thus X ~ N (0, 1), then the p.d.f and c.d.f are as
follow

* And cis a scalar, then we can get the Truncated Density Function of a RV. distributed in
Standard Normal

¢ The Expectation of in a standard normal truncated p.d.f
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The Expectation of Censored Data at Zero

* Recall we just obtain the expectation of Y;j(observed dependent variable)

)
—X;B

o

e Where the )\( ) is the Inverse Mills Ratio.

¢ Then the population regression function or the CEF of Y on X is
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The Bias of OLS Estimator in Censored Regression Model

* The unbiased regression equation should be

* If you use the original regression model, which is

Yi = X8 +v;
* which means that you put 0')\(%’26) into the error term v;, it makes the error term
v; correlated with the independent variable X,
« thus the OLS estimator /3 will suffer the OVB bias.
* The bias can not be corrected by controlling more independent variable X;.
* We could use MLE method to estimate the parameter vector  and ¢ in the

unbiased regression model, which is the Tobit model.
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The Tobit Model Regression in Graphs

16

8
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16, Hill, Griffiths and L|m(2011)
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The Tobit Model Regression in Graphs

e E e e e L e B e e e

— E(y*) . .
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Hill, Griffiths and Lim(2011)
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FIGURE 16.5 Censored sample data, and latent regression function and least squares fitted line.
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The Tobit Model Regression in Graphs

L — E(y*)
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Hill, Griffiths and Lim(2011)
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FIGURE 16.6 Censored sample data, and regression functions for observed and positive y-values.
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Morz(1987):Labor Supply of Married Women

Our regression equation is

Y = Bo+ /i Xi + Z. B2 + u;

The dependent variable Y; is the hours worked per week

The treatment variables X; are education,

The control variables Z; are experience, age, and number of children under 6.

However, the working hours are not observed for those who do not work, thus

we only have a censored sample.
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Morz(1987):Labor Supply of Married Women
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Table 4: Labor Supply of Married Women

Dependent variable:

hours hours2 hours
OLS OLS Tobit
@® Q) [©)
educ 27.086™* —16.462 73.291%**
(12.240) (15.581) (20.475)
exper 48.040™** 33.936*** 80.535™**
(3.642) (5.009) (6.288)
age —31.308%** —17.108%** —60.768%**
(3.961) (5.458) (6.888)
kidslé —447.855*** —305.309*** —918.918***
(58.413) (96.449) (111.661)
Constant 1,335.306*** 1,829.746*** 1,349.876***
(235.649) (292.536) (386.299)
Observations 753 428 753
Adjusted R? 0.253 0.117
Log Likelihood -3,827.143
F Statistic 64.711* ** (df = 4;748) 15123 ** (df = 4; 423)

Note:

*p<0.1; **p<0.05 ***p<0.01
hours are the observed hours worked per week for all observations, and hours2 is the observed hours worked per week only for those who work.
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Tobit Model in R

* Following the general principle of the nonlinear models, the estimate
coefficients are not meaningful.

#> Marg. Eff. Std. Error t value Pr(>|t])

#> educ 44,3724 12.3299 3.5988 0.0003408 ***
#> exper 48.7583 3.7685 12.9383 < 2.2e-16 ***
#> age -36.7905 4.1097 -8.9522 < 2.2e-16 ***
#> kidsl6é -556.3382 66.4736 -8.3693 4.441le-16 ***
#> ———

#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.

* We need to use the marginal effects to interpret the results.
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Example: Wage determination of married women

* A Classical Example: wage determination for Married Women
Yi = Bo + 1 X+ wi

* Y islogwage
* X, is schooling years
¢ The sample selection problem arises in that the sample consists only of women
who chose to work.

 If the selection to work is random,then OK.

* But in reality, married women choose to work probably they are smarter,more
ambitious and more risk-preferent which normally can not observed or measured
in the data(Z).
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Heckman Sample Selection Model(I)

* A two-equation behavioral model

1. selection equation

where Z; is a latent variable which indicates the propensity of working for a married
woman

¢ the error term ¢; satisfies
E [ei | Wl] =0
* Then Z; is a dummy variable to represent whether a woman to work or not

actually,thus
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Heckman Sample Selection Model(II)

2. outcome equation
* where the outcome(Y;*) can be observed only when Z;=1or Z* > 0

¢ The error term u; satisfies E[u;|X;] =0
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Heckman Sample Selection Model(III)

¢ The conditional expectation of wages on X is
BEY1Xi] = X3

* The conditional expectation of wages on X is only for women who work(Z"* > 0)
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Heckman Sample Selection Model(IV)

¢ If u; and e; is independent, then E[u;le; > —W/~] = 0, then
BY;'|Xi, Z; > 0] = E[Y;'|Xi] = X;3
* It means using sample-selected data does not make the estimation of 5 biased.
* Butin reality, unobservables in the two equations, thus u; and e;, are likely to be
correlated
* eg. innate ability,ambitions,
* Instead assume that u; and ¢; are jointly normal distributed, which can be
standardized easily, thus

+ where we let 02 = 1, and p is the correlation coefficient between u; and ¢;
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Math Review: Two Normal Distributed R.V.s

Two Normal Distributed R.\V.s

For any two normal variables (ng, n1) with zero mean, we can write ny = agng + 7,

wheren ~ N (0,0,) and E (n|ng) = 0.Then we have
n
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Math Review: Two Normal Distributed R.V.s

Two Normal Distributed R.\V.s

For any two normal variables (ng, n1) with zero mean, we can write ny = agng + 7,

wheren ~ N (0,0,) and E (n|ng) = 0.Then we have
n

o — Cov(ng,ny)
0~ Var(ng)
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Math Review: Two Normal Distributed R.V.s

Two Normal Distributed R.\V.s

For any two normal variables (ng, n1) with zero mean, we can write ny = agng + 7,
wheren ~ N (0,0,) and E (1|ng) = 0.Then we have

o — Cov(ng,ny)
0~ Var(ng)
or Cou )
ov(ng,n
E (n1 | ng) = 2OV, 01

Var(ng)
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Math Review: Two Normal Distributed R.V.s

Two Normal Distributed R.\V.s

For any two normal variables (ng, n1) with zero mean, we can write ny = agng + 7,

wheren ~ N (0,0,) and E (n|ng) = 0.Then we have
n

o — Cov(ng,ny)
0~ Var(ng)
or Cou )
ov(np,ni
E(n1 | no) = “Var(ng)
Then
Cov(ng,n1)

nle(m]no)—i—n: no+n

Var(ng)
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Heckman Sample Selection Model(V)

* For two normal variables u; and ¢; with zero means, we have

e Then

wheren ~ N (0,0,) and E (n]e;) =0
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Heckman Sample Selection Model(VI)

* Then the conditional expectation of u;
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Heckman Sample Selection Model(VII)

 Then the conditional expectation of u;
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Heckman Sample Selection Model(VIII)

* Then the conditional expectation of wages on Xj is only for women who
work(Z* > 0)

* Turning it into a regression form

Y; = XiB + o A\(Wiy) + u;

7

* Recall our original wage determination equation
Yi= X8+

* Likewise, the error term v; is correlated with the independent variable X;, thus
the OLS estimator 3 will suffer the OVB bias.
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Heckman Sample Selection Model(IX)

¢ It means that if we could include A\(W/7) as an additional regressor into the
outcome equation, thus we run

obtaining the unbiased and consistent estimate [ using a self-selected sample.

¢ The coefficient before A\(-) can be testing significance to indicate whether the
term should be included in the regression, in other words, whether the selection

should be corrected.

72/109



Heckit Model Estimation: a two-step method

1. Estimate selection equation using all observations,thus

* obtain estimates of parameters ¥
¢WiA) _ 5 s
= \W!
(W/ 2 ) ( 1 7)

2. Estimate the outcome equation using only the selected observations.

* computer the Inverse Mills Ratlo(IMR)

* Note: standard error is not right, have to be adjusted because we use S\(WZ’ A)
instead of \(W/~) in the estimation.
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An Example: Wage Equation for Married Women

TABLE 17.7 Wage Offer Equation for Married Women

Dependent Variable: log(wage)
Independent Variables OoLsS Heckit
educ .108 109
(.014) (.016)
exper .042 .044
(.012) (.016)
exper? —.00081 —.00086
(.00039) (.00044)
constant —.522 —.578
(.199) (.307)
A — .032
(.134)
Sample size R-squared 428 428
157 157
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* Missing data is a common problem in practice for empirical researchers.

* Missing data can be caused by many reasons, such as non-response, attrition,
non-sampling error, etc.
* Missing data can be missing completely at random (MCAR), missing at random
(MAR), or missing not at random (MNAR).
 Normally, missing values in X may not be a serious problem.
* Missing values in Y are problematic.
* Limited Dependent Variable Models are using to deal with missing datain Y.

* Tobit model
* Heckman Sample Selection Model
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Introduction

* A different threat to internal validity.Even if the OLS estimator is consistent and
the sample is large, inconsistent standard errors will let you make a bad
judgment about the effect of the interest in the population.

o There are two main reasons for inconsistent standard errors:

1. Heteroskedasticity: The solution to this problem is to use
heteroskedasticity-robust standard errors and to construct F-statistics using a
heteroskedasticity-robust variance estimator.
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Sources of Inconsistency of OLS Standard Errors

2. Correlation of the error term across observations:
¢ This will not happen if the data are obtained by sampling at random from the
population.(i.i.d)
* Sometimes, however, sampling is only partially random.
* When the data are repeated observations on the same entity over time.(time series)
 Another situation in which the error term can be correlated across observations is
when sampling is based on a geographical or other group unit.(cluster)

* Both situation means that the assumptions

* the second key assumption in OLS is partially violated.
 In this case, the OLS estimator is still unbiased andconsistent, but the standard
errors are inconsistent. 78/109



Clustering Standard Error: A Simple Example

* Suppose we still focus on the topic of class size and student performance, but
now the data are collecting on students rather than school district.
* Our regression model is

 TestScore;q is the dependent variable for student i in class g, with G groups.

* ClassSize, the independent variable(or treatment variable), varies only at the
group level(class).

¢ Intuitively,the test score of students in the same class(g) tend to be correlated.
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Clustering Standard Erroxr(I)

¢ Recall the variance of the OLS estimator:
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Clustering Standard Erroxr(II)

* When the sample is clustered, which means that the observations are only
randomly sampled across clusters, g and G is the number of clusters.

e Then the numerator of the variance of the OLS estimator is:
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Clustering Standard Erroxr(III)

o2 ifi=k

¢ Substituting Cov(u;g, ugy) = :
P po? ifi Ak

¢ This final expression shows how intraclass correlation p inflates the variance
through the additional cross-product terms.
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Clustering Standard Error(IV)

* Stata: use option vce (cluster clustvar).Whereclustvar isavariable
that identifies the groups in which on observables are allowed to correlate.

* R:the vcovHC () function from plm package
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Introduction

¢ The criteria for determining the magnitude of (3, are as follows:
¢ large enough to make sense.
* Question: How large is considered large enough?
* The magnitude of /3; is not only determined by the actual relationship between
X and Y, but also by the units in which X and Y are measured.

¢ Recall the class size and student performance example, the coefficient /3 is
—2.38, which means that if class size increases by 1, then student performance
decreases by 2.38 points.
* Whether the —2.38 is large or small depends on the scale of the variables and
distribution of the data.
* Normally, we compare the magnitude of 3; to the mean value of Y or the
standard deviation of Y.
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Standardized Variables

* Assume X sandY are all continuous variables, then we run a multiple

regression model
Y; =Bo+ BiXa + BaXio + - + BeXix + s
« Because Xd; = 0andY = By + A1 X1 + - - - + B X then
Y; =Y =Bi(Xin — X1) + Bo(Xiz — Xa) + - + Be(Xi, — Xp) + 1
* Then, we obtain following expressions

Yi—Y:AIE(Xi —Xl)_i_BQ%(Xiz—Xg)Jr

Ty Ty Oz Ty Tz
5o0m (K = Xp) i

Oy Oxy, Oy
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Standardized Variables

* Then we have a standardized regression model
Zy :¢A51Z1+¢A52Z2+"-+§5k2k+v¢

where 7, denotes the Z-score of Y, Z; denotes the Z-score of X,and so on.

* The estimate coefficients
¢j = (65/6y) Bijforj=1,...k

* ; are traditionally called standardized coefficients or beta coefficients, which
can be explained as if X; increases by 1standard deviation, then Y changes by ¢
standard deviations.
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Standardized Only One X

* Consider a linear regression model as usual

Y = Bo+ b1 X + BoXio + - + B Xk +

Y; = Bo + B X + CT + v
WhereF = (ﬁg, 7/8k))7C’L = (XQZ‘, ,X]m)

¢ If we only standardize X and leave other variables as they are, then the

standardized version of X is defined as

XX

Oxq

Al

* Then we have the standardized regression model
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Standardized Only One X

* Substitute Z; back into the original regression equation in place of X;, we have

X, - X
Yi =po + b1 (11> + CT' + uy
x1
X X
=60 — =L+ = + O + u;
O, O,
* Then we have the marginal effect of X; onY as
Y 1
B
6X1 O
oY
= 0=
Oy

¢ The estimate coefficients [3; is can be interpreted as follows:

+ if X increases by 1 standard deviation, then Y changes by /5; units.
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Standardized Only Y

¢ If we only standardize Y and leave other variables as they are, then the
standardized version of Y is defined as

Y -Y

oy

Zy =

* Then the regression model becomes

Zy = By + S1 X1 + CT + u;

Y-V
:T=ﬂ0+ﬂ1X1+CP’+ui
Y

Y Y
>— =0+ —+56X1+CT" +u;
oy oy
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Standardized Only Y

* Then we have the marginal effect of X; onY as

oY
aXl _B].Uy
oY
_ %y
= 1 = X,

* The estimate coefficients Bl is can be interpreted as follows:

* if X increases by 1 unit, then Y changes by (5, standard deviation.
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Wrap Up

¢ There are five primary threats to the internal validity of a multiple regression

study:

1.

DA

Omitted variables

Functional form misspecification

Errors in variables (measurement error in the regressors)
Missing Data and Sample selection

Simultaneous causality

* Besides, the data structure may violate the 2th OLS regression assumption, thus

random sampling.

1. Times series
2. Cluster data
3. Spatial data

* Last but not least, the magnitude of 5; matters.
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¢ Each of these, if present, results in failure of the first least squares
assumption,which in turn means that the OLS estimator is biased and

inconsistent.

* Incorrect calculation of the standard errors also poses a threat to internal
validity.

* Applying this list of threats to a multiple regression study provides a systematic
way to assess the internal validity of that study.
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* Suppose we estimate a regression model that is internally valid.
* Can the statistical inferences be generalized from the population and setting
studied to other populations and settings?
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Threats to external validity

1. Differences in populations
¢ The population from which the sample is drawn might differ from the population
of interest
* For example, if you estimate the returns to education for men, these results might
not be informative if you want to know the returns to education for women.

2. Differences in settings

¢ The setting studied might differ from the setting of interest due to differences in
laws, institutional environment and physical environment.

* For example, the estimated returns to education using data from the U.S might not
be informative for China.

* Because the educational system is different and different institutions of the labor
market.
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Application to the case of class size and test score

¢ This analysis was based on test results for California school districts.

* Suppose for the moment that these results are internally valid. To what other
populations and settings of interest could this finding be generalized?

* generalize to colleges: it is implausible
* generalize to other U.S. elementary school districts: it is plausible
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It is not easy to make your studies valid internally.

Even harder when you consider generalize your findings.
Then common way to generalize the findings actually is to repeat to make the

studies internal valid.
Then we make a generalizing conclusions based on a bunch of internal valid

studies.
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External Validity

* Whether the California analysis can be generalized—that is, whether it is

externally valid—depends on the population and setting to which the
generalization is made.

» we consider whether the results can be generalized to other elementary public
school districts in the United States.

» more specifically, 220 public school districts in Massachusetts in 1998.

 if we find similar results in the California and Massachusetts, it would be evidence
of external validity of the findings in California.

Conversely, finding different results in the two states would raise questions about
the internal or external validity of at least one of the studies.
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Comparison of the California and Massachusetts data.

QLA A Summary Statistics for California and Massachusetts Test Score Data Sets

California Massachusetts
Average Standard Deviation Average Standard Deviation

Test scores 654.1 19.1 709.8 15.1
Student-teacher ratio 19.6 1.9 17.3 2.3

% English learners 15.8% 18.3% 1.1% 29%

% Receiving lunch subsidy 44.7% 27.1% 15.3% 15.1%
Average district income (§) $15,317 $7226 $18,747 $5808
Number of observations 420 220

Year 1999 1998
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Regressor (4] (2) (3) (4) (5) (6)
Student-teacher ratio —1.72%# —0.69* —0.64% 124 —1.02%# —0.67%
(STR) (0.50) (0.27) (0.27) (14.0) (0.37) (0.27)
STR? —0.680
(0.737)
STR? 0.011
(0.013)
% English learners —0.411 —0.437 —0434
(0.306) (0.303) (0.300)
% English learners > —-12.6
median? (Binary, HiEL) 9.8)
HIiEL = STR 0.80
(0.56)
% Eligible for free lunch —0.521%*  —0.582%* —0.587*  —0.709** —0.653**
(0.077) (0.097) (0.104) (0.091) (0.72)
District income (logarithm) 16.53%*
(3.15)
District income =307 —338 —3.87% -322
(2.35) (249) (2.49) (2.31)
District income? 0.164 0.174 0.184* 0.165
(0.085) (0.089) (0.090) (0.085)
District income?® 0.0022% 0.0023* 0.0023* 0.0022*%
(0.0010) (0.0010) (0.0010) (0.0010)
Intercept 739.6%* 682.4%* T44.0%* 665.5%* 759.9%* 747 4%*

O £

14 =y

Y o1 An

N

PN 1Y
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Test scores and class size in MA

F-Statistics and p-Values Testing Exclusion of Groups of Variables

1) 2) 3 (4) 5) (6)
All STR variables and interac- 2.86 4.01
tions = 0 (0.038) (0.020)
STR%, STR =0 045
(0.641)
Incomé®, Income® 7.74 1.75 5.85 6.55
(= 0001) (< 0.001) (0.003) (0.002)
HiEL, HiEL = STR 1.58
(0208)
SER 14.64 8.69 8.61 8.63 8.62 8.64
R 0.063 0.670 0.676 0.675 0.675 0.674

These regressions were estimated using the data on Massachuselts elementary school districts described in Appendix 9.1. Stan-
dard errors are given in parentheses under the coefficients, and p-values are given in parentheses under the F-statistics.
Individual coefficients are statistically significant at the *5% level or **1% level.
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Test scores and class size in MA

m Student-Teacher Ratios and Test Scores: Comparing the Estimates from

California and Massachusetts

Estimated Effect of Two Fewer

Students per Teacher, In Units of:

Standard Deviation

OLS Estimate of Test Scores Standard
Bsm Across Districts Points on the Test Deviations
California
Linear: Table 9.3(2) 0.73 19.1 1.46 0.076
(0.26) (0.52) (0.027)
Cubic: Table 9.3(7) - 19.1 293 0.153
Reduce STR from 20 10 18 (0.70) (0.037)
Cubic: Table 9.3(7) — 19.1 1.90 0.099
Reduce STR from 22 to 20 (0.69) (0.036)
Massachusetts
Linear: Table 9.2(3) 0.64 15.1 1.28 0.085
(0.27) (0.54) (0.036)

Standard errors are given in parentheses,
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Internal Validity

* The similarity of the results for California and Massachusetts does not ensure
their internal validity.

* Omitted variables: teacher quality or a low student-teacher ratio might have
families that are more committed to enhancing their children’s learning at
home or migrating to a better district.

¢ Functional form: Although further functional form analysis could be carried
out, this suggests that the main findings of these studies are unlikely to be
sensitive to using different nonlinear regression specifications.

¢ Errors in variables: The average student-teacher ratio in the district is a broad
and potentially inaccurate measure of class size.

* Because students’ mobility, the STR might not accurately represent the actual class
sizes, which in turn could lead to the estimated class size effect being biased

toward zero.
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Internal Validity

* Selection: data cover all the public elementary school districts in the state that
satisfy minimum size restrictions, so there is no reason to believe that sample

selection is a problem here.

 Simultaneous causality: it would arise if the performance on tests affected the
student-teacher ratio.

* Heteroskedasticity and correlation of the error term across observations.
* Itdoes not threaten internal validity.
e Correlation of the error term across observations, however, could threaten the
consistency of the standard errors because the assumption of simple random
sampling is violated.
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Math Review: Truncated Density Function

Truncated Density Function

The proof follows from the definition of a conditional probability is

Pr(AB)
Pr(B)

Pr(A|B) =

then,
F(z|X >¢) =
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Math Review: Truncated Density Function

Truncated Density Function

The proof follows from the definition of a conditional probability is

Pr(AB)
Pr(B)

Pr(A|B) =

then,
Pr(X <z, X >c¢)

Pr(X >c¢)

F(z|X >¢) =
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Math Review: Truncated Density Function

Truncated Density Function

The proof follows from the definition of a conditional probability is

Pr(AB)
Pr(B)

Pr(A|B) =

then,
Pr(X <z,X>c) Prc<X<uz)

Pr(X>c¢) 1-F(e)

F(z|X >¢) =
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Math Review: Truncated Density Function

Truncated Density Function

The proof follows from the definition of a conditional probability is

Pr(A|B) = ]j;(*?BB))
then,
Fz|X > ¢) = Pr(X <z, X >c¢) _ Pric< X <x)
Pr(X >c) 1—F(c)
_ F@)- F(9
1—F(c)
then,

AR ()] — T

108/109



The Expectation in a Standard Normal Truncated

E(zlx > ¢) =
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The Expectation in a Standard Normal Truncated

E(zlx > ¢) = /+OO xf(zlx > c)dx =
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The Expectation in a Standard Normal Truncated

¢ (x)

=% ()"

o) +oo
E(z|ac>c):/+ xf(x|x>c)dx:/ x
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The Expectation in a Standard Normal Truncated

+oo “+oo
E(zlx > ¢) = / xf(zlx > c)dx = / o7 fg)(c)dx
L el %dz

T1-e0@J). V'
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The Expectation in a Standard Normal Truncated

+oo “+oo
E(zlx > ¢) = / xf(zlx > c)dx = / o7 fg)(c)dx
7 1 +oo 1 7%d
T1-0(). Ver W

1 +oo 1 a2 1'2
- / L)
1—@(0) @ V2 2
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The Expectation in a Standard Normal Truncated

+oo “+oo
E(zlx > ¢) = / xf(zlx > c)dx = / o7 fg)(c)dx
7 1 +oo 1 7%d
T1-0(). Ver W

1 +oo 1 a2 1'2
- / L)
1—@(0) @ V2 2
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The Expectation in a Standard Normal Truncated

+oo “+oo
E(zlx > ¢) = / xf(zlx > c)dx = / o7 fg)(c)dx
7 1 +oo 1 7%d
T1-0(). Ver W

1 +oo 1 a2 1'2
- / L)
1—@(0) @ V2 2
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The Expectation in a Standard Normal Truncated
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