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Review the Last Two Lectures
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Internal v.s. External Validity

There are five primary threats to the internal validity of a multiple regression study:

1. Omitted variables
2. Functional form misspecification
3. Errors in variables (measurement error in the regressors)
4. Censored, Trancated and Selection Samples
5. Simultaneous causality

The data structure may violate the 2th OLS regression assumption, thus random sampling.

adjusted the s.e. by clustering or other methods.

Last but not least, the economic magnitude of β̂ matters.

economic significance is as important as statistical significance.
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OLS and Controls

The main identification strategy of OLS regression is Control, ie. putting covariates into the regression as
control variables.

The main identifying assumption of an OLS regression is

Essentially, the strategy compares treatment and control subjects who have the same observable
characteristics, which is often called Selection on Observables.

Besides the regression, we can also use matching to achieve this goal.
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Matching: Introduction
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Introduction

In observational studies, as opposed to RCTs, we cannot directly determine the causal effect because the
counterfactual outcome of the treated group is unknown.

In other words, we cannot find a suitable control group to compare with the treated group.

The idea of matching method is quite simple:

For simplicity, we focus on the former question, ie. constructing a control group, which is more common
in practice.
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Introduction

Suppose Yi1 and Yi0 are the outcomes of the treated and untreated group, respectively.

And we can use some or all samples from untreated group to construct the counterfactual outcomes of

the treated group Yci1

Then the average treatment effect(ATE or ATT) easily by making the difference

Question: How can we use samples from the untreated group to get the counterfactual outcomes of the
treated group, Yc1i?

Answer: select the untreated samples that are similar to the treated ones in terms of the covariates Xi

Assumption: If CIA holds, thus (Y1, Y0) ⊥ ⊥ D |X, then the treatment status can be seen as randomized
given the covariates Xi. 8 / 93



Example: Training Program Evaluation

Question: What is the causal effect of a training program on the wage of workers?

A simple OLS regression model can be written as

Yi = β0 + β1Di + ui

The treated group is the workers who have received the training program D = 1

The untreated group is the workers who have not received the training program D = 0

The outcome is the log-wage of workers Yi, and the covariates Xi form a vector including variables such as
age, education, experience, etc.
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Unmatched Samples by trainning status

The average wage gap between the treated group and the untreated group is
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OLS Regression for the Training Program

The main identifying assumption of the OLS regression here is

Conditional Independence Assumption(CIA): which means that if we can "balance" covariates X then
we can take the treatment D as randomized.

However, we may still suffer the misspecification of the model under the CIA, which can also make
estimates β1 biased.
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A Trainning Example: matching samples

Assume that the covariates X is the age of the workers, and to see how the matching method works.

12 / 93



A Trainning Example: matching samples
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A Trainning Example: matching samples

14 / 93



A Trainning Example: matching samples
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A Trainning Example: matching samples

16 / 93
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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An Illustrated Example: matched samples

The average wage gap between the treated group and the matched untreated group is
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Two Assumptions: One Old and One New

We still rely on the Conditional independence Assumption(CIA), which is akin to running an OLS
regression.

More specifically, we assume that the potential incomes for the workers are independent of th e training
status given the age of the workers.

It means that if CIA are not satisfied, then both the OLS and the matching estimator will be biased.

Matching is not a silver bullet for OVB in OLS.

Besides, do you notice that there are some untreated samples that are not matched with any treated
samples?

This is due to the Overlap Assumption, a new assumption in the matching method that was not 32 / 93



Two Assumptions: One Old and One New

The Overlap Assumption is to ensure that we can find a matched untreated sample for each treated
sample.Mathematically, it is expressed as:

This implies that the likelihood of receiving treatment is neither 0 nor 1 for any given covariates.

Including either case in our comparison would bias the average treatment effect estimation.

It suggests that we change the samples explicitly based on the covariates to ensure that the overlap
assumption is satisfied.
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A Trainning Example: before matching
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A Trainning Example: after matching
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The overlap assumption is satisfied The overlap assumption is violated

The Overlap Assumption in OLS

In the OLS regression, the overlap assumption is not explicitly required, which may lead to biased
estimates.
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Matching Estimators: Exact matching is hard

The training case is an example of Exact matching which means that only units with identical covariate
values are used to construct the control group.

But what if we have multiple covariates using to match, thus X = (X1, X2, . . . Xk)
′?

In this case, it is impossible to find proper units with identical values in all covariates X1, X2, . . . Xk.

Two complementary solutions are running in parallel, representing the directions in which the matching
method is developing.

1.

2.
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Matching Estimator
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Introduction

The matching estimator can be divided into three steps: Matching, Estimation and Inference.

Matching: Find a control group for each treated individual based on the covariates.

Estimation: Estimate the average treatment effect(making a difference) using the matched samples.

Inference: Test the statistical significance of the treatment effect(ATT or ATE) using the matched samples.
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Reweight as Counterfactuals

Basic settings: all notations are the same as before,like Y1i, Y0i, Di, and Xi.

the sample size here is the only one need to noted : NT treated individuals and NC control individuals.

The counterfactual for treated individual i that what we want is YC1i, then how to construct it by
matching?

Because we construct the counterfactuals by using the untreated samples, therefore in a more general
sense,the counterfactual for treated individual i is

where wi(j) is a weight of untreated individual j for treated individual i, and normally ∑jwi(j) = 1
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Matching Estimator

Then individual treatment effect, δi, is

A matching estimator for the average treatment effect on the treated(ATT) is

Where C is the common support region of the treated and untreated individuals.

And j = 1, 2, . . . , NC and i = 1, 2, . . . , NT.

i ∈ (D = 1 ∩ C) means that i is a treated individual and i is in the common support region.
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Weight to Matching

Question: How to obtain these weights,thus wi(j)?

Answer: It is easy and hard at the same time.

E.g. if wi(j) =
1 if j = i
0 otherwise

In this case, the weights are equal for all the untreated samples.

Then we're back to a difference in means, except now it's based on the NT matched samples.

{
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Weight to Matching

More Reasonable Weights: The weights wi(j) should be related with covariates Xi in treated group and
Xj in untreated group.

Proximity: When X is Discrete

If X is discrete,then we can use the equality of X to construct the weights.Thus

Where I( ⋅ ) is an indicator function,

This is the Exact Matching what we did in the trainning case.
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Proximity: When X is Continuous

If X is continuous, then we may not find a unit with the same covariate values.Then we may need
proximity rather than equality.

Then the weight wi(j) can be a measure of how close Xj of untreated group is to Xi of the treated group.

If the gap(distance) is small, then the weight is large, and vice versa.

Question: What do "small" and "large" mean in the previous sentence?

It depends on.

If we just pick the smallest one as we did in the trainning case, then we have the Nearest Neighbor
Matching.
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Math Review: Distance between two vectors

If Xi and Xj are both single-dimensional variables, then the distance between them is the difference
between them,

|Xi − Xj |

What if Xi and Xj are both multi-dimensional variables,thus k-dimensional vectors as follows

Question: how to measure the distance between two vectors?

Answer: The Euclidean distance can be as the measure of the distance between Xi and Xj,
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Proximity: When X is a Vector

The Euclidean distance is not invariant to changes in the scale of X. A more commonly used distance is
the normalized Euclidean distance

where V −1
X  is the symmetric and positive semidefinite variance matrix of X of X, thus

σ̂
2
k is the variance of the k-th variable.

No scale problem but still no correlations between Xs.
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Proximity: When X is a Vector

Mahalanobis distance between Xi and Xj is defined as

where Σ −1
X  is the variance-covariance matrix of X.

σ̂jk is the covariance between the j-th and k-th variables.

No scale problem and taking correlations between Xs into account.
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Many Matching Methods

There many methods to choose the matchers and weights. Here are some of them:

Exact Matching:

Nearest Neighbor Matching(NNM):

Radius Matching: all the samples within a certain range are matched.
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Many Matching Methods

Radius Matching: all the samples within a certain range are matched.

Subclassification : Divide the treated and untreated group into subclasses based on the covariates and
then match within each subclass.

Kernel Matching: The weight is based on the kernel function, which is an estimated density function of
the covariates.
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The curse of dimensionality

As the dimension of X expands (i.e., matching on more variables), whatever matching method we use, it
becomes increasingly difficult to find a suitable or closely matched control for each treated sample, even if
we have a large sample size.

Need alternative ways to shrink the dimensions of X.

It turns out that if CIA is satisfied,then we actually only need to match/conditional on the propensity
score p(x), instead of the entire Xi.
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Propensity-Score Methods
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The Magic of Propensity Scores

Recall the CIA assumption:

Y0i, Y1i ⊥⊥ Di | Xi

The propensity score is defined as the probability of treatment given Xi, thus

Formally the Propensity Score Theorem is

If we control/adjust/balance the propensity score instead of the raw covariates, then the treatment is as
good as random.

This theorem extends CIA assumption from multiple dimensions to a one-dimensional score, avoiding
the curse of dimensionality.

( )
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Propensity-Score Theorem

Theorem If Y0i, Y1i ⊥⊥ Di | Xi,  then Y0i, Y1i ⊥⊥ Di | p(Xi).

Proof
To prove this theorem, we will show

( ) ( )
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Propensity-Score Theorem

Theorem If Y0i, Y1i ⊥⊥ Di | Xi,  then Y0i, Y1i ⊥⊥ Di | p(Xi).

Proof

( ) ( )
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Propensity-Score Theorem

Theorem If Y0i, Y1i ⊥⊥ Di | Xi,  then Y0i, Y1i ⊥⊥ Di | p(Xi).

Proof

( ) ( )
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Propensity-Score Matching

Intuition
Question: Xi carries way more information than p(Xi), so how can we still get conditional independence
of treatment by only conditioning on p(Xi)?

Answer Conditional independence of treatment is not about extracting all of the information possible from

Xi. We actually only care about creating a situation in which Di | a function of X is independent of Y0i, Y1i .( )
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Propensity-Score Matching

Estimation: Binary Dependent Regression
Question:How to obtain the propensity scores p(Xi)?

Recall the definition of propensity score, does it sound familiar?

Yes,it is the binary dependent regression model that the independent variables are the covariates Xi.

As we have learned in the previous lecture, we can estimate the propensity scores using three models:

Of course there are another ways to estimate it like machine learning methods, but the most common way
is to use logit regression.
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Propensity-Score Matching

Estimation: Logit Regression
The logit model of the propensity score is given by

Where Xi is the vector of covariates and β is the vector of coefficients.

Then we could get the estimated propensity scores p̂(Xi) by plugging in the estimated coefficients β̂.
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Propensity-Score Matching

Estimation: Logit Regression
However, for the nonlinearity of the model, the marginal effect of coviarites on the propensity score is not
constant.

It means that the same change of the covariates will not have the same effect on the propensity score for all
the values of the covariates.

Therefore, a more common way to estimate the propensity score is to use the log odds ratio,

Recall: We claimed that matching is over regression as it is non-parametric, don't need to specify the
functional form of the model.

However, in the propensity score method, we still need to specify the functional form of the model and
estimate the coefficients.

59 / 93



Propensity-Score Matching

Estimation: Predicted instead of Explained
Note: The focus in the model here is a little bit different from the one we learned in the binary dependent
variable regression.

Here we focus on the predicted probability of being treated, which is the propensity score, and the
covariates are the explanatory variables.

While in the binary dependent variable regression, we focus on the explanatory coefficient of the
covariates(only one or two in most cases) on the treated variable(which actually is the dependent
variable).

Therefore, when we estimate the propensity score by the logit model, the function form should be as
flexible as possible to capture the relationship between the covariates and the treatment variable.

Polynomial terms and interaction terms are often included in the model.

Even ML methods can be used to estimate the propensity score as well. 60 / 93



Propensity-Score Matching

Overlap Assumption in Propensity Score Methods
Recall: The Overlap Assumption

Which is to ensure that we can find a matched untreated sample for each treated sample, or the
distribution of X for the treated and control groups should overlap.

In P-score methods, the overlap assumption is about the distribution of the propensity score rather than
the covariates.

The easiest way to check the overlap assumption is to plot the distribution of covariates before and after
matching.

As we did it in the training example, in which we plotted the distribution of only one covariate.

Apparently when X is a vector which can be tough as the dimensions of X expand. 61 / 93
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Trimming samples to overlap in p(Xi), thus we only keep the samples if 0.15 ≤ p(X) ≤ 0.85
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Regression and Propensity Scores Reweight
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Regression with P-Scores

Based on the Propensity Score Theorem, conditional on the propensity score, the treatment is as good as
random.

Then, the simple idea is to use propensity scores as a control variable instead of the raw covariates in the
regression model

Assumption: the relationship between the outcome and the propensity score is linear.

To consider the non-linearity, we can add the polynomial terms or interaction terms between the
propensity score and the treatment to make a more flexible model.

Normally, the cubic term is enough for the flexibility.
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Inverse Probability Weighting

The inverse probability weighting (IPW) is an alternative way to use the propensity score to control the
bias due to the selection on observables.

The idea is to weight the treated and control units by the inverse of the propensity score.

The Average Treatment Effect (ATE) can be derived by the following formula:

Under the CIA and Overlap Assumption, we could show that

66 / 93



Inverse Probability Weighting

Thus, we have the following result:

E[Y1i] = E
Di

p(Xi)
Yi[ ]
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IPW Estimator for ATE

Similarly, we could show that

Then, we could get the ATE by the following

This is the Horvitz-Thompson IPW estimator for the ATE.

68 / 93



IPW Estimator for ATE

Then the IPW estimator for ATE is given by

The IPW weights here are the inverse of the propensity score.

HW weights do not necessarily average to 1,which can be a problem.
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A more general IPW Estimator for ATE

The standardization means dividing each group's weights by the sum of all weights within that group.

A more general IPW estimand is given by

Where E(
Di

p (Xi )
) can be seen as the average weight for the treated group and E(

1−Di

1− p (Xi )
) can be seen as the

average weight for the control group.

Then corresponding IPW estimator for ATE is given by
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Practical Implications

IPW provides a way to estimate causal effects without explicitly modeling the outcome process like
matching.

Practical challenges:

Extreme weights when p(X) is close to 0 or 1
Need for careful diagnostics (covariate balance, weight distribution)

Some Extensions:

Double Robustness: Combine IPW with outcome regression

Consistent if either the propensity score is correctly specified or the outcome regression is correctly
specified.
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Matching in practice
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Matching in Practice

Introduction
Although matching is a simple concept, it can be more difficult to implement in practice.

There are many decisions to make when matching units. The questions are as follows:

1. How to choose variables as the matching covariates?

2. Which matching methods should be used? distances and weights: Matching/Propensity Score
Matching

3. How many control units should be matched to each treatment unit?: one-to-one or many-to-one?

4. The sample is matched with or without replacement?

5. The order of matching: greedy or optimal?
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Matching in Practice

Choosing Variables
Question: Which variables should be used for matching treatment and control units?

Answer: Include all variables that are likely to be confounders. (Recall the "good and bad controls"
framework)

Irrelevant variables
Relevant variables
Omitted variables
Colliders
Confounders

Selecting matching covariates follows similar principles as in regression analysis.

As with OLS regression, comparing results across different sets of variables serves as a sensitivity
analysis.
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Matching in practice

With or Without Replacement
Matching with replacement means that control units can be used as a match for more than once.

each control unit is "placed back" into the controls after being used once.

Two advantages:

treatment and control units after matching will be better balanced.
the order in which we match the units does not matter, in turn the matching algorithm is reduced in
complexity.

Nonetheless, it is very common to match with replacement.
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Matching in practice

Greedy v.s Optimal Matching
The greedy matching is a simple and fast algorithm that matches each treated unit to the control unit with
the closest distance.

However, the closest control units for every single sample may not be the best match for the treated unit
as a whole.

Thus the local optimal solution may not be the global optimal solution.

The optimal matching is a more complex algorithm that finds the best possible match for each treated unit
simultaneously.

It is often computationally expensive because it have to consider all possible matches for all treated
units.
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Matching in practice

1:1 v.s 1:m Matching
1:1 matching: each treated unit can be matched to only one control.

1:m matching: each one can be matched to more than one control.

Benefit: This can be useful in large samples where there are more control units than treated units, because
the inclusion of more units will increase the precision of our estimates.

Cost: often the second, third and fourth matches may be poorer than the first match, meaning that we
may end up including control units that are not very similar to the treatment
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Matching in practice

Assessing Balance
As in RCTs,after carrying out matching we should first carry out balance tests to compare the treatment
and control units.

If matching was successful, then by definition they should be very similar to each other in terms of their
covariates.

Balance tests are particularly useful in matching because they might be able to help us choose between
different distance metrics or matching with vs. without replacement.

Normally, matching procedures need a relatively large number of samples to be able to find a good
match.
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Matching in practice

In a Summary
If matching was successful, then by definition they should be very similar to each other in terms of their
covariates.

Balance tests are particularly useful in matching because they might be able to help us choose between
different distance metrics, matching with vs. without replacement.

Choosing the "best" matching method highly depends on the unique characteristics of the dataset as well
as the goals of the analysis.

Similar to the logic of Machine learning

Therefore, sensitivity analysis is very crucial to Matching.
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Wrap up

Both matching and regression rely on CIA (selection on observables). Most biases we could suffer in
regression, such as OVB, measurement error, and simultaneous causality, will not be avoided even if we
use matching.

Most importantly, matching is essentially as the same as regression, only different in the weight of
estimating the CEF function.

Question: Why we still need matching?

Answer:

In practice, using matching alone as main identification strategy is less common in economics, more
frequently combined with other methods like DID and SCM, which we will discuss later on.
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Appendix: Matching vs Regression
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Matching in essential is Regression

Although matching is a non-parametric or semi-parametric method, it is essentially as the same as
regression.

Suppose the ATT, thus the average treatment effect on the treated, is the parameter of interest.

ATT = δATT = E[Yi1 − Yi0 |D = 1]

Under the CIA, if we can control/balance some covariates Xi, then we have the selection bias equals to
zero, thus

E[Y0i |Xi, D = 1] = E[Yi0 |Xi, D = 0]
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Matching in essential is Regression

Using the LIE and CIA,

δATT = E[(E[Yi1 |Xi, D = 1] − E[Yi0 |Xi, D = 1]) |Di = 1]

= E[(E[Yi1 |Xi, D = 1] − E[Yi0 |Xi, D = 0]) |Di = 1]

= E[(E[Yi |Xi, D = 1] − E[Yi |Xi, D = 0]) |Di = 1]

= E[δX |Di = 1]

Where δX is the average outcomes gaps between two groups within observed covariates Xi.

δX = E[Yi |Xi, D = 1] − E[Yi |Xi, D = 0]
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Matching in essential is a regression

Recall: the Bayes' rule

P Xi = x ∣ Di = 1 =
P Di = 1 ∣ Xi = x ⋅ P Xi = x

P Di = 1

Then if Xi is discrete, then the matching estimator can be written as

δM = E[δX |Di = 1] = ΣxδXP(Xi = x |Di = 1)

= ∑
x
δx

P Di = 1 ∣ Xi = x P Xi = x

P Di = 1

= ∑
x
δx

P Di = 1 ∣ Xi = x P Xi = x

∑xP Di = 1 ∣ Xi = x P Xi = x

( )
( ) ( )

( )

( ) ( )
( )

[ ( ) ( )
( ) ( ) ] 84 / 93



Regression in essential is a matching

Suppose we have a saturated regression model

Yi = ∑
x

I(Xi = x)βx + δRDi + ui

The I(Xi = x) is the indicator function for Xi = x,which means that

I(Xi = x) =
1 if Xi = x
0 otherwise

D is the treatment status, ui is the error term.

The βx is the coefficient of Xi = x in the regression model.

The δR is the regression estimator of the treatment effect.

Note: Saturating X means allowing a separate intercept for each unique value of Xi, which makes the
conditional expectation function E[Y |X] to be linear in X.

{
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Regression in essential is a matching

We can prove that the regression estimator δR can be expressed as follows†

δR = E
Var(Di |Xi)

E[Var(Di |Xi)]
δX

Where Var(Di |Xi) is the conditional variance of Di given Xi, thus

Var(Di |Xi) = E[(Di − E[Di |Xi])
2 ∣ Xi]

Let p(x) = P(Di = 1 |Xi = x), then

Var(Di |Xi) = p(x)(1 − p(x)) = P Di = 1 ∣ Xi = x (1 − P Di = 1 ∣ Xi = x )

[ ]

( ) ( )

†The detailed proof is somewhat complex, so it's placed in the appendix for those interested. You can also refer to the
Mostly Harmless Econometrics (MHE) textbook for the proof (pp54-55).
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Regression in essential is a matching

Then the regression estimator δR

δR = E
Var(Di |Xi)

E[Var(Di |Xi)]
δX

=
E[Var(Di |Xi)δX]

E[Var(Di |Xi)]

=
∑xδX ⋅ Var(Di |Xi) ⋅ P(Xi = x)

∑x ⋅ Var(Di |Xi) ⋅ P(Xi = x)

= ∑
x
δX

P Di = 1 ∣ Xi = x 1 − P Di = 1 ∣ Xi = x P Xi = x

∑xP Di = 1 ∣ Xi = x 1 − P Di = 1 ∣ Xi = x P Xi = x

[ ]

[ ( )( ( )) ( )
( )( ( )) ( ) ]
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Matching vs. Regression in essential

The matching estimator δM

δM = ∑
x
δX

P Di = 1 ∣ Xi = x P Xi = x

∑xP Di = 1 ∣ Xi = x P Xi = x

The regression estimator δR

δR = ∑
x
δX

P Di = 1 ∣ Xi = x 1 − P Di = 1 ∣ Xi = x P Xi = x

∑xP Di = 1 ∣ Xi = x 1 − P Di = 1 ∣ Xi = x P Xi = x

The difference between the two estimators is the weight of the treatment effect δX for each unique value of Xi.

The matching estimator δM uses the weight P(Di = 1 |Xi = x), which is larger for more treated samples.
The regression estimator δR uses the weight P(Di = 1 |Xi = x)(1 − P(Di = 1 |Xi = x)), which is the largest when
P(Di = 1 |Xi = x) = 0.5, thus half treated and half untreated observations.

[ ( ) ( )
( ) ( ) ]

[ ( )( ( )) ( )
( )( ( )) ( ) ]
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Appendix
Then the regression model of D on X is

Di = ∑
x

I(Xi = x)γx + vi

The I(Xi = x) is still the indicator function for Xi = x

The γx is the coefficient of Xi = x and vi is the error term.

Then the population regression function (PRF) in terms of conditional expectation function (CEF) as

E[D |X] = ∑
x

I(Xi = x)γx = γ

Then the residuals of the regression model of D on X,$\tilde{\mathrm{D}}_i$, is

D̃i = D − E[D |Xi = x]
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Proof of the regression estimator δR
Because our regression model is saturated as follows

Yi = ∑
x

I(Xi = x)βx + δRDi + ui

Then the key coefficient of interest is δR. Based on FWL theorem, we have

δR =
Cov D̃i, Yi

V D̃i

( )
( )
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Proof of the regression estimator δR

δR =
Cov D̃i, Yi

V D̃i

=
E[D̃i, Yi]

D̃
2
i

∵ Cov D̃i, Yi = E[D̃i, Yi] − E[D̃i]E[Yi]

=
E Di − E Di ∣ Xi Yi

E Di − E Di ∣ Xi
2

∵ D̃i = D − E[D |Xi = x]

=
E Di − E Di ∣ Xi E Yi ∣ Di, Xi

E Di − E Di ∣ Xi
2

∵ ILE

( )
( )

( )

[( [ ]) ]
[( [ ]) ]
{( [ ]) [ ]}

[( [ ]) ]
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Proof of the regression estimator δR
Because

E Yi ∣ Di, Xi = E Yi ∣ Di = 0, Xi + δXDi

Then the numerator of δR is

E Di − E Di ∣ Xi E Yi ∣ Di, Xi

= E Di − E Di ∣ Xi E Yi ∣ Di = 0, Xi + E Di − E Di ∣ Xi DiδX

= 0 + E Di − E Di ∣ Xi DiδX ∵ Cov(D̃i, X) = 0

= E Di − E Di ∣ Xi
2δX ∵ Cov(D̃i, D) = D̃

2
i

[ ] [ ]

{( [ ]) [ ]}
{( [ ]) [ ]} {( [ ]) }

{( [ ]) }
{( [ ]) }
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Proof of the regression estimator δR

δR =
E Di − E Di ∣ Xi E Yi ∣ Di, Xi

E Di − E Di ∣ Xi
2

=
E Di − E Di ∣ Xi

2δX

E [ Di − E Di ∣ Xi
2 ∣ Xi]

=
E [ Di − E Di ∣ Xi

2 ∣ Xi]δX

E Di − E Di ∣ Xi
2

=
E Var2 Xi ∣ Di δX

E Var2 Xi ∣ Di

{( [ ]) [ ]}
[( [ ]) ]

[( [ ]) ]
[ ( [ ]) ]

[ ( [ ]) ]
[( [ ]) ]

[ ( ) ]
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