Lab8: FE and DID

Introduction to Econometrics, Spring 2023

Jiayi Cheng

Nanjing University

26/05/2023

Section 1

FE in Stata

Subsection 1

Panel Data

Panel Data in Stata

- Panel Data
 - Panel data refers to data with observations on multiple entities, where each entity is observed at two or more points in time.
 - ▶ We focus on **balanced** and **micro** panel data.
 - ▶ **Balanced** panel: each unit of observation i is observed the same number of time periods, T.
 - ▶ Micro : large N, and small T, more similar to cross-section data.

Subsection 2

Review the Theory

- Review the Theory
 - Fixed effects regression is a method for controlling for omitted variables in panel data when the omitted variables vary across entities (states) but do not change over time.
 - Specification :

$$Y_{it} = \beta_0 + \beta_1 X_{it} + \beta_2 Z_i + u_{it}$$
 (11.1)

• Because Z_i varies from one state to the next but is constant over time,then let $\alpha_i=\beta_0+\beta_2Z_i$,the Equation becomes

$$Y_{it} = \beta_1 X_{it} + \alpha_i + u_{it} \tag{11.2}$$

- This is the **fixed effects regression model**, in which α_i are treated as *unknown intercepts* to be estimated, one for each state. The interpretation of α_i as a *state-specific intercept* in Equation (11.2).
- ullet Arbitrarily omit the binary variable $D1_i$ for the first group. Accordingly, the fixed effects regression model in Equation (7.2) can be written equivalently as

$$Y_{it} = \beta_0 + \beta_1 X_{it} + \gamma_2 D2_i + \gamma_3 D3_i + \dots + \gamma_n Dn_i + u_{it}$$
 (7.3)

- Review the Theory
 - Estimation:

entity-demeaned:

$$\hat{\beta}_{demean} = \frac{\sum_{i=1}^{n} \sum_{t=1}^{T} \tilde{Y}_{it} \tilde{X}_{it}}{\sum_{i=1}^{n} \sum_{t=1}^{T} \tilde{X}_{it}^{2}}$$

first-difference estimator:

$$\hat{\beta}_{fd} = \frac{\sum_{i=1}^{n} \sum_{t=2}^{T} \Delta Y_{it} \Delta X_{it}}{\sum_{i=1}^{n} \sum_{t=2}^{T} \Delta X_{it}^{2}}$$

- Summary
 - ▶ FE 实质上就是在传统的线性回归模型中加入 N-1 个虚拟变量;
 - ▶ 使得每个截面都有自己的截距项,截距项的不同反映了个体的某些不随时间改变的特征;
 - ▶ 我们关注的是 X 的系数,而非每个截面的截距项。

Subsection 3

Examples for FE

- Examples for FE
 - ▶ unbalance —> balance

```
. use abond.dta, clear
. xtset id year
panel variable: id (unbalanced)
time variable: year, 1976 to 1984
delta: 1 unit
```

Examples for FE

unbalance —> balance

```
/*unbalanced*/
. xtdes
     id: 1, 2, ..., 140
   year: 1976, 1977, ..., 1984
                                                           T =
          Delta(year) = 1 unit
          Span(year) = 9 periods
          (id*year uniquely identifies each observation)
Distribution of T_i: min
    Freq.
           Percent
                      Cum.
                              Pattern
                     44.29
      62
             44.29
             27.86
                    72.14
             13.57
                    85.71
             10.00
                   95.71
             2.86
                     98.57
              1.43 100.00
     140
            100.00
                              XXXXXXXX
```

• Examples for FE

▶ unbalance —> balance

. sum	/*many mis	sing values*/			
Variable	0bs	Mean	Std. Dev.	Min	Max
c1					
ind	1,031	5.123181	2.678095		
year	1,031	1979.651	2.21607	1976	1984
emp	1,031	7.891677	15.93492	.104	108.562
wage	1,031	23.9188	5.648418	8.0171	45.2318
cap	1,031	2.507432	6.248712	.0119	47.1079
indoutpt	1,031	103.8012	9.938008	86.9	128.3653
'n	1,031	1.056002	1.341506	-2.263364	4.687321
w	1,031	3.142988	.2630081	2.081577	3.8118
k	1,031	4415775	1.514132	-4.431217	3.852441
ys	1,031	4.638015	.0939611	4.464758	4.85488
rec	1,031	516	297.7684	1	1031
yearm1	1,031	1979.644	2.213454	1976	1984
id	1,031	73.20369	41.23333	1	140
nL1	891	1.083518	1.338469	-2.095571	4.687321
nL2	751	1.107716	1.333478	-2.079442	4.687321
wL1	891	3.132166	.2639638	2.081577	3.8118
kL1	891	4131872	1.501461	-4.431217	3.852441
kL2	751	392113	1.486371	-4.431217	3.852441
ysL1	891	4.651039	.0923352	4.464758	4.85488

Examples for FE

▶ unbalance —> balance

```
. xtbalance, rang(1978 1982) miss(_all)
                                        /*written by arlion*/
(331 observations deleted due to out of range)
(62 observations deleted due to missing)
(238 observations deleted due to discontinues)
xtdes
      id: 5, 6, ..., 140
                                                                        80
   year: 1978, 1979, ..., 1982
           Delta(year) = 1 unit
           Span(year) = 5 periods
           (id*year uniquely identifies each observation)
Distribution of T_i:
                                      25%
                                                                  95%
    Freq. Percent
                      Cum.
                              Pattern
            100.00 100.00
            100.00
                               XXXXX
```

- Examples for FE
 - ▶ Data : Baum(2006)
 - 包含美国 48 个州 1982-1988 年交通死亡率相关变量:

```
fatal (交通死亡率)
beertax (啤酒税)
spircons (酒精消费量)
unrate (失业率)
perinck (人均收入, 千元)
state (州)
year (年)
```

- Examples for FE
 - ▶ Pooled OLS & Pooled OLS with Time (Wrong)

```
. use traffic, clear
. est clear
. eststo : qui reg fatal beertax
(est1 stored)
. eststo : qui reg fatal beertax i.year
(est2 stored)
. esttab, star(* .1 ** .05 * .01) ///
nogap nonumber replace ///
se(%5.4f) ar2
```

Examples for FE

▶ Pooled OLS & Pooled OLS with Time (Wrong)

	fatal	fatal
beertax	0.365*	0.366*
	(0.0622)	(0.0626)
1982.year		
1983.year		-0.0820
		(0.1117)
1984.year		-0.0717
		(0.1117)
1985.year		-0.111
		(0.1117)
1986.year		-0.0161
		(0.1117)
1987.year		-0.0155
		(0.1117)
1988.year		-0.00103
		(0.1117)
cons	1.853*	1.895*
	(0.0436)	(0.0857)
 N	336	336
adj. R-sq	0.091	0.079

- Examples for FE
 - ► Fixed effects regression

```
. xtset state year //设定state与year为面板(个体)变量及时间变量
      panel variable: state (strongly balanced)
       time variable: year, 1982 to 1988
               delta: 1 unit
ytdes
  state: 1, 4, ..., 56
                                                                    48
   vear: 1982, 1983, ..., 1988
                                                         T =
          Delta(year) = 1 unit
          Span(year) = 7 periods
          (state*year uniquely identifies each observation)
Distribution of T_i:
    Freq. Percent
                     Cum.
                             Pattern
      48
            100.00 100.00
      48
            100.00
```

• Examples for FE

► Fixed effects regression

Variable		Mean	Std. Dev.	Min	Max	Observ	ation
fatal	overall	2.040444	.5701938	.82121	4.21784	N =	336
	between		.5461407	1.110077	3.653197	n =	48
	within		.1794253	1.45556	2.962664	T =	
beertax	overall	.513256	.4778442	.0433109	2.720764	N =	33
	between		.4789513	.0481679	2.440507	n =	
	within		.0552203	. 1415352	.7935126	T =	
spircons	overall	1.75369	.6835745	.79	4.9	N =	33
	between		.6734649	.8614286	4.388572	n =	
	within		. 147792	1.255119	2.265119	T =	
unrate	overall	7.346726	2.533405	2.4	18	N =	33
	between		1.953377	4.1	13.2	n =	4
	within		1.634257	4.046726	12.14673	T =	
perinck	overall	13.88018	2.253046	9.513762	22.19345	N =	33
	between		2.122712	9.95087	19.51582	n =	
	within		.8068546	11.43261	16.55782	T =	
state	overall	30.1875	15.30985		56	N =	33
	between		15.44883		56	n =	
	within			30.1875	30.1875	T =	

- Examples for FE
 - ► Fixed effects regression

```
. xtline fatal if year==1982
. graph export fefig1.png,width(500) replace
(file fefig1.png written in PNG format)
```


Examples for FE

Fixed effects regression

```
. xtreg fatal beertax spircons unrate perinck, fe
Fixed-effects (within) regression
                                              Number of obs
                                                                         336
Group variable: state
                                              Number of groups =
                                              Obs per group:
R-sq:
     within = 0.3526
                                                            min =
    between = 0.1146
                                                            avg =
                                                                         7.0
    overall = 0.0863
                                                            may =
                                              F(4,284)
                                                                       38.68
corr(u_i, Xb) = -0.8804
                                              Prob > F
                                                                      0.0000
      fatal
                   Coef.
                           Std. Err.
                                              P>ltl
                                                        [95% Conf. Interval]
                           .1625106
                                                       -.8039508
    beertax
               -.4840728
                                       -2.98
                                              0.003
                                                                   -.1641948
                                     10.31
                                              0.000
                                                        .6610484
    spircons
                .8169652
                                                                   .9728819
               -.0290499
                           .0090274
                                     -3.22
                                              0.001
                                                       -.0468191
                                                                   -.0112808
      unrate
    perinck
                .1047103
                           .0205986
                                     5.08
                                              0.000
                                                       .064165
                                                                    .1452555
                           .4201781
                                     -0.91
                                              0.362
                                                       -1.210841
                                                                   .4432754
      cons
    sigma_u
               1.1181913
     sigma_e
               .15678965
                .98071823
                         (fraction of variance due to u i)
        rho
F test that all u i=0: F(47, 284) = 59.77
                                                           Prob > F = 0.0000
est store FE
```

Examples for FE

- Fixed effects regression
- clustered standard errors

```
. xtreg fatal beertax spircons unrate perinck, fe vce(cluster state)
Fixed-effects (within) regression
                                                 Number of obs
Group variable: state
                                                 Number of groups =
R-sq:
                                                 Obs per group:
     within = 0.3526
                                                               min =
     between = 0.1146
                                                                             7.0
                                                               avg =
     overall = 0.0863
                                                               may =
                                                 F(4.47)
                                                                           21 27
corr(u i, Xb) = -0.8804
                                                 Prob > F
                                                                          0.0000
                                  (Std. Err. adjusted for 48 clusters in state)
                             Robust
                            Std. Err.
                                                 P>ItI
                                                            [95% Conf. Interval]
       fatal
                    Coef.
                -.4840728
                             .2218754
                                         -2.18
                                                 0.034
                                                          -.9304285
     beertax
                             .1272627
                                                 0.000
    spircons
                                          6.42
                                                            .5609456
                                                                       1.072985
                                                          -.0480772
      unrate
                -.0290499
                            .0094581
                                         -3.07
                                                 0.004
                                                                       -.0100227
     perinck
                 .1047103
                             .0341455
                                        3.07
                                                 0.004
                                                            .0360184
                                                                        .1734022
                 -.383783
                            .7091738
                                         -0.54
                                                 0.591
                                                          -1.810457
                                                                       1.042891
       cons
     sigma_u
                1.1181913
     sigma e
                .15678965
                 .98071823
                            (fraction of variance due to u i)
         rho
```

Examples for FE

- ▶ Fixed effects regression
- ▶ Both Entity and Time Fixed Effects

```
. xtreg fatal beertax spircons unrate perinck i.year, fe vce(cluster state)
Fixed-effects (within) regression
                                                 Number of obs
                                                                              336
Group variable: state
                                                 Number of groups
                                                                               48
R-sq:
                                                 Obs per group:
     within = 0.4528
                                                                min =
     between = 0.1090
                                                                avg =
                                                                              7.0
     overall = 0.0770
                                                                max =
                                                 F(10,47)
                                                                            14.13
                                                 Prob > F
corr(u_i, Xb) = -0.8728
                                                                          0.0000
                                  (Std. Err. adjusted for 48 clusters in state)
                              Robust
       fatal
                             Std. Err.
                                                 P>|t|
                                                            [95% Conf. Interval]
                     Coef.
                             .2442775
                                         -1.78
                                                 0.082
                                                           -.9261425
                                                                        .0567036
     beertax
                -.4347195
    spircons
                   .805857
                             .1161087
                                         6.94
                                                 0.000
                                                            .5722764
                                                                        1.039438
                                                 0.000
      unrate
                -.0549084
                                         -4.67
                                                           -.0785725
                                                                       -.0312443
                                                 0.009
     perinck
                             .0322971
                                          2.73
       1983
                -.0533713
                             .0312438
                                         -1.71
                                                 0.094
                                                                        .0094831
                             .0439375
                                         -3.75
                                                 0.000
                                                           -.2533737
                                                                        -.076592
                -.1649828
       1985
                -.1997376
                             .0496167
                                         -4.03
                                                 0.000
                                                           -.2995535
                                                                       -.0999218
                -.0508034
                             .0661756
                                         -0.77
                                                 0.447
                                                                         .0823248
```

Examples for FE

► Fixed effects regression

	fatal	fatal	fatal
ertax	-0.484*	-0.484**	-0.435*
	(0.1625)	(0.2219)	(0.2443)
ircons	0.817*	0.817*	0.806*
	(0.0792)	(0.1273)	(0.1161)
rate	-0.0290*	-0.0290*	-0.0549*
	(0.0090)	(0.0095)	(0.0118)
inck	0.105*	0.105*	0.0883*
	(0.0206)	(0.0341)	(0.0323)
3.year			-0.0534*
			(0.0312)
4.year			-0.165*
			(0.0439)
5.year			-0.200*
			(0.0496)
6.year			-0.0508
			(0.0662)
7.year			-0.100
, , , , , , ,			(0.0757)
88.year			-0.134
o.ycur			(0.0864)
	-0.384	-0.384	0.129
ns	(0.4202)	(0.7092)	(0.6238)
	(0.4202)	(0.7092)	(0.0236)
	336	336	336
. R-sq	0.236	0.345	0.436

Section 2

DID in Stata

Subsection 1

Review the Theory

Review the Theory

DIFFERENCE in Differences Introduction

DID estimator

• The DID estimator is

$$\hat{\beta}_{DID} = (\bar{Y}_{treat,post} - \bar{Y}_{treat,pre}) - (\bar{Y}_{control,post} - \bar{Y}_{control,pre})$$

Zhaopeng Qu (Nanjing University) Lecture 11: Introduction to Panel Data 12/17/2020

83 / 162

Review the Theory

Difference in Differences

Card and Krueger(1994): Minimum Wage on Employment

Regression DD - Card and Krueger

• A 2×2 matrix table

		treat or control		
		NJ=0(control)	NJ=1(treat)	
	d=0(pre)	α	$\alpha + \gamma$	
pre or post	d=1(post)	$\alpha + \lambda$	$\alpha + \gamma + \lambda + \delta$	

Then DID estimator

$$\begin{split} \hat{\beta}_{DID} &= (\bar{Y}_{treat,post} - \bar{Y}_{treat,pre}) - \\ &\quad (\bar{Y}_{control,post} - \bar{Y}_{control,pre}) \\ &= (NJ_{post} - NJ_{pre}) - (PA_{post} - PA_{pre}) \\ &= [(\alpha + \gamma + \lambda + \delta) - (\alpha + \gamma)] - [(\alpha + \lambda) - \alpha] \\ &= \delta \end{split}$$

Zhaopeng Qu (Nanjing University)

Lecture 11: Introduction to Panel Data

12/17/2020

- Review the Theory
 - Specification :

$$Y_{ist} = \alpha + \beta D_{st} + \gamma Treat_s + \delta Post_t + \Gamma X_{ist}' + u_{ist}$$

- Where D_{st} means $(Treat \times Post)_{st}$
- Using Fixed Effect Models further to transform into

$$Y_{ist} = \beta D_{st} + \alpha_s + \delta_t + \Gamma X'_{ist} + u_{ist}$$

- α_s is a set of groups fixed effects, which captures $Treat_s$.
- δ_t is a set of time fixed effects, which captures $Post_t$.

Subsection 2

Examples for DID

- Examples for DID
 - Data:

历史上 A、B、C、D、E、F、G 这 7 个地区非常相似 然而 1994 年后 E、F 和 G 三个地区 (treatment group) 颁布了一项政策 其余 4 个地区 (control group) 没有。

. use did, clear

Examples for DID

- . * 假设政策执行时间为1994年,设置虚拟变量
- . gen time = (year>=1994) & !missing(year)
- . * 假设政策执行地为大于4的地方,设置虚拟变量
- . gen treated = (country>4) & !missing(country)
- . * 构建DID估计量,即时间和空间的交互项
- . gen did = time*treated

Examples for DID

```
. * DID <方法一>
. * 显然在10%水平上,政策实施有显著的负效应
. reg y did time treated, r
Linear regression
                                            Number of obs
                                            F(3, 66)
                                            Prob > F
                                            R-squared
                                            Root MSE
                           Robust
                  Coef.
                          Std. Err.
                                            P>ltl
                                                      [95% Conf. Interval]
```

1.45e+09

9.00e+08

1.05e+09

7.61e+08

did

time

_cons

treated

-2.52e+09

2.29e+09

1.78e+09

3.58e+08

-1.73

2.54

0.47

1.70

0.088

0.013

0.094

0.640

-5.42e+09

4.92e+08

-3.11e+08

-1.16e+09

2.17

0.0998

0.0827

3.81e+08

4.09e+09

3.86e+09

1.88e+09

3.0e+09

^{. *} DID <方法二>

[.] qui reg y time##treated, r

Examples for DID

```
. * DID <方法 三>
. * 与前两种方法结果一样
. *ssc install diff
 diff y, t(treated) p(time)
DIFFERENCE-IN-DIFFERENCES ESTIMATION RESULTS
Number of observations in the DIFF-IN-DIFF: 70
            Before
                           After
   Control: 16
                           24
                                       40
   Treated:
                                                 P>ltl
 Outcome var.
                            S. Err.
Refore
                   3.6e+08
   Control
                   2.1e+09
   Treated
   Diff (T-C)
                   1.8e+09
                             1.1e+09 1.58
                                                0.120
After
   Control
                   2.6e+09
                   1.9e+09
   Treated
   Diff (T-C)
                  -7.4e+08
                             9.2e+08
                                      0.81
                                                0.422
Diff-in-Diff
                  -2.5e+09
                             1.5e+09 1.73
                                                0.088*
            0.08
R-square:
* Means and Standard Errors are estimated by linear regression
**Inference: *** p<0.01; ** p<0.05; * p<0.1
```

- Examples for DID
 - Test Paralled Trend

只有当地区在政策前足够相似才能够保证 DID 提取的是政策的因果效应;

因此, 需要知道两组地区在政策前有多大差异;

生成年份虚拟变量 × 实验组虚拟变量的交互项, 捕捉两组地区在每一年份的差异;

如果两组地区的确有 Paralled Trend,那么预期在 1994 年前的那些交互项的回归结果将不显著,而 1994 年后的将显著。

- Examples for DID
 - Test Paralled Trend

```
*生成年份虚拟变量与实验组虚拟变量的交互项(此处选在政策前后各3年)
. gen Dyear = year-1994
. gen Before3 = (Dyear==-3 & treated==1)
. gen Before2 = (Dyear==-2 & treated==1)
. gen Before1 = (Dyear==-1 & treated==1)
. gen Current = (Dyear==0 & treated==1)
. gen After1 = (Dyear==1 & treated==1)
. gen After2 = (Dyear==2 & treated==1)
. gen After3 = (Dyear==3 & treated==1)
```

Examples for DID

▶ Test Paralled Trend

```
. * 将以上交互项作为解释变量进行回归
. * 可以看出Before3 Before2 Before1 的系数均不显著, After1的系数负向显著
. xtreg y time treated Before3 Before2 Before1 Current After1 After2 After3 i.year,
note: treated omitted because of collinearity
note: 1999.year omitted because of collinearity
Fixed-effects (within) regression
                                              Number of obs
                                                                         70
Group variable: country
                                              Number of groups =
R-sq:
                                              Obs per group:
    within = 0.3885
                                                            min =
    between = 0.0116
                                                                       10.0
                                                            avg =
    overall = 0.3040
                                                           max =
                                              F(16,47)
                                                                       1.87
corr(u i, Xb) = -0.0654
                                              Prob > F
                                                                     0.0497
                   Coef.
                          Std. Err.
                                              P>ltl
                                                        [95% Conf. Interval]
                1.62e+09
                          1.40e+09
                                       1.16
                                              0.250
                                                       -1.18e+09
                                                                   4.43e+09
       time
    treated
                       0 (omitted)
    Refore3
                5.26e+08
                          2.30e+09
                                       0.23
                                              0.820
                                                       -4.10e+09
                                                                   5.16e+09
                          2.30e+09
                                       0.84
                                              0.404
                                                       -2.69e+09
                                                                   6.57e+09
    Before2
                1.94e+09
    Before1
               -4.53e+08
                          2.30e+09
                                      -0.20
                                             0.845
                                                       -5.08e+09
                                                                   4.18e+09
               -8.06e+08
                          2.30e+09
                                      -0.35
                                             0.728
                                                       -5.44e+09
                                                                   3.82e+09
    Current
     After1
               -7.15e+09
                          2.30e+09
                                      -3.10
                                              0.003
                                                       -1.18e+10
                                                                  -2.52e+09
     After2
               -9.04e+08
                          2.30e+09
                                      -0.39
                                              0.696
                                                       -5.54e+09
                                                                   3.73e + 09
                                                       -4.31e+09
     After3
                3.21e+08
                           2.30e+09
                                       0.14
                                              0.890
                                                                   4.95e+09
```

- Examples for DID
 - Test Paralled Trend
 - ▶ -coefplot-图示

```
. * keep(): 保留关键变量
. * vertical: 转置
. * recast(connect): 系数连线,观察动态效果:
. * yline(0): 增加直线y=0

. coefplot reg, keep(Before3 Before2 Before1 Current After1 After2 After3) ///
    vertical recast(connect) scheme(s1mono) msymbol(circle_hollow) ///
    yline(0, lwidth(vthin) lpattern(dash) lcolor(teal)) ///
    xline(4, lwidth(vthin) lpattern(dash) lcolor(teal)) ///
    ciopts(lpattern(dash) recast(rcap) msize(medium))

. graph export did.png,width(500) replace
    (note: file did.png not found)
    (file did.png written in PNG format)
```

- Examples for DID
 - Test Paralled Trend
 - ▶ -coefplot-图示

发现系数在政策前在 0 附近波动,而政策后一年系数显著为负,但很快又回到 0 附近;说明 treatment group 和 control group 可以进行比较,而政策效果可能出现在颁布后一年,随后又很快消失。

