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Probabilities, the Sample Space and Random Variables

A Fundamental Axiom of Econometrics

@ Any economy can be seen as a stochastic process governed by
a certain probability law.
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Probabilities, the Sample Space and Random Variables

A Fundamental Axiom of Econometrics

@ Any economy can be seen as a stochastic process governed by
a certain probability law.

@ Economic phenomena, often summarized in form of data, can be
interpreted as a realization of this stochastic data generating
process.
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Probabilities, the Sample Space and Random Variables

Probabilities and the Sample Space

o Random Phenomena, Outcomes and Probabilities

o The mutually exclusive potential results of a random process are called
the outcomes.
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Probabilities, the Sample Space and Random Variables

Probabilities and the Sample Space

o Random Phenomena, Outcomes and Probabilities
o The mutually exclusive potential results of a random process are called
the outcomes.
o The probability of an outcome is the proportion of the time that the
outcome occurs in the long run.
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Probabilities, the Sample Space and Random Variables

Probabilities and the Sample Space

o Random Phenomena, Outcomes and Probabilities

o The mutually exclusive potential results of a random process are called
the outcomes.

o The probability of an outcome is the proportion of the time that the
outcome occurs in the long run.

o The Sample Space and Random Event
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Probabilities, the Sample Space and Random Variables

Probabilities and the Sample Space

o Random Phenomena, Outcomes and Probabilities

o The mutually exclusive potential results of a random process are called
the outcomes.

o The probability of an outcome is the proportion of the time that the
outcome occurs in the long run.

o The Sample Space and Random Event
o The set of all possible outcomes is called the sample space.
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Probabilities, the Sample Space and Random Variables

Probabilities and the Sample Space

o Random Phenomena, Outcomes and Probabilities
o The mutually exclusive potential results of a random process are called
the outcomes.
o The probability of an outcome is the proportion of the time that the
outcome occurs in the long run.
o The Sample Space and Random Event

o The set of all possible outcomes is called the sample space.
o An event is a subset of the sample space, that is, an event is a set of
one or more outcomes.
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Probabilities, the Sample Space and Random Variables

Random Variables

Random Variables(R.V.)

A random variable (r.v.) is a function that maps from the sample space of
an experiment to the real line or X: Q - R
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Probabilities, the Sample Space and Random Variables

Random Variables

Random Variables(R.V.)

A random variable (r.v.) is a function that maps from the sample space of
an experiment to the real line or X: Q - R

o A random variable is a numerical summary of a random outcome.

They are numeric representation of uncertain events.(thus we can use
math!)
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Probabilities, the Sample Space and Random Variables
Random Variables

Random Variables(R.V.)

A random variable (r.v.) is a function that maps from the sample space of
an experiment to the real line or X: Q - R

o A random variable is a numerical summary of a random outcome.
They are numeric representation of uncertain events.(thus we can use
math!)

o Notation: R.V.s are usually denoted by upper case letters (e.g. X),

particular realizations are denoted by the corresponding lowercase
letters (e.g. x=3)
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Probabilities, the Sample Space and Random Variables
Random Variables

Random Variables(R.V.)

A random variable (r.v.) is a function that maps from the sample space of
an experiment to the real line or X: Q - R

o A random variable is a numerical summary of a random outcome.

They are numeric representation of uncertain events.(thus we can use
math!)

o Notation: R.V.s are usually denoted by upper case letters (e.g. X),
particular realizations are denoted by the corresponding lowercase
letters (e.g. x=3)

Example

Tossing a coin 5 times

T i = = sy
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Probabilities, the Sample Space and Random Variables
Random Variables

Random Variables(R.V.)

A random variable (r.v.) is a function that maps from the sample space of
an experiment to the real line or X: Q - R

o A random variable is a numerical summary of a random outcome.

They are numeric representation of uncertain events.(thus we can use
math!)

o Notation: R.V.s are usually denoted by upper case letters (e.g. X),
particular realizations are denoted by the corresponding lowercase
letters (e.g. x=3)

Example
Tossing a coin 5 times

o but not a random variable because it s not numeric.

T i = = sy
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Probabilities, the Sample Space and Random Variables

Random Variables

Random Variables(R.V.) |

A random variable (r.v.) is a function that maps from the sample space of
an experiment to the real line or X: Q - R

o A random variable is a numerical summary of a random outcome.
They are numeric representation of uncertain events.(thus we can use
math!)

o Notation: R.V.s are usually denoted by upper case letters (e.g. X),

particular realizations are denoted by the corresponding lowercase
letters (e.g. x=3)

Example
Tossing a coin 5 times
o but not a random variable because it s not numeric.

o X(w) = number of heads in the five tosses. X(HTHTT) = 2

= oerat
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- Probabilties the Sample Space and Random Variables
Probability Distributions

o Uncertainty over ) uncertainty over value of . We' |l use probability
to formalize this uncertainty.
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Probabilities, the Sample Space and Random Variables

Probability Distributions

o Uncertainty over ) uncertainty over value of . We" Il use probability

to formalize this uncertainty.
o The probability distribution of a r.v. gives the probability of all of the

possible values of the r.v.
Px(X=2)=P{we 2: X(w) =1})

= e

= i —
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Probabilities, the Sample Space and Random Variables
Probability Distributions

o Uncertainty over ) uncertainty over value of . We" Il use probability
to formalize this uncertainty.

o The probability distribution of a r.v. gives the probability of all of the
possible values of the r.v.

Px(X=2z)=P{we 2: X(w) =z})

Example
Tossing two coins: let X be the number of heads.
’W‘P({W})‘X(W)‘ ]x\P(X:)‘
TT 1/4 0 0 1/a
HT 1/4 1 1 1/
TH 1/4 1 5 1/2
HH 1/4 2

= =i = =vra
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Probabilities Function and its Properties

o As to any event X, we have
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Probabilities Function and its Properties

o As to any event X, we have
0o 0<P(x) <1
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Probabilities, the Sample Space and Random Variables

Probabilities Function and its Properties

o As to any event X, we have
o 0<P(x)<1

o P(2) =1 and P(®) = 0, where € is the universal set and ® is the
empty set
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Probabilities, the Sample Space and Random Variables

Probabilities Function and its Properties

o As to any event X, we have
o 0<P(x)<1

o P(2) =1 and P(®) = 0, where € is the universal set and ® is the
empty set

o P(X)=1- P(X), where X is the complementary set to X
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Probabilities, the Sample Space and Random Variables

Probabilities Function and its Properties

o As to any event X, we have
o 0<P(x)<1
o P(Q) =1 and P(®) =0, where Q is the universal set and ® is the
empty set
o P(X)=1- P(X), where X is the complementary set to X
o if X1, Xa ..., Xp... is mutual exclusion, then P(U2, X;) = X2, P(X))
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Probabilities, the Sample Space and Random Variables

The Total Probability Rule(£#Ei% M)
space, then for any event Y,

o If X1, Xs,..., X... are mutually exclusive and exhaustive to the sample

P(Y) = S°P(YIX) P(X)

Zishu Wang and Zhaopeng Qu (NJU)

Introduction to Econometrics

March 1,2024



Probabilities, the Sample Space and Random Variables

The Total Probability Rule(&#Ei% M)

o If X1, Xs,..., X... are mutually exclusive and exhaustive to the sample
space, then for any event Y,

P(Y) = X7 P(YIX) P(X))

o EVIEM: BHEMHY AKX A—TERTFEHNES, BLE
Y ZRERNER, ETEH Y ESNTFEAPRERNBEZ.
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Probabilities, the Sample Space and Random Variables

The Total Probability Rule(&#Ei% M)

o If X1, Xs,..., X... are mutually exclusive and exhaustive to the sample
space, then for any event Y,

P(Y) = S7°P(YX) P(Xi)

o EVIEM: BHEMHY AKX A—TERTFEHNES, BLE
Y ZRERNER, ETEH Y ESNTFEAPRERNBEZ.

Example

BEKIE . BT K3 20 IR, /SR 10 13k, K EIK 15
1, Bk 5 4. NERAKS A, BIKS . BHLEFEMBIB K
BREZD ?
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Probabilities, the Sample Space and Random Variables

Bayse's Rule( DUAtHfi% M)

o The conditional probability of Y given X is the conditional probability
of X given Y times the relative marginal probabilities of Y and X

PIX| ) = P
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Probabilities, the Sample Space and Random Variables

Bayse's Rule( JUAtHfiE M)

o The conditional probability of Y given X is the conditional probability
of X given Y times the relative marginal probabilities of Y and X

PIX| ) = P

Example
MAR E—1BEKIERIZE. EAMBINTBIK, BRIk /NEFRIE
EREM7
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Probabilities, the Sample Space and Random Variables

Bayse's Rule( JUAtHfiE M)

o The conditional probability of Y given X is the conditional probability
of X given Y times the relative marginal probabilities of Y and X

PIX| ) = P

Example
MAR E—1BEKIERIZE. EAMBINTBIK, BRIk /NEFRIE
EREM7

o BENIEME: MAFHERATLUSEMSBIEER.
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Probabilities, the Sample Space and Random Variables

Distributional Functions of R.V.

o It is cumbersome to derive the probabilities of X each time we need
them, so it is helpful to have a function that can give us the
probability of values or sets of values of X.
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Probabilities, the Sample Space and Random Variables

Distributional Functions of R.V.

o It is cumbersome to derive the probabilities of X each time we need
them, so it is helpful to have a function that can give us the
probability of values or sets of values of X.

Definition

The cumulative distribution function or c.d.f of a r.v. X, denoted
Fx(x), is defined by
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Probabilities, the Sample Space and Random Variables

Distributional Functions of R.V.

o It is cumbersome to derive the probabilities of X each time we need
them, so it is helpful to have a function that can give us the
probability of values or sets of values of X.

Definition

The cumulative distribution function or c.d.f of a r.v. X, denoted
Fx(x), is defined by

o The c.d.f tells us the probability of a r.v. being less than some given
value.
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- Probabllites, the Sample Space and Random Variables
Distribution Functions of R.V.
o We have two kinds of r.v.s
«O>» «Fr «=)r « = = Al
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Probabilities, the Sample Space and Random Variables

Distribution Functions of R.V.

o We have two kinds of r.v.s
Definition

A r.v. X, is discrete if its range(the set of values it can take) is finite
(X € {xy,2,,...2}) or countably infinite(X € {z,,z,,...})
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Probabilities, the Sample Space and Random Variables

Distribution Functions of R.V.

o We have two kinds of r.v.s
Definition

A r.v. X, is discrete if its range(the set of values it can take) is finite
(X € {xy,2,,...2}) or countably infinite(X € {z,,z,,...})

o eg: the number of computer crashes before deadline
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Probabilities, the Sample Space and Random Variables

Distribution Functions of R.V.

o We have two kinds of r.v.s
Definition

A r.v. X, is discrete if its range(the set of values it can take) is finite
(X € {zy,2,,...x1}) or countably infinite(X € {z,,x,,...})

o eg: the number of computer crashes before deadline

Definition
A r.v. X, is continuous if it can contain all real numbers in a interval.
There are an uncountably infinite number of possible realizations.
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Probabilities, the Sample Space and Random Variables

Distribution Functions of R.V.

o We have two kinds of r.v.s
Definition

A r.v. X, is discrete if its range(the set of values it can take) is finite
(X € {zy,2,,...x1}) or countably infinite(X € {z,,x,,...})

o eg: the number of computer crashes before deadline

Definition
A r.v. X, is continuous if it can contain all real numbers in a interval.
There are an uncountably infinite number of possible realizations.

o eg: commuting times from home to school
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Probabilities, the Sample Space and Random Variables

Probability Distribution of a Discrete R.V.

Probability mass function

Probability mass function (p.m.f.) describes the distribution of r.v. when
it is discrete:

fx(xr) =P(X =a) =ps, k=1,2,..,n
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Crashes

(m Probability Distribution of the Number of Computer

The height of each bar is Probability
the probability that the 0.8
computer crashes the indi-
cated number of times. 07 -
The height of the first bar
is 0.8, so the probability 0.6
of 0 computer crashes is
80%. The height of the
second bar is 0.1, so the 05
probability of 1 computer
crash is 10%, and so forth 0.4 -
for the other bars.

03—

02+

0.1+

1 2 3 4
Number of crashes
-
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Probabilities, the Sample Space and Random Variables

Probability Distribution of a Discrete R.V.

c.d.f of a discrete r.v

the c.d.f of a discrete r.v. is denoted as

Fx(x) = P(X< %) = ) fx(x0)

Xi<x

p
LUy R Probability of Your Computer Crashing M Times

Outcome (number of crashes)
0 1 2 3 4
Probability distribution 0.80 0.10 0.06 0.03 0.01
Cumulative probability
\ distribution 0.80 0.90 0.96 0.99 1.00 )
Zishu Wang and Zhaopeng Qu (NJU)
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Probabilities, the Sample Space and Random Variables

Probability Distribution of a Continuous R.V.

Probability density function

The probability density function or p.d.f., for a continuous random variable
X is the function that satisfies for any interval, B

P(X e B) = /fo(x)dx
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Probabilities, the Sample Space and Random Variables

Probability Distribution of a Continuous R.V.

o Specifically, for a subset of the real line(a, b):

Pla< X< b)= fab fx(x)dx, thus the probability of a region is the

area under the p.d.f. for that region.

Probability density

0.15 —
Pr (Commuting time < 15)=10.20
012
Pr (15 < Commuting time < 20) = 0.58
0.09
0.06 -
Pr (Commuting time > 20) = 0.22
0.03 - 058
0.20
0.00 L 1

10 15 20 30 35 40

]
J

Commuting time (minutes)

(b) Probabilitv densitv function of commutinge time
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Probabilities, the Sample Space and Random Variables

Probability Distribution of a Continuous R.V.

Cumulative probability distribution

just as it is for a discrete random variable, except using p.d.f to calculate
the probability of x,

FX) = P(X < x) = /_ " h(dx

~
@EEEEEI Cumulative Distribution and Probability Density Functions
of Commuting Time

Probability
1.0 — Pr (Commuting ime < 20) = 0.78

0.6 |

04 | Pr (Commuting time < 15) = 0.20

0.2

0.0 L L L
10 15 20 25 30 35

i
40

Commuting time (minutes)
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Expected Values, Mean, and Variance
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Expected Values, Mean, and Variance

Properties of Distributions

o Probability distributions describe the uncertainty about r.v.s. The
cdf/pmf/pdf give us all the information about the distribution of
some r.v., but we are quite often interested in some feature of the
distribution rather than the entire distribution.
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Expected Values, Mean, and Variance

Properties of Distributions

o Probability distributions describe the uncertainty about r.v.s. The
cdf/pmf/pdf give us all the information about the distribution of
some r.v., but we are quite often interested in some feature of the
distribution rather than the entire distribution.

o What is the difference between these two density curves? How might
we summarize this difference?
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Expected Values, Mean, and Variance

Properties of Distributions

o Probability distributions describe the uncertainty about r.v.s. The
cdf/pmf/pdf give us all the information about the distribution of
some r.v., but we are quite often interested in some feature of the

distribution rather than the entire distribution.
o What is the difference between these two density curves? How might
we summarize this difference?

o There are two simple indictors:
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Expected Values, Mean, and Variance

Properties of Distributions

o Probability distributions describe the uncertainty about r.v.s. The
cdf/pmf/pdf give us all the information about the distribution of
some r.v., but we are quite often interested in some feature of the
distribution rather than the entire distribution.

o What is the difference between these two density curves? How might
we summarize this difference?

o There are two simple indictors:
@ Central tendency: where the center of the distribution is.
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Expected Values, Mean, and Variance

Properties of Distributions

o Probability distributions describe the uncertainty about r.v.s. The
cdf/pmf/pdf give us all the information about the distribution of
some r.v., but we are quite often interested in some feature of the
distribution rather than the entire distribution.

o What is the difference between these two density curves? How might
we summarize this difference?

o There are two simple indictors:

@ Central tendency: where the center of the distribution is.
o Mean/expectation (¥J{EELHAEE)
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Expected Values, Mean, and Variance

Properties of Distributions

o Probability distributions describe the uncertainty about r.v.s. The
cdf/pmf/pdf give us all the information about the distribution of
some r.v., but we are quite often interested in some feature of the
distribution rather than the entire distribution.

o What is the difference between these two density curves? How might
we summarize this difference?

o There are two simple indictors:

@ Central tendency: where the center of the distribution is.
o Mean/expectation (¥J{EELHAEE)

@ Spread: how spread out the distribution is around the center.
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Expected Values, Mean, and Variance

Properties of Distributions

o Probability distributions describe the uncertainty about r.v.s. The
cdf/pmf/pdf give us all the information about the distribution of
some r.v., but we are quite often interested in some feature of the
distribution rather than the entire distribution.

o What is the difference between these two density curves? How might
we summarize this difference?

o There are two simple indictors:

@ Central tendency: where the center of the distribution is.
o Mean/expectation (¥J{EELHAEE)

@ Spread: how spread out the distribution is around the center.
o Variance/standard deviation (FZESIFEE)
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Expected Values, Mean, and Variance

The Expected Value of a Random Variable

o The expected value of a random variable X, denoted E(X) or p, is
the long-run average value of the random variable over many repeated
trials or occurrences. it is a natural measure of central tendency.
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Expected Values, Mean, and Variance

The Expected Value of a Random Variable

o The expected value of a random variable X, denoted E(X) or p, is
the long-run average value of the random variable over many repeated
trials or occurrences. it is a natural measure of central tendency.

o For a discrete r.v., X € {x1,x2, ..., Xk}
k
px = E[X] =) z;p;
j=1

it is computed as a weighted average of the value of r.v., where the
weights are the probability of each value occurring.
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Expected Values, Mean, and Variance

The Expected Value of a Random Variable

o The expected value of a random variable X, denoted E(X) or p, is
the long-run average value of the random variable over many repeated
trials or occurrences. it is a natural measure of central tendency.

o For a discrete r.v., X € {x1,x2, ..., Xk}
k
px = E[X] =) z;p;
j=1

it is computed as a weighted average of the value of r.v., where the
weights are the probability of each value occurring.

o For a continuous r.v., X, use the integral

ux = E[X] = /+OO xfx(x)dx

— 00
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Expected Values, Mean, and Variance

Properties of Expectation

@ Additivity: expectation of sums are sums of expectations

EIX+ Y] = EX + £]Y]
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Expected Values, Mean, and Variance

Properties of Expectation

@ Additivity: expectation of sums are sums of expectations
EIX+ Y] = E[X] + EY]
@ Homogeneity: Suppose that a and b are constants. Then

ElaX+ b] = aE[X] + b
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Expected Values, Mean, and Variance

Properties of Expectation

@ Additivity: expectation of sums are sums of expectations
EIX+ Y] = E[X] + E]Y]

@ Homogeneity: Suppose that a and b are constants. Then
ElaX+ b] = aE[X] + b

® Law of the Unconscious Statistician, or LOTUS, if g(x) is a
function of a discrete random variable, then

> &(X)fx(x) whenxisdiscrete

J g(x)fx(x)dx whenx is continuous

Elg(X)] = {

Zishu Wang and Zhaopeng Qu (NJU) Introduction to Econometrics March 1,2024
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Expected Values, Mean, and Variance

The Variance of a Random Variable

o Besides some sense of where the middle of the distribution is, we also
want to know how spread out the distribution is around that middle.

Zishu Wang and Zhaopeng Qu (NJU)
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Expected Values, Mean, and Variance

The Variance of a Random Variable

o Besides some sense of where the middle of the distribution is, we also
want to know how spread out the distribution is around that middle.

Definition
TheVariance of a random variable X, denoted var(X)or 0%

0% = Var(X) = E[(X — 1x)?]

The Standard Deviation of X, denoted o, is just the square root of the

variance.
ox = v/ Var(X)

Zishu Wang and Zhaopeng Qu (NJU) Introduction to Econometrics March 1,2024 23 /67
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Properties of Variance

o If a and b are constants, then we have the following properties:
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I oo atkesY $Z0090909090900
Properties of Variance

@ V(b)=0

o If a and b are constants, then we have the following properties:
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I oo atkesY $Z0090909090900
Properties of Variance

@ V(b)=0

o If a and b are constants, then we have the following properties:
@ V(aX+b) = 2*V(X)

«O> «F>r «=)r « =) o>




= Ee e e
Properties of Variance

® V(b)=0

o If a and b are constants, then we have the following properties:
@ V(aX+ b) = 22V(X)
@ V(X) = £

] - (EIX)?

A
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Expected Values, Mean, and Variance

Properties of Variance

o If a and b are constants, then we have the following properties
@ V(b)=0

@ V(aX+b) = 2*V(X)

@ V(X) = E[X’] — (E[X])?
Example

Bernoulli Distribution:

Zishu Wang and Zhaopeng Qu (NJU)
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Multiple Random Variables
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Multiple Random Variables

Why multiple random variables?

o We are going to want to know what the relationships are between
variables. “The objective of science is the discovery of the relations”

—Lord Kelvin
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Multiple Random Variables

Why multiple random variables?

o We are going to want to know what the relationships are between
variables. “The objective of science is the discovery of the relations”
—Lord Kelvin

o In most cases, we often want to explore the relationship between two
variables in one study.
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Multiple Random Variables

Why multiple random variables?

o We are going to want to know what the relationships are between
variables. “The objective of science is the discovery of the relations”
—Lord Kelvin

o In most cases, we often want to explore the relationship between two
variables in one study.
o eg. Mortality and GDP growth
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Multiple Random Variables

Joint Probability Distribution

o Consider two discrete random variables X and Y with a joint
probability distribution, then the joint probability mass function of
(X, Y) describes the probability of any pair of values:

fX,Y(Xa)/) = ’D(XZ X, Y= }/) = Pxy

‘{ L1119 » 3 Joint Distribution of Weather Conditions and Commuting Times

Rain (X=0) No Rain (X=1) Total
Long commute (Y = 0) 0.15 0.07 022
‘ Short commute (Y = 1) 0.15 0.63 0.78
; Total 0.30 0.70 1.00
O D = = T 9ac
Zishu Wang and Zhaopeng Qu (NJU)

Introduction to Econometrics March 1,2024 27 /67



© . Muliple Random Variables
Marginal Probability Distribution

just one of the r.v.s.

fy(y)

o The marginal distribution: often need to figure out the distribution of

PY=y)=> fxv(xy)

(

L. 8% 3 Joint Distribution of Weather Conditions and Commuting Times

Long commute (Y = 0)

Short commute (Y = 1)
Total

Rain (X=0) No Rain (X=1) Total 1
0.15 0.07 022
0.15 0.63 0.78
0.30 0.70 1.00
=] =
~ Zishu Wang and Zhaopeng Qu (NJU)  Introduction to Econometrics
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Multiple Random Variables

Marginal Probability Distribution

o The marginal distribution: often need to figure out the distribution of
just one of the r.v.s.

fr(y) = P(Y=y) = fxv(xy)

o Intuition: sum over the probability that Y = y for all possible values
of x.

a Y
L1119 » 3 Joint Distribution of Weather Conditions and Commuting Times

Rain (X=0) No Rain (X=1) Total

Long commute (Y = 0) 0.15 0.07 0.22

Short commute (Y = 1) 0.15 0.63 0.78

Total 0.30 0.70 1.00
[m] = = =

Dac

March 1,2024 28 /67
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Multiple Random Variables

Joint Probability Density Function

o Consider two continuous random variables X and Y with a joint
probability distribution, then the joint probability density function
of (X,Y) is a function, denoted as fx y(x, y) such that:
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Multiple Random Variables

Joint Probability Density Function

o Consider two continuous random variables X and Y with a joint
probability distribution, then the joint probability density function
of (X,Y) is a function, denoted as fx y(x, y) such that:

@ fxv(xy)>0
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Multiple Random Variables

Joint Probability Density Function

o Consider two continuous random variables X and Y with a joint
probability distribution, then the joint probability density function
of (X,Y) is a function, denoted as fx y(x, y) such that:

@ fxv(xy)>0
@ [T [T fov(xy) dxdy =1
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Multiple Random Variables

Joint Probability Density Function

o Consider two continuous random variables X and Y with a joint
probability distribution, then the joint probability density function
of (X,Y) is a function, denoted as fx y(x, y) such that:

@ fxv(xy)>0

@ [T [T fv(xy) dxdy =1

@ Pla< X<bc<Y<d = [ ["fv(xy)dxdy, thus the probability
in the {a, b, ¢, d}area.
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Multiple Random Variables

Joint Probability Density Function

4
0.15
2
0.10
> [y
0.05
-2 -
-4 T T T 0.00
-4 2 0 2 4

o Yand X axes denote on the “floor” , height is the value of
fxy(x y)

Zishu Wang and Zhaopeng Qu (NJU)

]
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Joint Probability Density Function

mxwemz/

(xy)eA

o The probability equals to volume above a specific region

fx v(x, y)dxdy

0.10

0.05

0.00

Introduction to Econometrics
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Multiple Random Variables

Continuous Marginal Distribution

o the marginal p.d.f of Y by integrating over the distribution of X:

A = [ ™ vl y)dx

—0o0

Zishu Wang and Zhaopeng Qu (NJU) Introduction to Econometrics March 1,2024 32/67



Multiple Random Variables

Continuous Marginal Distribution

o the marginal p.d.f of Y by integrating over the distribution of X:

+oo
Frly) = / fv(x, y)dx

o the marginal p.d.f of X by integrating over the distribution of Y:

+oo
fx(x) = / fx, v(x, y)dy

—0o0
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Continuous Marginal Distribution

o2
/
o Pile up all of the joint density onto a single diDmen%ion
~ Zishu Wang and Zhaopeng Qu (NJU)
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Multiple Random Variables

Joint Cumulative Distribution Function

o The joint cumulative distribution function of (X, Y) is

y X
Fxy(xy) = PX< x Y<y) = / / v, v) dudv

Zishu Wang and Zhaopeng Qu (NJU) Introduction to Econometrics March 1,2024
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Multiple Random Variables

Joint Cumulative Distribution Function

o The joint cumulative distribution function of (X, Y) is
y X
Fevxy) = PX<x¥<y) = [ [ o) duay

o Transform joint c.d.f and joint p.d.f

82FX,Y(X? y)

fX,Y(Xa y) = 8}/

Zishu Wang and Zhaopeng Qu (NJU) Introduction to Econometrics March 1,2024 34 /67



Properties of Joint Distributions
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Properties of Joint Distributions

Expectations over multiple r.v.s

o Expectations over multiple r.v.s

ZX Zyg(xu y) fX,Y(X7 y) if

E[g(X7 Y)] N {fxfyg(xa y)fX,Y(X7 y)dXdy if

Zishu Wang and Zhaopeng Qu (NJU) Introduction to Econometrics March 1,2024
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Properties of Joint Distributions

Expectations over multiple r.v.s

o Expectations over multiple r.v.s

Zx Zyg(xu y) fX,Y(X, y) if

Fle vl = { JiJ, 8 Y fx v(x y)dxdy if

o Marginal expectation

2 vixv(xy) if
V= {fx fyyii(x, y)dxdy if

Zishu Wang and Zhaopeng Qu (NJU) Introduction to Econometrics March 1,2024
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Properties of Joint Distributions

Independence

Independence

Two r.v.s X and Y are independent, which we denote it as X L Y, if for all
sets A and B

P(Xe A YeB)=P(Xe AP(Ye B)
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Properties of Joint Distributions

Independence

Independence

Two r.v.s X and Y are independent, which we denote it as X L Y, if for all
sets A and B

P(Xe A,Ye B)=P(Xe A)P(Y e B)

o Intuition: knowing the value of X gives us no information about the
value of Y.
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Properties of Joint Distributions

Independence

Independence

Two r.v.s X and Y are independent, which we denote it as X L Y, if for all
sets A and B

P(Xe A,Ye B)=P(Xe AP(Ye B)

o Intuition: knowing the value of X gives us no information about the
value of Y.

o IfX and Y are independent, then
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Properties of Joint Distributions

Independence

Independence

Two r.v.s X and Y are independent, which we denote it as X L Y, if for all
sets A and B

P(Xe A,Ye B)=P(Xe AP(Ye B)

o Intuition: knowing the value of X gives us no information about the
value of Y.

o IfX and Y are independent, then
o Joint p.d.f is the product of marginal p.d.f, thus fx y(x, y) = fx(x)fy(y)
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Properties of Joint Distributions

Independence

Independence

Two r.v.s X and Y are independent, which we denote it as X L Y, if for all
sets A and B
P(Xe A,Ye B)=P(Xe A)P(Y e B)

o Intuition: knowing the value of X gives us no information about the
value of Y.
o IfX and Y are independent, then

o Joint p.d.f is the product of marginal p.d.f, thus fx y(x, y) = fx(x)fy(y)
o Joint c.d.f is the product of marginal c.d.f, thus fx y(x,y) = fx(x)fv(y)
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Properties of Joint Distributions

Independence

Independence

Two r.v.s X and Y are independent, which we denote it as X L Y, if for all
sets A and B
P(Xe A,Ye B)=P(Xe A)P(Y e B)

o Intuition: knowing the value of X gives us no information about the
value of Y.
o IfX and Y are independent, then

o Joint p.d.f is the product of marginal p.d.f, thus fx y(x, y) = fx(x)fy(y)

o Joint c.d.f is the product of marginal c.d.f, thus fx y(x,y) = fx(x)fv(y)

o functions of independent r.v.s are independent, thus h(X) L g(Y) for
any functions h(-) and g(-).

Zishu Wang and Zhaopeng Qu (NJU) Introduction to Econometrics March 1,2024 37/67



Independence

if X and Y are independent r.v.s, then

EIXY] = EIXE]Y]

«4O> «Fr «=)» <« > aQ
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Properties of Joint Distributions
Independence

Theorem (Independence)

if X and Y are independent r.v.s, then

Proof.

EIXY] = EIXE]Y]

Skip. you could finish it by yourself.

Zishu Wang and Zhaopeng Qu (NJU)

Introduction to Econometrics




Properties of Joint Distributions

Covariance

o If two variables are not independent, we could still measure the
strength of their dependence by the definition of covariance.
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Properties of Joint Distributions

Covariance

o If two variables are not independent, we could still measure the
strength of their dependence by the definition of covariance.

Covariance

the covariance between X and Y is defined as

CovX, Y] = E[(X — E[X]) (Y — E[Y])]
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Properties of Joint Distributions

Covariance

o If two variables are not independent, we could still measure the
strength of their dependence by the definition of covariance.

Covariance

the covariance between X and Y is defined as

CovX, Y] = E[(X — E[X]) (Y — E[Y])]

o Properties of covariances:
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Properties of Joint Distributions

Covariance

o If two variables are not independent, we could still measure the
strength of their dependence by the definition of covariance.

Covariance

the covariance between X and Y is defined as

CovX, Y] = E[(X — E[X]) (Y — E[Y])]

o Properties of covariances:
o Cov[X, Y] = E[XY] — E[XE[Y]
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Properties of Joint Distributions

Covariance

o If two variables are not independent, we could still measure the
strength of their dependence by the definition of covariance.

Covariance

the covariance between X and Y is defined as

CovX, Y] = E[(X — E[X]) (Y — E[Y])]

o Properties of covariances:

o Cov[X, Y] = E[XY] — E[X|E]Y]
o If XLY, CoviX,Y] =0
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Properties of Joint Distributions

Intuition of Covariance

o The conditional probability mass function(conditional p.m.f) of Y
conditional of Xis
4_
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Properties of Joint Distributions

Intuition of Covariance

o The conditional probability mass function(conditional p.m.f) of Y
conditional of Xis
4_

Y58 49 v 3\ €X YSEY
K<) K<EN ' K>HN
2 <
> 0 »
.2 <
Y<EN]
44 ‘Ix <N
-4 - 0 2 4 4 )
X

0
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G ey 000
Covariance and Independence

o Properties of covariances:

o CovX, Y] = EIXY] — E[XE]Y]
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Properties of Joint Distributions

Covariance and Independence

o Properties of covariances:
» CoviX, Y] = EXY] — EIXE]Y]
o CovlaX+ b, cY+ d| = acCoV[XY]
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Properties of Joint Distributions

Covariance and Independence

o Properties of covariances:
» CoviX, Y] = EXY] — EIXE]Y]
o CovlaX+ b, cY+ d| = acCoV|XY]
o Cov[X, X| = Var[X|
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Properties of Joint Distributions

Covariance and Independence

o Properties of covariances:
o CovX, Y] = E[XY] — E[X|E]Y]
o CovlaX+ b, cY+ d| = acCoV[XY]
o Cov[X, X| = Var[X|

o Covariance and Independence
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Properties of Joint Distributions

Covariance and Independence

o Properties of covariances:
o CovX, Y] = E[XY] — E[X|E]Y]
o CovlaX+ b, cY+ d| = acCoV[XY]
o Cov[X, X| = Var[X|
o Covariance and Independence
o If X LY, then Cov[X, Y] = 0. thus independence
=Cov[X, Y] = 0.
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Properties of Joint Distributions

Covariance and Independence

o Properties of covariances:
o CovX, Y] = E[XY] — E[X|E]Y]
o CovlaX+ b, cY+ d| = acCoV[XY]
o Cov[X, X| = Var[X|
o Covariance and Independence
o If X LY, then Cov[X, Y] = 0. thus independence

=Cov[X, Y] = 0.
o If Cov[X,Y] =0, then X L Y? NO! Cov[X, Y] =0 =
independence.

Zishu Wang and Zhaopeng Qu (NJU) Introduction to Econometrics March 1,2024
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~ Properties of Joint Distributions
Covariance and Correlation

o Covariance is not scale-free. Correlation is a special form of

covariance after dividing out the scales of the respective variables.
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Properties of Joint Distributions

Covariance and Correlation

o Covariance is not scale-free. Correlation is a special form of
covariance after dividing out the scales of the respective variables.

Correlation
The correlation between X and Y is defined as

Cov[X, Y]

X = arXVarY]
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Properties of Joint Distributions

Covariance and Correlation

o Covariance is not scale-free. Correlation is a special form of
covariance after dividing out the scales of the respective variables.

Correlation
The correlation between X and Y is defined as

Cov[X, Y]

X = arXVarY]

o Correlation properties:
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Properties of Joint Distributions

Covariance and Correlation

o Covariance is not scale-free. Correlation is a special form of
covariance after dividing out the scales of the respective variables.

Correlation
The correlation between X and Y is defined as

Cov[X, Y]

X = arXVarY]

o Correlation properties:
o —1<p<1
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Properties of Joint Distributions

Covariance and Correlation

o Covariance is not scale-free. Correlation is a special form of
covariance after dividing out the scales of the respective variables.

Correlation
The correlation between X and Y is defined as

Cov[X, Y]

X = arXVarY]

o Correlation properties:
o —1<p<1
o If | pxy |=1, then X and Y are perfectly correlated with a linear
relationship: Y= a+ bX
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Conditional Distributions

Conditional Probability function

o The conditional probability mass functional(conditional p.m.f) of

Y conditional of Xis

fx (%) = P(Y = y| X = x) = PE=XY =) fovlxy)

P(X = x) fx(x)
Q.85 3 Joint and Conditional Distributions of Computer Crashes (M) and
Computer Age (A)
A. Joint Distribution
M=0 M=1 M=2 M=3 M=4 Total
Old computer (A = 0) 035 0.065 0.05 0.025 0.01 050
New computer (A = 1) 045 0.035 0.01 0.005 0.00 0.50
Total 0.80 0.10 0.06 0.03 0.01 1.00
B. Conditional Distributions of M given A
M=0 M=1 M=2 M=3 M=4 Total
Pr(M|A = 0) 0.70 0.13 0.10 0.05 0.02 1.00
Pr(M|A =1) 0.90 0.07 0.02 0.01 0.00 1.00
\
o = E E DAl
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Conditional Density Function
c.d.f. of Y conditional on X is

fyix (y1x) =

fx,v(x,y)
fx(X)




Conditional Distributions

Conditional Density Function

Conditional probability density function:
c.d.f. of Y conditional on X is

Ao = )

o Based on the definition of the conditional p.m.f./p.d.f., we have the
following equation

fx,v(x y) = fyix (V%) fx(x)

Zishu Wang and Zhaopeng Qu (NJU) Introduction to Econometrics March 1,2024 45 /67
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Conditional Density Function

o c.d.f is proportional to joint p.d.f along xg like a slice of total volume.
~ Zishu Wang and Zhaopeng Qu (NJU)
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Conditional Distributions

Conditional Independence

Conditional Independence
X and Y are conditional Independent given Z, denoted as X L Y| Z, if

fx vz (%, ¥|2) = fxz(X2) fy1z (¥2)
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Conditional Distributions

Conditional Independence

Conditional Independence
X and Y are conditional Independent given Z, denoted as X L Y| Z, if

fx vz (%, ¥|2) = fxz(X2) fy1z (¥2)

o X and Y are independent within levels of Z.
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Conditional Distributions

Conditional Independence

Conditional Independence
X and Y are conditional Independent given Z, denoted as X L Y| Z, if

fx vz (%, ¥|2) = fxz(X2) fy1z (¥2)

o X and Y are independent within levels of Z.
o Example:
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Conditional Distributions

Conditional Independence

Conditional Independence
X and Y are conditional Independent given Z, denoted as X L Y| Z, if

fx vz (%, ¥|2) = fxz(X2) fy1z (¥2)

o X and Y are independent within levels of Z.
o Example:
o X = swimming accidents, Y = ice cream sold.
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Conditional Distributions

Conditional Independence

Conditional Independence
X and Y are conditional Independent given Z, denoted as X L Y| Z, if

fx vz (X, ¥|2) = fxz (X2) fy1z (y]2)

o X and Y are independent within levels of Z.
o Example:

o X = swimming accidents, Y = ice cream sold.
o In general, two variable is highly correlated.
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Conditional Distributions

Conditional Independence

Conditional Independence
X and Y are conditional Independent given Z, denoted as X L Y| Z, if

fx vz (X, ¥|2) = fxz (X2) fy1z (y]2)

o X and Y are independent within levels of Z.
o Example:

o X = swimming accidents, Y = ice cream sold.
o In general, two variable is highly correlated.
o If conditional on Z = temperature, then they are independent.
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Conditional Distributions

Conditional Expectation Function

Conditional Expectation
Conditional on X, Y's Conditional Expectation is

yPyix(y|x) discrete’Y
[ yfvix(¥Ix)dy continuous Y

Zishu Wang and Zhaopeng Qu (NJU) Introduction to Econometrics March 1,2024
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Conditional Distributions

Conditional Expectation Function

Conditional Expectation
Conditional on X, Y's Conditional Expectation is
E(YIX) = > YPyix(¥lx)  discrete Y

[ yfux(ylx)dy  continuous Y

o Conditional Expectation Function(CEF) is a function of x, since X
is a random variable, so CEF is also a random variable.
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Conditional Distributions

Conditional Expectation Function

Conditional Expectation
Conditional on X, Y's Conditional Expectation is
E(YIX) = > YPyix(¥lx)  discrete Y

[ yfux(ylx)dy  continuous Y

o Conditional Expectation Function(CEF) is a function of x, since X
is a random variable, so CEF is also a random variable.

o Intuition: HAEFRBKENE, MEHHEME "FENFEY" =
. FETRISE

Zishu Wang and Zhaopeng Qu (NJU) Introduction to Econometrics March 1,2024 48 /67



Conditional Distributions

Properties of Conditional Expectation

o Let XY, Z are random variables; a, b € R; g(-) is a real valued
function, then we have
Ela|Y]=a
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Conditional Distributions

Properties of Conditional Expectation

o Let XY, Z are random variables; a, b € R; g(-) is a real valued
function, then we have
Ela|Y]=a

o E[(aX+bZ)| Y| = aE[X| Y] + bE[Z| Y]
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Conditional Distributions

Properties of Conditional Expectation

o Let XY, Z are random variables; a, b € R; g(-) is a real valued
function, then we have
Ela|Y]=a

o E[(aX+ bZ)| Y] = aE[X| Y]+ bE[Z|Y]
o E[c(X) | X = c(X) for any function ¢(X).Thus if we know X, then
we also know c¢(X).
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Ela|Y]=a

o E[(aX+ bZ)| Y] = aE[X| Y]+ bE[Z|Y]
o E[c(X) | X = c(X) for any function ¢(X).Thus if we know X, then
we also know c¢(X).
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Conditional Distributions

Properties of Conditional Expectation

o Let XY, Z are random variables; a, b € R; g(-) is a real valued
function, then we have

Ela|Y]=a
o E[(aX+ bZ) | Y] = aE[X| Y]+ bE[Z| Y]

o E[c(X) | X = c(X) for any function ¢(X).Thus if we know X, then
we also know c¢(X).

o eg. E[(X*+2X3) | X] =X* +2X3

o if X and Y are independent r.v.s, then

EY| X=x = E]Y]
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Conditional Distributions

Properties of Conditional Expectation

o Let XY, Z are random variables; a, b € R; g(-) is a real valued
function, then we have

Ela|Y]=a
E[(aX+ bZ) | Y] = aE[X | Y] + bE[Z| Y]
E[c(X) | X] = ¢(X) for any function ¢(X).Thus if we know X, then
we also know c¢(X).

o eg. E[(X*+2X3) | X] =X* +2X3
if X and Y are independent r.v.s, then

©

©

(+]

EY| X=x = E]Y]

©

if X and Y independent conditional on Z, thus X L Y| Z,
ElY| X=xZ=2=EY| Z={
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Conditional Distributions

The Law of Iterated Expectations(LIE)

o It states that an unconditional expectation can be written as the
unconditional average of conditional expectation function.

E(Y) = E[E(YIX)]
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Conditional Distributions

The Law of Iterated Expectations(LIE)

o It states that an unconditional expectation can be written as the
unconditional average of conditional expectation function.

E(Y) = E[E(YIX)]

o And if g(x) and h(Y) are a real value functions then it can easily
extend to

E(g(X)h(Y)) = E[E(&(X)h(V)|X)] = E[g(X)E(h(Y)|X)]
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Conditional Distributions

The Law of Iterated Expectations(LIE)

Proof.

EEYX) = [ EY]X= dex(u)du

_ /[/ H(t| X = u)dt] sl

_ // t (] X = u)gx(u)dtdu

_ /t[/ Folt] X = u)gx(u)du] dt

= /t[/ fxy(t, u)du] dt

= /tfy(t)dt— E(Y)

Zishu Wang and Zhaopeng Qu (NJU) Introduction to Econometrics
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Conditional Distributions

Conditional Variance

o Conditional on X, Y's Conditional Variance is defined as

Var(Y|X) = E[(Y — E[YIX])* | X]
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Conditional Distributions

Conditional Variance

o Conditional on X, Y's Conditional Variance is defined as

Var(Y|X) = E[(Y — E[YIX])* | X]

o Usual variance formula applied to conditional distribution.
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Conditional Distributions

Conditional Variance

o Conditional on X, Y's Conditional Variance is defined as

Var(Y|X) = E[(Y — E[YIX])* | X]

o Usual variance formula applied to conditional distribution.
o Discrete

VY| X =) (v — ELY | X)*fux (v1)
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Conditional Distributions

Conditional Variance

o Conditional on X, Y's Conditional Variance is defined as

Var(Y|X) = E[(Y — E[YIX])* | X]

o Usual variance formula applied to conditional distribution.
o Discrete

VY| X =) (v — ELY | X)*fux (v1)

o Continuous

VY| X = /<y— ELY | X)2fx (v1)
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Several Famous Distributions
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Families of distributions

o There are several important families of distributions:
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Several Famous Distributions

Families of distributions

o There are several important families of distributions:

o The p.m.f./p.d.f. within the family has the same form, with parameters
that might vary across the family.
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Families of distributions

o There are several important families of distributions:

o The p.m.f./p.d.f. within the family has the same form, with parameters
that might vary across the family.
o The parameters determine the shape of the distribution
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Several Famous Distributions

Families of distributions

o There are several important families of distributions:
o The p.m.f./p.d.f. within the family has the same form, with parameters
that might vary across the family.
o The parameters determine the shape of the distribution
o Statistical modeling in a nutshell: to study probability distribution
function.
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Several Famous Distributions

Families of distributions

o There are several important families of distributions:
o The p.m.f./p.d.f. within the family has the same form, with parameters
that might vary across the family.
o The parameters determine the shape of the distribution
o Statistical modeling in a nutshell: to study probability distribution
function.
o Assume the data, Xi, Xo, ..., X, are independent draws from a common
distribution fp(x) within a family of distributions (normal, poisson, etc)
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Several Famous Distributions

Families of distributions

o There are several important families of distributions:
o The p.m.f./p.d.f. within the family has the same form, with parameters
that might vary across the family.
o The parameters determine the shape of the distribution
o Statistical modeling in a nutshell: to study probability distribution
function.
o Assume the data, Xi, Xo, ..., X, are independent draws from a common
distribution fp(x) within a family of distributions (normal, poisson, etc)

° UseAa function of the observed data to estimate the value of the
0:0(X1, Xa, ..., Xp)
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Several Famous Distributions

The Bernoulli Distribution

Definition
X has a Bernoulli distribution if it have a binary values X € {0,1} and
its probability mass function is
p ifx=1
fx(x) = P(X =
X =PX=X=11_p ix—0
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Several Famous Distributions

The Bernoulli Distribution

Definition ;
X has a Bernoulli distribution if it have a binary values X € {0,1} and

its probability mass function is

ifx=1
f) = PX=2 =47
1—p ifx=0
Question:
What is the Expectation and Variance of X?
k
EX) = Y xpi=0x(l—p)+1xp=p
j=1

Var(X) = E[X — E(X)]* = E[X*] — (E[X))* = p— p* = p(1 - p)
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NSNS $
The Normal Distribution
o The p.d.f of a normal random variable X is
1
fx(x) = exp [
oV 2m

(x—,u)z], —00 < X < 400
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Several Famous Distributions

The Normal Distribution

o The p.d.f of a normal random variable X is
1 [ 1
exp | ——
oV2r P17 202
2

o if X is normally distributed with expected value i and variance o<,
denoted as X ~ N(u, 0?)

fx(x) = (x— M)Q] , —00 < X < 400

Zishu Wang and Zhaopeng Qu (NJU) Introduction to Econometrics March 1,2024 56 /67



Several Famous Distributions

The Normal Distribution

o The p.d.f of a normal random variable X is

1 1
Fe(x) = C (x—p)?|, —co< X
x(x) Umexp[ 202(X u)], 00 < X < 400
2

o if X is normally distributed with expected value i and variance o<,
denoted as X ~ N(u, 0?)

o if we know these two parameters, we know everything about the
distribution.
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The Normal Distribution

o The p.d.f of a normal random variable X is

1 1
Fe(x) = C (x—p)?|, —co< X
x(x) Umexp[ 202(X u)], 00 < X < 400
2

o if X is normally distributed with expected value i and variance o<,
denoted as X ~ N(u, 0?)

o if we know these two parameters, we know everything about the
distribution.

o Examples: Human heights, weights, test scores,
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Several Famous Distributions

The Normal Distribution

o The p.d.f of a normal random variable X is

1 1
Fe(x) = C (x—p)?|, —co< X
x(x) Umexp[ 202(X u)], 00 < X < 400
2

o if X is normally distributed with expected value i and variance o<,
denoted as X ~ N(u, 0?)

o if we know these two parameters, we know everything about the
distribution.

o Examples: Human heights, weights, test scores,

o If X represents wage, income or consumption etc, it will has a
log-normal distribution, thus

log(X) ~ N(u, o%)
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~ Several Famous Distributions
The Normal Distribution

-
m The Normal Probability Density

The normal probability
density function with
mean w and variance
o2 is a bell-shaped
curve, centered at .
The area under the
normal p.d.f. between
w — 1.960 and

w + 1.960 is0.95.

The normal distribution
is denoted N(p, o).

u —1.960

u + 1.960

= = =
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Several Famous Distributions

The Standard Normal Distribution

o A special case of the normal distribution where the mean is zero
(1 = 0) and the variance is one (02 = o = 1), then its p.d.f is

—_

fx(x) = ¢p(x)= e X 00 < X< +oo
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Several Famous Distributions

The Standard Normal Distribution

o A special case of the normal distribution where the mean is zero
(1 = 0) and the variance is one (02 = o = 1), then its p.d.f is

fx(x) = ¢p(x)= ! e X 00 < X< +oo

Ver

o if X is standard normally distributed, then denoted as X ~ N(0, 1)
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Several Famous Distributions

The Standard Normal Distribution

o A special case of the normal distribution where the mean is zero
(1 = 0) and the variance is one (02 = o = 1), then its p.d.f is

fx(x) = ¢p(x)= ! e X 00 < X< +oo

Ver

o if X is standard normally distributed, then denoted as X ~ N(0, 1)

o The standard normal cumulative distribution function is denoted
®(z2) = P(Z< z2)
where z is a standardize r.v. thus z = X=£X

ox
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~ Several Famous Distributions
The Standard Normal Distribution

FIGURE B.8 The standard normal cumulative distribution function.
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To calculate Pr(Y = 2), standardize ¥, then use
the standard normal distribution table. Y is
standardized by subtracting its mean (. = 1)
and dividing by its standard deviation (o = 2).
The probability that ¥ = 2 is shown in

Figure 2.6a, and the corresponding probability
after standardizing Y is shown in Figure 2.6b. Prir<2)
Because the standardized random variable,
(Y — 1)/2,is a standard normal (Z) random
variable, Pr(Y = 2) = pr(Y51 = 151) =
Pr(Z = 0.5). From Appendix Table 1,

m Calculating the Probability That Y = 2 When Y |Is Distributed N(1, 4)

N(L, 4) distribution

PriZ = 0.5) = (0.5) = 0.691.
(a) N(1.4)

PriZ<0.5)

|
T
1.0 20

N(0, 1) distribution

rn o
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Several Famous Distributions

The Chi-Square Distribution

o Let Zi(i=1,2,...,m) be independent random variables, each
distributed as standard normal. Then a new random variable can be
defined as the sum of the squares of Z; :

X= zm:z,?
=1

Then X has a chi-squared distribution with m degrees of freedom
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Several Famous Distributions
The Chi-Square Distribution

o Let Zi(i=1,2,...,m) be independent random variables, each
distributed as standard normal. Then a new random variable can be
defined as the sum of the squares of Z; :

X= zm:z,?
i=1

Then X has a chi-squared distribution with m degrees of freedom

o The form of the distribution varies with the number of degrees of
freedom, i.e. the number of standard normal random variables Z;
included in X
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Several Famous Distributions

The Chi-Square Distribution

o Let Zi(i=1,2,...,m) be independent random variables, each
distributed as standard normal. Then a new random variable can be
defined as the sum of the squares of Z; :

X= zm:z,?
i=1

Then X has a chi-squared distribution with m degrees of freedom

o The form of the distribution varies with the number of degrees of
freedom, i.e. the number of standard normal random variables Z;
included in X

o The distribution has a long tail, or is skewed, to the right. As the
degrees of freedom m gets larger, however, the distribution becomes
more symmetric and ' ‘bell-shaped.’ ' In fact, as m gets larger, the
chi-square distribution converges to, and essentially becomes, a
normal distribution.
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The Chi-Square Distribution

FIGURE B.9 The chi-square distribution with various degrees of freedom.

f(x)

df=2

df=4

df=8

March 1,2024

X

DA
62/67



Several Famous Distributions

The Student t Distribution

o The Student t distribution can be obtained from a standard normal
and a chi-square random variable.
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Several Famous Distributions

The Student t Distribution

o The Student t distribution can be obtained from a standard normal
and a chi-square random variable.

o Let Z have a standard normal distribution, let X have a chi-square
distribution with m degrees of freedom and assume that Z and X are
independent. Then the random variable

Z
Ve

has has a t-distribution with m degrees of freedom, denoted as
T ~ t,.

T=
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Several Famous Distributions

The Student t Distribution

o The Student t distribution can be obtained from a standard normal
and a chi-square random variable.

o Let Z have a standard normal distribution, let X have a chi-square
distribution with m degrees of freedom and assume that Z and X are
independent. Then the random variable

V4
/X
has has a t-distribution with m degrees of freedom, denoted as
T ~ t,.
o The shape of the t-distribution is similar to that of a normal

distribution, except that the t-distribution has more probability mass
in the tails.

T=
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Several Famous Distributions

The Student t Distribution

o The Student t distribution can be obtained from a standard normal
and a chi-square random variable.

o Let Z have a standard normal distribution, let X have a chi-square
distribution with m degrees of freedom and assume that Z and X are
independent. Then the random variable

V4
/X
has has a t-distribution with m degrees of freedom, denoted as
T ~ t,.
o The shape of the t-distribution is similar to that of a normal

distribution, except that the t-distribution has more probability mass
in the tails.

T=

o As the degrees of freedom get large, the t-distribution approaches the
standard normal distribution.
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~ Several Famous Distributions
The Student t Distribution

FIGURE B.10 The tdistribution with various degrees of freedom.
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Several Famous Distributions

The F Distribution

o Let X; ~ x2and X ~ x2, and assume that X; and X, are
independent,

Z= ~ Fmn

)

SISELE

thus Z has an F-distribution with (m, n) degrees of freedom
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~ SeelFamousDistribuons
The F Distribution

FIGURE B.11 The F,, ,, distribution for various degrees of freedom, k; and k,.
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