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Population, Parameters and Random Sampling

Population, Sample and i.i.d

A population is a collection of people, items, or events about which
you want to make inferences.

Population always have a probability distribution.
A sample is a subset of population, which draw from population
in a certain way.
To represent the population well, a sample should be randomly
collected and adequately large.

Infinite population
Finite population

With replacement
Without replacement: when the population size N is very large,
compared with the sample size n, then we could say that they are
nearly independent.
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Population, Parameters and Random Sampling

Random Sample and i.i.d
Definition
The r.v.s are called a random sample of size n from the population
f(x) if X1, ...,Xn are mutually independent and have the same
p.d.f/p.m.f f(x). Alternatively, X1, ...,Xn are called independent,
and identically distributed random variable with p.d.f/p.m.f ,
commonly abbreviated to i.i.d. r.v.s.

eg. Random sample of n respondents on a survey question.
Xi ⊥ Xj for all i ̸= j
fXi(x) is the same for all i.
And the joint p.d.f/p.m.f of X1, ...,Xn is given by

f(x1, ..., xn) = f(x1)...f(xn) =
n∏

i=1

f(xi)
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Population, Parameters and Random Sampling

Statistic and Sampling Distribution

Definition
X1, ...,Xn is a random sample of size n from the population f(x). A
statistic is a real-valued or vector-valued function fully depended on
X1, ...,Xn, thus

T = T(X1, ...,Xn)

and the probability distribution of a statistic T is called the sampling
distribution of T.
A statistic is only a function of the sample.
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Population, Parameters and Random Sampling

Sample Mean and Sample Variance

Definition
The sample average or sample mean, X, of the n observation X1, ...,Xn
is

X̄ =
1

n(X1 + X2 + ...+ Xn) =
1

n

n∑
i=1

Xi

The sample variance is the statistic defined by

S2 =
1

n − 1

n∑
i=1

(Xi − X)2

if Xi is a r.v., then
∑

Xi is also a r.v.
the sample mean and the sample variance are also a function of sums,
so they are a r.v. too.
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Population, Parameters and Random Sampling

A simple case of sample mean
Let {X1,Xn} ∈ [1, 100] , assume n = 2, thus only X1and X2
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Statistical Inference: Estimation, Confident Intervals and Testing

Statistical Inference: Estimation, Confident Intervals
and Testing
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Statistical Inference: Estimation, Confident Intervals and Testing

Statistical Inference

Inference
What is our best guess about some quantity of interest?
What are a set of plausible values of the quantity of interest?

Compare estimators, such as in an experiment
we use simple difference in sample means?
or the post-stratification estimator, where we estimate the difference
among two subsets of the data (male and female, for instance) and
then take the weighted average of the two variable
which is better? how could we know?
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Statistical Inference: Estimation, Confident Intervals and Testing

Inference: from Samples to Population

Our focus: {Y1,Y2, ...,Yn} are i.i.d. draws from f(y) or F(Y), thus
population distribution.
Statistical inference or learning is using samples to infer f(y).
two ways

Parametric
Non-parametric

Haocheng Hu and Zhaopeng Qu (Nanjing University)Introduction to Econometrics Mar. 5, 2025 11 / 47
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Statistical Inference: Estimation, Confident Intervals and Testing

Point estimation

Point estimation: providing a single “best guess”as to the value of
some fixed, unknown quantity of interest, θ, which is is a feature of
the population distribution, f(y).
Examples

µ = E[Y]
σ2 = Var[Y]
µy − µx = E[Y]− E[X]
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Statistical Inference: Estimation, Confident Intervals and Testing

Estimator and Estimate

Definition
Given a random sample{Y1,Y2, ...,Yn} drawn from a population
distribution that depends on an unknown parameter θ, and an estimator
θ̂ is a function of the sample: thus θ̂n = h(Y1,Y2, ...,Yn)

An estimator is a r.v. because it is a function of r.v.s.
{θ̂1, θ̂2, ..., θ̂n} is a sequence of r.v.s, so it has convergence in
probability/distribution.

Question: what is the difference between an estimator and an
estimate?
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Statistical Inference: Estimation, Confident Intervals and Testing

Estimator and Estimate

Definition
An estimate is the numerical value of the estimator when it is actually
computed using data from a specific sample. Thus if we have the actual
data {y1, y2, ..., yn},then θ̂ = h(y1, y2, ..., yn)

Example
True or False and Why? “My estimate was the sample mean and my
estimator was 0.5”?
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Statistical Inference: Estimation, Confident Intervals and Testing

Three Characteristics of an Estimator
let µ̂Ydenote some estimator of µY and E(µ̂Y) is the mean of the
sampling distribution of µ̂Y,

1 Unbiasedness: the estimator of µY is unbiased if

E(µ̂Y) = µY

2 Consistency:the estimator of µY is consistent if

µ̂Y
p−→ µY

3 Efficiency:Let µ̃Y be another estimator of µY and suppose that both
µ̃Y and µ̂Y are unbiased.Then µ̂Y is said to be more efficient than µ̂Y

var(µ̂Y) < var(µ̃Y)

Comparing variances is difficult if we do not restrict our attention to
unbiased estimators because we could always use a trivial estimator
with variance zero that is biased.
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Statistical Inference: Estimation, Confident Intervals and Testing

Properties of the sample mean

1 Let µY and σ2
Y denote the mean and variance of Yi, then

E(Y) = 1

n

n∑
i=1

E(Yi) = µY

so Y is an unbiased estimator of µY.
2 Based on the L.L.N., Y p−→ µY, so Y is also consistent.
3 the variance of sample mean

Var(Y) = var
(
1

n

n∑
i=1

Yi

)
=

1

n2
n∑

i=1

Var(Yi) =
σ2

Y
n

4 the standard deviation of the sample mean is σY = σY√n
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Statistical Inference: Estimation, Confident Intervals and Testing

Properties of the sample mean

Because efficiency entails a comparison of estimators, we need to
specify the estimator or estimators to which Y is to be compared.

Let Ỹ = 1
n
(
1
2Y1 +

3
2Y2 +

1
2Y3 +

3
2Y4 + ...+ 1

2Yn−1 +
3
2Yn

)
Var(Ỹ) = 1.25

σ2
Y

n >
σ2

Y
n = Var(Y)

Thus Y is more efficient than Ỹ
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Statistical Inference: Estimation, Confident Intervals and Testing

Properties of the Sample Variance

Let µY and σ2
Y denote the mean and variance of Yi , then the sample

variance：S2
Y = 1

n−1

∑n
i=1(Yi − Y)2

1 E(S2
Y) = σ2

Y, thus S2 is an unbiased estimator of σ2
Y. It is also the

reason why the average uses the divisor n − 1 instead of n.
2 S2

Y
P−→ σ2

Y, thus the sample variance is a consistent estimator of the
population variance.

Because σY = σY√n , so the statement above justifies using SY√n as an
estimator of the standard deviation of the sample mean, σY.
It is called the standard error of the sample mean and it dented SE[Y]
or σ̂Y.
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Interval Estimation and Confidence Intervals

Interval Estimation and Confidence Intervals
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Interval Estimation and Confidence Intervals

The Chi-Square Distribution
Let Zi(i = 1, 2, ...,m) be independent random variables, each
distributed as standard normal. Then a new random variable can be
defined as the sum of the squares of Zi :

X =

m∑
i=1

Z2
i

Then X has a chi-squared distribution with m degrees of freedom
The form of the distribution varies with the number of degrees of
freedom, i.e. the number of standard normal random variables Zi
included in X.
The distribution has a long tail, or is skewed, to the right. As the
degrees of freedom m gets larger, however, the distribution becomes
more symmetric and ‘‘bell-shaped.’’In fact, as m gets larger, the
chi-square distribution converges to, and essentially becomes, a
normal distribution.
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Interval Estimation and Confidence Intervals

The Chi-Square Distribution
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Interval Estimation and Confidence Intervals

The Student t Distribution
The Student t distribution can be obtained from a standard normal
and a chi-square random variable.
Let Z have a standard normal distribution, let X have a chi-square
distribution with m degrees of freedom and assume that Z and X are
independent. Then the random variable

T =
Z√
X/n

has has a t-distribution with m degrees of freedom, denoted as
T ∼ tn.
The shape of the t-distribution is similar to that of a normal
distribution, except that the t-distribution has more probability mass
in the tails.
As the degrees of freedom get large, the t-distribution approaches the
standard normal distribution.
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Interval Estimation and Confidence Intervals

The Student t Distribution
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Interval Estimation and Confidence Intervals

The F Distribution

Let X1 ∼ χ2
mand X2 ∼ χ2

n, and assume that X1 and X2 are
independent,

Z =
X1

m
X2

n
∼ Fm,n

thus Z has an F-distribution with (m, n) degrees of freedom.
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Interval Estimation and Confidence Intervals

The F Distribution
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Interval Estimation and Confidence Intervals

Interval Estimation

A point estimate provides no information about how close the
estimate is “likely”to be to the population parameter.
We cannot know how close an estimate for a particular sample is to
the population parameter because the population is unknown.
A different (complementary) approach to estimation is to produce a
range of values that will contain the truth with some fixed
probability.
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Interval Estimation and Confidence Intervals

What is a Confidence Interval?

Definition
A 100(1− α)% confidence interval for a population parameter θ is an
interval Cn = (a, b) , where a = a(Y1, ...,Yn) and b = b(Y1, ...,Yn) are
functions of the data such that

P(a < θ < b) = 1− α

In general, this confidence level is 1− α ; where α is called
significance level.
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Interval Estimation and Confidence Intervals

Interval Estimation and Confidence Intervals

Suppose the population has a normal distribution N(µ, σ2) and let
Y1,Y2, ...,Yn be a random sample from the population.

Then the sample mean has a normal distribution: Y ∼ N(µ, σ2

n )

The standardized sample mean Z is given by: Z = Y−µ
σ/

√n ∼ N(0, 1)

Then θ = Z, then P(a < θ < b) = 1− α turns into

a <
Y − µ
σ/

√n
< b

then it follows that

P(Y − aσ/√n < µ < Y + bσ/√n) = 1− α

The random interval contains the population mean with a probability
1− α.
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Interval Estimation and Confidence Intervals

Interval Estimation and Confidence Intervals
Two cases: σ is known and unknown
When σ is known, for example,σ = 1, thus Y ∼ N(µ, 1),
then Y ∼ N(µ, σ

2

n = 1
n)

From this, we can standardize Y, and, because the standardized
version of Y has a standard normal distribution, and we let α = 0.05,
then we have

P(−1.96 <
Y − µ
1/
√n

< 1.96) = 1− 0.05

The event in parentheses is identical to the event
Y − 1.96/

√n ≤ µ ≤ Y + 1.96/
√n, so

P(Y − 1.96/
√n ≤ µ ≤ Y + 1.96/

√n) = 0.95

The interval estimate of µ may be written as
[Y − 1.96/

√n,Y + 1.96/
√n]

Haocheng Hu and Zhaopeng Qu (Nanjing University)Introduction to Econometrics Mar. 5, 2025 29 / 47



Interval Estimation and Confidence Intervals

Interval Estimation and Confidence Intervals
Two cases: σ is known and unknown
When σ is known, for example,σ = 1, thus Y ∼ N(µ, 1),
then Y ∼ N(µ, σ

2

n = 1
n)

From this, we can standardize Y, and, because the standardized
version of Y has a standard normal distribution, and we let α = 0.05,
then we have

P(−1.96 <
Y − µ
1/
√n

< 1.96) = 1− 0.05

The event in parentheses is identical to the event
Y − 1.96/

√n ≤ µ ≤ Y + 1.96/
√n, so

P(Y − 1.96/
√n ≤ µ ≤ Y + 1.96/

√n) = 0.95

The interval estimate of µ may be written as
[Y − 1.96/

√n,Y + 1.96/
√n]

Haocheng Hu and Zhaopeng Qu (Nanjing University)Introduction to Econometrics Mar. 5, 2025 29 / 47



Interval Estimation and Confidence Intervals

Interval Estimation and Confidence Intervals
Two cases: σ is known and unknown
When σ is known, for example,σ = 1, thus Y ∼ N(µ, 1),
then Y ∼ N(µ, σ

2

n = 1
n)

From this, we can standardize Y, and, because the standardized
version of Y has a standard normal distribution, and we let α = 0.05,
then we have

P(−1.96 <
Y − µ
1/
√n

< 1.96) = 1− 0.05

The event in parentheses is identical to the event
Y − 1.96/

√n ≤ µ ≤ Y + 1.96/
√n, so

P(Y − 1.96/
√n ≤ µ ≤ Y + 1.96/

√n) = 0.95

The interval estimate of µ may be written as
[Y − 1.96/

√n,Y + 1.96/
√n]

Haocheng Hu and Zhaopeng Qu (Nanjing University)Introduction to Econometrics Mar. 5, 2025 29 / 47



Interval Estimation and Confidence Intervals

Interval Estimation and Confidence Intervals
Two cases: σ is known and unknown
When σ is known, for example,σ = 1, thus Y ∼ N(µ, 1),
then Y ∼ N(µ, σ

2

n = 1
n)

From this, we can standardize Y, and, because the standardized
version of Y has a standard normal distribution, and we let α = 0.05,
then we have
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Interval Estimation and Confidence Intervals

Interval Estimation and Confidence Intervals

When σ is unknown, we must use an estimate S , denote the sample
standard deviation, replacing unknown σ

P(Y − 1.96S/√n ≤ µ ≤ Y + 1.96S/√n) = 0.95

This could not work because S is not a constant but a r.v.

Haocheng Hu and Zhaopeng Qu (Nanjing University)Introduction to Econometrics Mar. 5, 2025 30 / 47



Interval Estimation and Confidence Intervals

Interval Estimation and Confidence Intervals

When σ is unknown, we must use an estimate S , denote the sample
standard deviation, replacing unknown σ

P(Y − 1.96S/√n ≤ µ ≤ Y + 1.96S/√n) = 0.95

This could not work because S is not a constant but a r.v.

Haocheng Hu and Zhaopeng Qu (Nanjing University)Introduction to Econometrics Mar. 5, 2025 30 / 47



Interval Estimation and Confidence Intervals

Interval Estimation and Condense Intervals

Definition
The t-statistic or t-ratio:

Y − µ

SE(Y)
∼ tn−1

To construct a 95% confidence interval, let c denote the 97.5th

percentile in the tn−1 distribution.

P(−c < t ≤ c) = 0.95

where cα/2 is the critical value of the t distribution.
The condense interval may be written as [Y ± cα/2

S/√n]
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Interval Estimation and Condense Intervals
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Interval Estimation and Confidence Intervals

A simple rule of thumb for a 95% confidence interval

Caution! An often recited, but incorrect interpretation of a confidence
interval is the following:
“I calculated a 95% confidence interval of [0.05,0.13], which means

that there is a 95% chance that the true means is in that interval.”
This is WRONG. actually µ either is or is not in the interval.

The probabilistic interpretation comes from the fact that for 95% of
all random samples, the constructed confidence interval will contain µ.
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Hypothesis Testing

Hypothesis Testing

Definition
A hypothesis is a statement about a population parameter, thus θ.
Formally, we want to test whether is significantly different from a certain
value µ0

H0 : θ = µ0

which is called null hypothesis. The alternative hypothesis is

H1 : θ ̸= µ0

If the value µ0 does not lie within the calculated condense interval,
then we reject the null hypothesis.
If the value µ0 lie within the calculated condense interval, then we
fail to reject the null hypothesis.
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Hypothesis Testing

General framework

A hypothesis test chooses whether or not to reject the null hypothesis
based on the data we observe.
Rejection based on a test statistic

Tn = T(Y1, ...,Yn)

The null/reference distribution is the distribution of T under the null.
We’ll write its probabilities as P0(Tn ≤ t)
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Hypothesis Testing

Two Type Errors

In both cases, there is a certain risk that our conclusion is wrong

Type I Error
A Type I error is when we reject the null hypothesis when it is in fact
true.(“left-wing”)

We say that the Lady is discerning when she is just guessing(null
hypo: she is just guessing)

Type II Error
A Type II error is when we fail to reject the null hypothesis when it is
false.(“right-wing”)
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Hypothesis Testing

P-Value

To provide additional information, we could ask the question: What is
the largest significance level at which we could carry out the test and
still fail to reject the null hypothesis?
We can consider the p-value of a test

1 Calculate the t-statistic t
2 The largest significance level at which we would fail to reject H0 is the

significance level associated with using t as our critical value

p − value = 1− Φ(t)

where denotes the standard normal c.d.f.(we assume that n is large
enough)
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Hypothesis Testing

P-Value
Suppose that t = 1.52, then we can find the largest significance level
at which we would fail to reject H0

p − value = P(T > 1.52 | H0) = 1− Φ(1.52) = 0.065
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Comparing Means from Different Populations

An Example: Comparing Means from Different Populations

Do recent male and female college graduates earn the same amount
on average? This question involves comparing the means of two
different population distributions.
In an RCT, we would like to estimate the average causal effects over
the population

ATE = ATT = E{Yi(1)− Yi(0)}

We only have random samples and random assignment to treatment,
then what we can estimate instead

difference in mean = Ytreated − Ycontrol

Under randomization, difference-in-means is a good estimate for the
ATE.
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Comparing Means from Different Populations

Hypothesis Tests for the Difference Between Two Means

To illustrate a test for the difference between two means, let mw be
the mean hourly earning in the population of women recently
graduated from college and let mm be the population mean for
recently graduated men.
Then the null hypothesis and the two-sided alternative
hypothesis are

H0 : µm = µw

H1 : µm ̸= µw

Consider the null hypothesis that mean earnings for these two
populations differ by a certain amount, say d0. The null hypothesis
that men and women in these populations have the same mean
earnings corresponds to H0 : H0 : d0 = µm − µw = 0
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Comparing Means from Different Populations

The Difference Between Two Means
Suppose we have samples of nm men and nw women drawn at random
from their populations. Let the sample average annual earnings be
Ym for men and Yw for women. Then an estimator of µm − µw is
Ym − Yw .
Let us discuss the distribution of Ym − Yw .

∼ N(µm − µw,
σ2

m
nm

+
σ2

w
nw

)

if σ2
mand σ2

w are known, then the this approximate normal distribution
can be used to compute p-values for the test of the null hypothesis.
In practice, however, these population variances are typically unknown
so they must be estimated.
Thus the standard error of Ym − Yw is

SE(Ym − Yw) =

√
s2m
nm

+
s2w
nw

Haocheng Hu and Zhaopeng Qu (Nanjing University)Introduction to Econometrics Mar. 5, 2025 44 / 47



Comparing Means from Different Populations

The Difference Between Two Means
Suppose we have samples of nm men and nw women drawn at random
from their populations. Let the sample average annual earnings be
Ym for men and Yw for women. Then an estimator of µm − µw is
Ym − Yw .
Let us discuss the distribution of Ym − Yw .

∼ N(µm − µw,
σ2

m
nm

+
σ2

w
nw

)

if σ2
mand σ2

w are known, then the this approximate normal distribution
can be used to compute p-values for the test of the null hypothesis.
In practice, however, these population variances are typically unknown
so they must be estimated.
Thus the standard error of Ym − Yw is

SE(Ym − Yw) =

√
s2m
nm

+
s2w
nw

Haocheng Hu and Zhaopeng Qu (Nanjing University)Introduction to Econometrics Mar. 5, 2025 44 / 47



Comparing Means from Different Populations

The Difference Between Two Means
Suppose we have samples of nm men and nw women drawn at random
from their populations. Let the sample average annual earnings be
Ym for men and Yw for women. Then an estimator of µm − µw is
Ym − Yw .
Let us discuss the distribution of Ym − Yw .

∼ N(µm − µw,
σ2

m
nm

+
σ2

w
nw

)

if σ2
mand σ2

w are known, then the this approximate normal distribution
can be used to compute p-values for the test of the null hypothesis.
In practice, however, these population variances are typically unknown
so they must be estimated.
Thus the standard error of Ym − Yw is

SE(Ym − Yw) =

√
s2m
nm

+
s2w
nw

Haocheng Hu and Zhaopeng Qu (Nanjing University)Introduction to Econometrics Mar. 5, 2025 44 / 47



Comparing Means from Different Populations

The Difference Between Two Means
Suppose we have samples of nm men and nw women drawn at random
from their populations. Let the sample average annual earnings be
Ym for men and Yw for women. Then an estimator of µm − µw is
Ym − Yw .
Let us discuss the distribution of Ym − Yw .

∼ N(µm − µw,
σ2

m
nm

+
σ2

w
nw

)

if σ2
mand σ2

w are known, then the this approximate normal distribution
can be used to compute p-values for the test of the null hypothesis.
In practice, however, these population variances are typically unknown
so they must be estimated.
Thus the standard error of Ym − Yw is

SE(Ym − Yw) =

√
s2m
nm

+
s2w
nw

Haocheng Hu and Zhaopeng Qu (Nanjing University)Introduction to Econometrics Mar. 5, 2025 44 / 47



Comparing Means from Different Populations

The Difference Between Two Means

The t-statistic for testing the null hypothesis is constructed
analogously to the t-statistic for testing a hypothesis about a single
population mean, thus t-statistic for comparing two means is

t = Ym − Yw − d0
SE(Ym − Yw)

If both nmand nm are large, then this t-statistic has a standard normal
distribution when the null hypothesis is true.
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Comparing Means from Different Populations

Confidence Intervals for the Difference Between Two
Population Means

the 95% two-sided confidence interval for d consists of those values of
d within ±1.96 standard errors of Ym − Yw , thus d = µm − µw is

(Ym − Yw)± 1.96SE(Ym − Yw)
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Wrap Up
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