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Review the previous lecture

Causal Inference and RCT

Causality is our main goal in the studies of empirical social science.
The existence of selection bias makes social science more difficult
than science.
Although RCTs is a powerful tool for economists, every project or
topic can NOT be carried on by it.
This is the reason why modern econometrics exists and develops. The
main job of econometrics is using non-experimental data to making
convincing causal inference.
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Review the previous lecture

Furious Seven Weapons（七种武器）

To build a reasonable counterfactual world or to find a proper control
group is the core of econometric methods.

1 Random Trials(随机试验)
2 Regression(回归)
3 Matching and Propensity Score（匹配与倾向得分）
4 Decomposition（分解）
5 Instrumental Variable（工具变量）
6 Regression Discontinuity（断点回归）
7 Panel Data and Difference in Differences （双差分或倍差法)

The most basic of these tools is regression, which compares
treatment and control subjects who have the same observable
characteristics.
Regression concepts are foundational, paving the way for the more
elaborate tools used in the class that follow.
Let’s start our exciting journey from it.
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Make Comparison Make Sense

Case: Smoke and Mortality

Criticisms from Ronald A. Fisher
No experimental evidence to incriminate smoking as a cause of lung
cancer or other serious disease.
Correlation between smoking and mortality may be spurious due to
biased selection of subjects.

Z

MS

Confounder, Z, creates backdoor path between smoking and
mortality
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Make Comparison Make Sense

Case: Smoke and Mortality(Cochran 1968)

Table 1: Death rates(死亡率) per 1,000 person-years

Smoking group Canada U.K. U.S.
Non-smokers(不吸烟) 20.2 11.3 13.5
Cigarettes(香烟) 20.5 14.1 13.5
Cigars/pipes(雪茄/烟斗) 35.5 20.7 17.4

It seems that taking cigars is more hazardous to the health?
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Make Comparison Make Sense

Case: Smoke and Mortality(Cochran 1968)

Table 2: Non-smokers and smokers differ in age

Smoking group Canada U.K. U.S.
Non-smokers(不吸烟) 54.9 49.1 57.0
Cigarettes(香烟) 50.5 49.8 53.2
Cigars/pipes(雪茄/烟斗) 65.9 55.7 59.7

Older people die at a higher rate, and for reasons other than just
smoking cigars.
Maybe cigar smokers higher observed death rates is because they’re
older on average.
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Make Comparison Make Sense

Case: Smoke and Mortality(Cochran 1968)

The problem is that the age are not balanced, thus their mean values
differ for treatment and control group.
let’s try to balance them, which means to compare mortality rates
across the different smoking groups within age groups so as to
neutralize age imbalances in the observed sample.
It naturally relates to the concept of Conditional Expectation
Function.
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Make Comparison Make Sense

Case: Smoke and Mortality(Cochran 1968)

How to balance?

1 Divide the smoking group samples into age groups.
2 For each of the smoking group samples, calculate the mortality rates

for the age group.
3 Construct probability weights for each age group as the proportion of

the sample with a given age.
4 Compute the weighted averages of the age groups mortality rates

for each smoking group using the probability weights.
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Make Comparison Make Sense

Case: Smoke and Mortality(Cochran 1968)

Death rates Number of
Pipe-smokers Pipe-smokers Non-smokers

Age 20-50 0.15 11 29
Age 50-70 0.35 13 9
Age +70 0.5 16 2
Total 40 40

Question: What is the average death rate for pipe smokers?

0.15 ·
(11

40

)
+ 0.35 ·

(13
40

)
+ 0.5 ·

(16
40

)
= 0.355
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Make Comparison Make Sense

Case: Smoke and Mortality(Cochran 1968)

Death rates Number of
Pipe-smokers Pipe-smokers Non-smokers

Age 20-50 0.15 11 29
Age 50-70 0.35 13 9
Age +70 0.5 16 2
Total 40 40

Question: What would the average mortality rate be for pipe
smokers if they had the same age distribution as the non-smokers?
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Make Comparison Make Sense

Case: Smoke and Mortality(Cochran 1968)

Table 3: Non-smokers and smokers differ in mortality and age

Smoking group Canada U.K. U.S.
Non-smokers(不吸烟) 20.2 11.3 13.5
Cigarettes(香烟) 28.3 12.8 17.7
Cigars/pipes(雪茄/烟斗) 21.2 12.0 14.2

Conclusion: It seems that taking cigarettes is most hazardous, and
taking pipes is not different from non-smoking.
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Make Comparison Make Sense

Formalization: Covariates

Definition: Covariates
Variable X is predetermined with respect to the treatment D if for each
individual i, X0

i = X1
i , i.e., the value of Xi does not depend on the value of

Di. Such characteristics are called covariates.

Covariates are often time invariant (e.g., sex, race), but time
invariance is not a necessary condition.
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Make Comparison Make Sense

Identification under independence

Recall that randomization in RCTs implies

(Y0, Y1) ⊥⊥ D

and therefore:

E[Y|D = 1] − E[Y|D = 0] = E[Y1|D = 1] − E[Y0|D = 0]︸ ︷︷ ︸
by the switching equation

= E[Y1|D = 1] − E[Y0|D = 1]︸ ︷︷ ︸
by independence

= E[Y1 − Y0|D = 1]︸ ︷︷ ︸
ATT

= E[Y1 − Y0]︸ ︷︷ ︸
ATE
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Make Comparison Make Sense

Identification under Conditional Independence

Conditional Independence Assumption(CIA)
which means that if we can ”balance” covariates X then we can take the
treatment D as randomized, thus

(Y1, Y0) ⊥⊥ D|X

Now as (Y1, Y0) ⊥⊥ D|X < (Y1, Y0) ⊥⊥ D,

E[Y1|D = 1] − E[Y0|D = 0] ̸= E[Y1|D = 1] − E[Y0|D = 1]
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Make Comparison Make Sense

Identification under conditional independence(CIA)

But using the CIA assumption, then

E[Y1|D = 1] − E[Y0|D = 0]︸ ︷︷ ︸
association

= E[Y1|D = 1, X] − E[Y0|D = 0, X]︸ ︷︷ ︸
conditional on covariates

= E[Y1|D = 1, X] − E[Y0|D = 1, X]︸ ︷︷ ︸
conditional independence

= E[Y1 − Y0|D = 1, X]︸ ︷︷ ︸
conditional ATT

= E[Y1 − Y0|X]︸ ︷︷ ︸
conditional ATE

Zhaopeng Qu ( NJU ) Lecture 2: Regression October 08 2021 17 / 190



Make Comparison Make Sense

Identification under conditional independence(CIA)

But using the CIA assumption, then

E[Y1|D = 1] − E[Y0|D = 0]︸ ︷︷ ︸
association

= E[Y1|D = 1, X] − E[Y0|D = 0, X]︸ ︷︷ ︸
conditional on covariates

= E[Y1|D = 1, X] − E[Y0|D = 1, X]︸ ︷︷ ︸
conditional independence

= E[Y1 − Y0|D = 1, X]︸ ︷︷ ︸
conditional ATT

= E[Y1 − Y0|X]︸ ︷︷ ︸
conditional ATE

Zhaopeng Qu ( NJU ) Lecture 2: Regression October 08 2021 17 / 190



Make Comparison Make Sense

Identification under conditional independence(CIA)

But using the CIA assumption, then

E[Y1|D = 1] − E[Y0|D = 0]︸ ︷︷ ︸
association

= E[Y1|D = 1, X] − E[Y0|D = 0, X]︸ ︷︷ ︸
conditional on covariates

= E[Y1|D = 1, X] − E[Y0|D = 1, X]︸ ︷︷ ︸
conditional independence

= E[Y1 − Y0|D = 1, X]︸ ︷︷ ︸
conditional ATT

= E[Y1 − Y0|X]︸ ︷︷ ︸
conditional ATE

Zhaopeng Qu ( NJU ) Lecture 2: Regression October 08 2021 17 / 190



Make Comparison Make Sense

Identification under conditional independence(CIA)

But using the CIA assumption, then

E[Y1|D = 1] − E[Y0|D = 0]︸ ︷︷ ︸
association

= E[Y1|D = 1, X] − E[Y0|D = 0, X]︸ ︷︷ ︸
conditional on covariates

= E[Y1|D = 1, X] − E[Y0|D = 1, X]︸ ︷︷ ︸
conditional independence

= E[Y1 − Y0|D = 1, X]︸ ︷︷ ︸
conditional ATT

= E[Y1 − Y0|X]︸ ︷︷ ︸
conditional ATE

Zhaopeng Qu ( NJU ) Lecture 2: Regression October 08 2021 17 / 190



Make Comparison Make Sense

Curse of Multiple Dimensionality

Sub-classification in one or two dimensions as Cochran(1968) did in
the case of Smoke and Mortality is feasible.
But as the number of covariates we would like to balance grows(like
many personal characteristics such as age, gender,education,working
experience,married,industries,income,…), then method become less
feasible.
Assume we have k covariates and we divide each into 3 coarse
categories (e.g., age: young, middle age, old; income: low,medium,
high, etc.)
The number of cells(or groups)is 3K.

If k = 10 then 310 = 59049
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Make Comparison Make Sense

Make Comparison Make Sense

Selection on Observables
Regression
Matching

Selection on Unobservables
IV,RD,DID,FE and SCM.

The most basic of these tools is regression, which compares
treatment and control subjects who have the same observable
characteristics.
Regression concepts is foundational, paving the way for the more
elaborate tools used in the class that follow.
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Simple OLS Regression

Simple OLS Regression

Zhaopeng Qu ( NJU ) Lecture 2: Regression October 08 2021 20 / 190



Simple OLS Regression

Question: Class Size and Student’s Performance

Specific Question:
What is the effect on district test scores if we would increase district
average class size by 1 student (or one unit of Student-Teacher’s
Ratio)
If we could know the full relationship between two variables which can
be summarized by a real value function,f()

Testscore = f(ClassSize)

Unfortunately, the function form is always unknown.
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Simple OLS Regression

Question: Class Size and Student’s Performance

Two basic methods to describe the function.
non-parametric: we don’t care the specific form of the function,
unless we know all the values of two variables, which actually are the
whole distributions of class size and test scores.
parametric: we have to suppose the basic form of the function, then
to find values of some unknown parameters to determine the specific
function form.

Both methods need to use samples to inference populations in our
random and unknown world.
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Simple OLS Regression

Question: Class Size and Student’s Performance

Suppose we choose parametric method, then we just need to know
the real value of a parameter β1 to describe the relationship between
Class Size and Test Scores

β1 = ∆Testscore
∆ClassSize

Next step, we have to suppose specific forms of the functionf(), still
two categories: linear and non-linear
And we start to use a simplest function form: a linear equation,
which is graphically a straight line, to summarize the relationship
between two variables.

Test score = β0 + β1 × Class size

where β1 is actually the the slope and β0 is the intercept of the
straight line.

Zhaopeng Qu ( NJU ) Lecture 2: Regression October 08 2021 23 / 190



Simple OLS Regression

Class Size and Student’s Performance

BUT the average test score in district i does not only depend on the
average class size
It also depends on other factors such as

Student background
Quality of the teachers
School’s facilitates
Quality of text books
Random deviation……

So the equation describing the linear relation between Test score and
Class size is better written as

Test scorei = β0 + β1 × Class sizei + ui

where ui lumps together all other factors that affect average test
scores.
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Simple OLS Regression

Terminology for Simple Regression Model

The linear regression model with one regressor is denoted by

Yi = β0 + β1Xi + ui

Where
Yi is the dependent variable(Test Score)
Xi is the independent variable or regressor(Class Size or
Student-Teacher Ratio)
β0 + β1Xi is the population regression line or the population
regression function
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Simple OLS Regression

Population Regression: relationship in average

The linear regression model with one regressor is denoted by

Yi = β0 + β1Xi + ui

Both side to conditional on X, then

E[Yi|Xi] = β0 + β1Xi + E[ui|Xi]

Suppose E[ui|Xi] = 0 then

E[Yi|Xi] = β0 + β1Xi

Population regression function is the relationship that holds between
Y and X on average over the population.
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Simple OLS Regression

Terminology for Simple Regression Model

The intercept β0 and the slope β1 are the coefficients of the
population regression line, also known as the parameters of the
population regression line.
ui is the error term which contains all the other factors besides X
that determine the value of the dependent variable, Y, for a specific
observation, i.
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Simple OLS Regression

Graphics for Simple Regression Model
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Simple OLS Regression

How to find the “best” fitting line?
In general we don’t know β0 and β1 which are parameters of
population regression function.We have to calculate them using a
bunch of data: the sample.

So how to find the line that fits the data best?
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Simple OLS Regression

The Ordinary Least Squares Estimator (OLS)

The OLS estimator

Chooses the best regression coefficients so that the estimated
regression line is as close as possible to the observed data, where
closeness is measured by the sum of the squared mistakes made in
predicting Y given X.
Let b0 and b1 be estimators of β0 and β1,thus b0 ≡ β̂0,b1 ≡ β̂1

The predicted value of Yi given Xi using these estimators is b0 + b1Xi,
or β̂0 + β̂1Xi formally denotes as Ŷi
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Simple OLS Regression

The Ordinary Least Squares Estimator (OLS)

The Simple OLS estimator

The prediction mistake is the difference between Yi and Ŷi,which
denotes as ûi

ûi = Yi − Ŷi = Yi − (b0 + b1Xi)

The estimators of the slope and intercept that minimize the sum of
the squares of ûi,thus

arg min
b0,b1

n∑
i=1

û2
i = min

b0,b1

n∑
i=1

(Yi − b0 − b1Xi)2

are called the ordinary least squares (OLS) estimators of β0 and
β1.
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Simple OLS Regression

The Ordinary Least Squares Estimator (OLS)

The Simple OLS estimator

OLS estimator of β1 and β0:

b1 = β̂1 =
∑n

i=1(Xi − X)(Yi − Y)∑n
i=1(Xi − X)(Xi − X)

b0 = β̂0 = Y − b1X
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Simple OLS Regression

Assumption of the Linear regression model

In order to investigate the statistical properties of OLS, we need to
make some statistical assumptions

Linear Regression Model
The observations, (Yi, Xi) come from a random sample(i.i.d) and satisfy
the linear regression equation,

Yi = β0 + β1Xi + ui

and E[ui | Xi] = 0
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Simple OLS Regression

Assumption 1: Conditional Mean is Zero

Assumption 1: Zero conditional mean of the errors given X
The error,ui has expected value of 0 given any value of the independent
variable

E[ui | Xi = x] = 0

An weaker condition that ui and Xi are uncorrelated:

Cov[ui, Xi] = E[uiXi] = 0

if both are correlated, then Assumption 1 is violated.
Equivalently, the population regression line is the conditional mean of
Yi given Xi , thus

E[Yi|Xi] = β0 + β1Xi
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Simple OLS Regression

Assumption 1: Conditional Mean is Zero

Zhaopeng Qu ( NJU ) Lecture 2: Regression October 08 2021 35 / 190



Simple OLS Regression

Assumption 2: Random Sample

Assumption 2: Random Sample
We have a i.i.d random sample of size , {(Xi, Yi), i = 1, ..., n} from the
population regression model above.

This is an implication of random sampling. Then we have such as

Cov(Xi, Xj) = 0
Cov(Yi, Xj) = 0
Cov(ui, Xj) = 0

And it generally won’t hold in other data structures.
time-series, cluster samples and spatial data.
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Simple OLS Regression

Assumption 3: Large outliers are unlikely

Assumption 3: Large outliers are unlikely
It states that observations with values of Xi, Yi or both that are far
outside the usual range of the data(Outlier) are unlikely. Mathematically,
it assume that X and Y have nonzero finite fourth moments.

Large outliers can make OLS regression results misleading.
One source of large outliers is data entry errors, such as a
typographical error or incorrectly using different units for different
observations.
Data entry errors aside, the assumption of finite kurtosis is a plausible
one in many applications with economic data.
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Simple OLS Regression

Assumption 3: Large outliers are unlikely
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Simple OLS Regression

Least Squares Assumptions

1 Assumption 1: Conditional Mean is Zero
2 Assumption 2: Random Sample
3 Assumption 3: Large outliers are unlikely

If the 3 least squares assumptions hold the OLS estimators will be
unbiased
consistent
normal sampling distribution
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Simple OLS Regression

Properties of the OLS estimator: Consistency

Notation: β̂1
p−→ β1 or plimβ̂1 = β1, so

plimβ̂1 = plim
[∑(Xi − X̄)(Yi − Ȳ)∑

(Xi − X̄)(Xi − X̄)

]

Then we could obtain

plimβ̂1 = plim
[ 1

n−1
∑

(Xi − X̄)(Yi − Ȳ)
1

n−1
∑

(Xi − X̄)(Xi − X̄)

]
= plim

(sxy
s2x

)

where sxy and s2
x are sample covariance and sample variance.
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Simple OLS Regression

Properties of the OLS estimator: Continuous Mapping
Theorem

Continuous Mapping Theorem: For every continuous function g(t)
and random variable X:

plim(g(X)) = g(plim(X))

Example:
plim(X + Y) = plim(X) + plim(Y)

plim(X
Y) = plim(X)

plim(Y) if plim(Y) ̸= 0
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Simple OLS Regression

Properties of the OLS estimator: Consistency

Base on L.L.N(the law of large numbers) and random sample(i.i.d)

s2
X

p−→= σ2
X = Var(X)

sxy
p−→ σXY = Cov(X, Y)

Combining with Continuous Mapping Theorem,then we obtain the
OLS estimator β̂1,when n −→ ∞

plimβ̂1 = plim
(sxy

s2x

)
= Cov(Xi, Yi)

Var(Xi)
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Simple OLS Regression

Properties of the OLS estimator: Consistency

plimβ̂1 = Cov(Xi, Yi)
Var(Xi)

= Cov(Xi, (β0 + β1Xi + ui))
Var(Xi)

= Cov(Xi, β0) + β1Cov(Xi, Xi) + Cov(Xi, ui)
Var(Xi)

= β1 + Cov(Xi, ui)
Var(Xi)

Then we could obtain

plimβ̂1 = β1 if E[ui|Xi] = 0
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Simple OLS Regression

Wrap Up: Unbiasedness vs Consistency

Unbiasedness & Consistency both rely on E[ui|Xi] = 0
Unbiasedness implies that E

[
β̂1
]

= β1 for a certain sample size
n.(“small sample”)
Consistency implies that the distribution of β̂1 becomes more and
more _tightly distributed around β1 if the sample size n becomes
larger and larger.(“large sample””)
Additionally,you could prove that β̂0 is likewise Unbiased and
Consistent on the condition of Assumption 1.
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Simple OLS Regression

Sampling Distribution of β̂0 and β̂1: Recalll of Y

Firstly, Let’s recall: Sampling Distribution of Y
Because Y1, ..., Yn are i.i.d., then we have

E(Y) = µY

Based on the Central Limit theorem(C.L.T), the sample distribution
in a large sample can approximates to a normal distribution, thus

Y ∼ N(µY,
σ2

Y
n )

The OLS estimators β̂0 and β̂1 could have similar sample distributions
when three least squares assumptions hold.
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Simple OLS Regression

Sampling Distribution of β̂0 and β̂1: Expectation
Unbiasedness of the OLS estimators implies that

E
[
β̂1
]

= β1 and E
[
β̂0
]

= β0

Likewise as Ȳ,the sample distribution of β1 in a large sample can also
approximates to a normal distribution based on the Central Limit
theorem(C.L.T), thus

β̂1 ∼ N(β1, σ2
β̂1

)

β̂0 ∼ N(β0, σ2
β̂0

)

Where it can be shown that

σ2
β̂1

= 1
n

Var[(Xi − µx)ui]
[Var(Xi)]2

)

σ2
β̂0

= 1
n

Var(Hiui)
(E[H2

i ])2 )
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Simple OLS Regression

Sampling Distribution β̂1 in large-sample

We have shown that

σ2
β̂1

= 1
n

Var[(Xi − µx)ui]
[Var(Xi)]2

)

An intuition：The variation of Xi is very important.
Because if Var(Xi) is small, it is difficult to obtain an accurate estimate
of the effect of X on Y which implies that Var(β̂1) is large.
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Simple OLS Regression

Variation of X

When more variation in Xi, then there is more information in the
data that you can use to fit the regression line.
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Simple OLS Regression

In a Summary

Under 3 least squares assumptions, the OLS estimators will be

unbiased
consistent
normal sampling distribution
more variation in X, more accurate estimation
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Multiple OLS Regression

Multiple OLS Regression
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Multiple OLS Regression

Violation of the first Least Squares Assumption

Recall simple OLS regression equation

Yi = β0 + β1Xi + ui

Question: What does ui represent?
Answer: contains all other factors(variables) which potentially affect
Yi.

Assumption 1
E(ui|Xi) = 0

It states that ui are unrelated to Xi in the sense that,given a value of
Xi,the mean of these other factors equals zero.
But what if they (or at least one) are correlated with Xi?
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Multiple OLS Regression

Example: Class Size and Test Score

Many other factors can affect student’s performance in the school.
One of factors is the share of immigrants in the class(school,
district). Because immigrant children may have different backgrounds
from native children, such as

parents’ education level
family income and wealth
parenting style
traditional culture
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Multiple OLS Regression

Scatter Plot: English learners and STR
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Multiple OLS Regression

Scatter Plot: English learners and testscr
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Multiple OLS Regression

English learner as an Omitted Variable

Class size may be related to percentage of English learners and
students who are still learning English likely have lower test scores.
It implies that percentage of English learners is contained in ui, in
turn that Assumption 1 is violated.
It means that the estimates of β̂1 and β̂0 are biased and
inconsistent.
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Multiple OLS Regression

English Learners as an Omitted Variable

As before, Xi and Yi represent STR and Test Score.
Besides, Wi is the variable which represents the share of English
learners.
Suppose that we have no information about it for some reasons, then
we have to omit in the regression.
Then we have two regression:

True model(Long regression):

Yi = β0 + β1Xi + γWi + ui

where E(ui|Xi, Wi) = 0
OVB model(Short regression):

Yi = β0 + β1Xi + vi

where vi = γWi + ui
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Multiple OLS Regression

Omitted Variable Bias: Biasedness

Let us see what is the consequence of OVB

E[β̂1] = E
[∑(Xi − X̄)(β0 + β1Xi + vi − (β0 + β1X + v))∑

(Xi − X̄)(Xi − X̄)

]

= E
[∑(Xi − X̄)(β0 + β1Xi + γWi + ui − (β0 + β1X + γW + u))∑

(Xi − X̄)(Xi − X̄)

]
Skip Several steps in algebra which is very similar to procedures for
proving unbiasedness of β
At last, we get (Please prove it by yourself)

E[β̂1] = β1 + γE
[∑(Xi − X̄)(Wi − W̄)∑

(Xi − X̄)(Xi − X̄)

]
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Multiple OLS Regression

Omitted Variable Bias(OVB): inconsistency

Recall: consistency when n is large, thus
OLS with on OVB

plimβ̂1 = Cov(Xi, Yi)
Var(Xi)
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Multiple OLS Regression

Omitted Variable Bias(OVB): inconsistency

plimβ̂1 = Cov(Xi, Yi)
VarXi

= Cov(Xi, (β0 + β1Xi + vi))
VarXi

= Cov(Xi, (β0 + β1Xi + γWi + ui))
VarXi

= Cov(Xi, β0) + β1Cov(Xi, Xi) + γCov(Xi, Wi) + Cov(Xi, ui)
VarXi

= β1 + γ
Cov(Xi, Wi)

VarXi
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Multiple OLS Regression
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Multiple OLS Regression

Omitted Variable Bias(OVB): inconsistency

Thus we obtain
plimβ̂1 = β1 + γ

Cov(Xi, Wi)
VarXi

β̂1 is still consistent
if Wi is unrelated to X, thus Cov(Xi, Wi) = 0
if Wi has no effect on Yi, thus γ = 0

if both two conditions above hold simultaneously, then β̂1 is
inconsistent.
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Multiple OLS Regression

Omitted Variable Bias(OVB):Directions

If OVB can be possible in our regression,then we should guess the
directions of the bias, in case that we can’t eliminate it.

Summary of the bias when wi is omitted in estimating equation

Cov(Xi, Wi) > 0 Cov(Xi, Wi) < 0
γ > 0 Positive bias Negative bias
γ < 0 Negative bias Positive bias
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Multiple OLS Regression

Omitted Variable Bias: Examples

Question: If we omit following variables, then what are the directions
of these biases? and why?

1 Time of day of the test
2 Parking lot space per pupil
3 Teachers’ Salary
4 Family income
5 Percentage of English learners
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Multiple OLS Regression

Omitted Variable Bias: Examples
Regress Testscore on Class size

#>
#> Call:
#> lm(formula = testscr ~ str, data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -47.727 -14.251 0.483 12.822 48.540
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 698.9330 9.4675 73.825 < 2e-16 ***
#> str -2.2798 0.4798 -4.751 2.78e-06 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 18.58 on 418 degrees of freedom
#> Multiple R-squared: 0.05124, Adjusted R-squared: 0.04897
#> F-statistic: 22.58 on 1 and 418 DF, p-value: 2.783e-06
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Multiple OLS Regression

Omitted Variable Bias: Examples
Regress Testscore on Class size and the percentage of English learners

#>
#> Call:
#> lm(formula = testscr ~ str + el_pct, data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -48.845 -10.240 -0.308 9.815 43.461
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
#> str -1.10130 0.38028 -2.896 0.00398 **
#> el_pct -0.64978 0.03934 -16.516 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 14.46 on 417 degrees of freedom
#> Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
#> F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16
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Multiple OLS Regression

Omitted Variable Bias: Examples

Table 5: Class Size and Test Score

Dependent variable:
testscr

(1) (2)
str −2.280∗∗∗ −1.101∗∗∗

(0.480) (0.380)
el_pct −0.650∗∗∗

(0.039)
Constant 698.933∗∗∗ 686.032∗∗∗

(9.467) (7.411)
Observations 420 420
R2 0.051 0.426

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Multiple OLS Regression

Warp Up

OVB bias is the most possible bias when we run OLS regression using
nonexperimental data.
The simplest way to overcome OVB: control them, which means
putting them into the regression model.
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Multiple OLS Regression

Multiple regression model with k regressors

The multiple regression model is

Yi = β0 + β1X1,i + β2X2,i + ... + βkXk,i + ui, i = 1, ..., n

where

Yi is the dependent variable
X1, X2, ...Xk are the independent variables(includes some control
variables)
βi, j = 1...k are slope coefficients on Xi corresponding.
β0 is the estimate intercept, the value of Y when all Xj = 0, j = 1...k
ui is the regression error term.
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Multiple OLS Regression

Interpretation of coefficients

βj is partial (marginal) effect of Xj on Y.

βj = ∂Yi
∂Xj,i

βj is also partial (marginal) effect of E
[
Yi|X1..Xk

]
.

βj = ∂E[Yi|X1, ..., Xk]
∂Xj,i

it does mean “other things equal”, thus the concept of ceteris
paribus

Zhaopeng Qu ( NJU ) Lecture 2: Regression October 08 2021 68 / 190



Multiple OLS Regression

Independent Variable v.s Control Variables

Generally, we would like to pay more attention to only one
independent variable(thus we would like to call it treatment
variable), though there could be many independent variables.
Other variables in the right hand of equation, we call them control
variables, which we would like to explicitly hold fixed when studying
the effect of X1 on Y.
More specifically,regression model turns into

Yi = β0 + β1Di + γ2C2,i + ... + γkCk,i + ui, i = 1, ..., n

transform it into

Yi = β0 + β1Di + C2...k,iγ
′
2...k + ui, i = 1, ..., n
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Multiple OLS Regression

OLS Estimation in Multiple Regressors

As in simple OLS, the estimator multiple Regression is just a
minimize the following question

argmin
∑

b0,b1,...,bk

(Yi − b0 − b1X1,i − ... − bkXk,i)2
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Multiple OLS Regression

OLS Estimation in Multiple Regressors

The OLS estimators β̂0, β̂1, ..., β̂k are obtained by solving the
following system of normal equations

∑(
Yi − β̂0 − β̂1X1,i − ... − β̂kXk,i

)
= 0

∑(
Yi − β̂0 − β̂1X1,i − ... − β̂kXk,i

)
X1,i = 0

... =
...∑(

Yi − β̂0 − β̂1X1,i − ... − β̂kXk,i

)
Xk,i = 0
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Multiple OLS Regression

OLS Estimation in Multiple Regressors

Since the fitted residuals are

ûi = Yi − β̂0 − β̂1X1,i − ... − β̂kXk,i

the normal equations can be written as∑
ûi = 0∑

ûiX1,i = 0
... =

...∑
ûiXk,i = 0
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Multiple OLS Regression

Introduction: Partitioned Regression

If the four least squares assumptions in the multiple regression model hold:

The OLS estimators β̂0, β̂1...β̂k are unbiased.
The OLS estimators β̂0, β̂1...β̂k are consistent.
The OLS estimators β̂0, β̂1...β̂k are normally distributed in large
samples.
Formal proofs need to use the knowledge of linear algebra, thus the
matrix. We only prove them in a simple case.
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Multiple OLS Regression

Partitioned regression: OLS estimators

A useful representation of β̂j could be obtained by the partitioned
regression.
Suppose we want to obtain an expression for β̂1.
Regress X1,i on other regressors,thus

X1,i = γ̂0 + γ̂2X2,i + ... + γ̂kXk,i + X̃1,i

where X̃1,i is the fitted OLS residual(just a variation of ui)

Zhaopeng Qu ( NJU ) Lecture 2: Regression October 08 2021 74 / 190



Multiple OLS Regression

Partitioned regression: OLS estimators

Then we could prove that

β̂1 =
∑n

i=1 X̃1,iYi∑n
i=1 X̃2

1,i

Identical argument works for j = 2, 3, ..., k, thus

β̂j =
∑n

i=1 X̃j,iYi∑n
i=1 X̃2

j,i
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Multiple OLS Regression

The intuition of Partitioned regression

Partialling Out

First, we regress Xj against the rest of the regressors (and a constant)
and keep X̃j which is the “part” of Xj that is uncorrelated
Then, to obtain β̂j , we regress Y against X̃j which is “clean” from
correlation with other regressors.
β̂j measures the effect of X1 after the effects of X2, ..., Xk have been
partialled out or netted out.
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Multiple OLS Regression

Example: Test scores and Student Teacher Ratios(1)

tilde.str <- residuals(lm(str ~ el_pct+avginc, data=ca))
mean(tilde.str) # should be zero

#> [1] 1.305121e-17

sum(tilde.str) # also is zero

#> [1] 5.412337e-15

cov(tilde.str,ca$avginc)# should be zero too

#> [1] 3.650126e-16
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Multiple OLS Regression

Example: Test scores and Student Teacher Ratios(2)

tilde.str_str <- tilde.str*ca$str # uX
tilde.strstr <- tilde.str^2
sum(tilde.str_str) # sum(uX)=sum(u^2)

#> [1] 1396.348

sum(tilde.strstr)# should be equal the result above.

#> [1] 1396.348
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Multiple OLS Regression

Example: Test scores and Student Teacher Ratios(3)

sum(tilde.str*ca$testscr)/sum(tilde.str^2)

#> [1] -0.06877552
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Multiple OLS Regression

Example: Test scores and Student Teacher Ratios(4)

#>
#> Call:
#> lm(formula = testscr ~ tilde.str, data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -48.50 -14.16 0.39 12.57 52.57
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 654.15655 0.93080 702.790 <2e-16 ***
#> tilde.str -0.06878 0.51049 -0.135 0.893
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 19.08 on 418 degrees of freedom
#> Multiple R-squared: 4.342e-05, Adjusted R-squared: -0.002349
#> F-statistic: 0.01815 on 1 and 418 DF, p-value: 0.8929
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Multiple OLS Regression

Example: Test scores and Student Teacher Ratios(5)
reg4 <- lm(testscr ~ str+el_pct+avginc,data = ca)
summary(reg4)

#>
#> Call:
#> lm(formula = testscr ~ str + el_pct + avginc, data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -42.800 -6.862 0.275 6.586 31.199
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 640.31550 5.77489 110.879 <2e-16 ***
#> str -0.06878 0.27691 -0.248 0.804
#> el_pct -0.48827 0.02928 -16.674 <2e-16 ***
#> avginc 1.49452 0.07483 19.971 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 10.35 on 416 degrees of freedom
#> Multiple R-squared: 0.7072, Adjusted R-squared: 0.7051
#> F-statistic: 334.9 on 3 and 416 DF, p-value: < 2.2e-16
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Multiple OLS Regression

Standard Error of the Regression

Recall: SER(Standard Error of the Regression)
SER is an estimator of the standard deviation of the ui, which are
measures of the spread of the Y’s around the regression line.
Because the regression errors are unobserved, the SER is computed
using their sample counterparts, the OLS residuals ûi

SER = sû =
√

s2
û

where s2
û = 1

n−k−1
∑

û2i = SSR
n−k−1

n − k − 1 because we have k + 1 stricted conditions in the F.O.C.In
another word,in order to construct û2i, we have to estimate k + 1
parameters,thus β̂0, β̂1, ..., β̂k
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Multiple OLS Regression

Measures of Fit in Multiple Regression

Actual = Predicted+residual: Yi = Ŷi + ûi

The regression R2 is the fraction of the sample variance of Yi
explained by (or predicted by) the regressors.

R2 = ESS
TSS = 1 − SSR

TSS

R2 always increases when you add another regressor. Because in
general the SSR will decrease.
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Multiple OLS Regression

Measures of Fit: The Adjusted R2

the adjusted R2,is a modified version of the R2 that does not
necessarily increase when a new regressor is added.

R2 = 1 − n − 1
n − k − 1

SSR
TSS = 1 − s2

û
s2
Y

because n−1
n−k−1 is always greater than 1, so R2 < R2

adding a regressor has two opposite effects on the R2.
R2 can be negative.
Remind: neither R2 nor R2 is not the golden criterion for good or
bad OLS estimation.
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Multiple OLS Regression

A Special Case: Categoried Variables as X

Recall if X is a dummy variable, then we can put it into regression
equation straightly.
What if X is a categoried vriable?

Question: What is a categoried variable?
For example, we may define Di as follows:

Di =


1 small-size class if STR in ith school district < 18
2 middle-size class if 18 ≤ STR in ith school district < 22
3 large-size class if STR in ith school district ≥ 22

(4.5)
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Multiple OLS Regression

A Special Case: Categoried Variables as X

Naive Solution: a simple OLS regression model

TestScorei = β0 + β1Di + ui (4.3)

Question: Can you explain the meanning of estimate coefficient β1?
Answer: It doese not make sense that the coefficient of β1 can be
explained as continuous variables.
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Multiple OLS Regression

A Special Case: Categoried Variables as X

The first step: turn a categried variable(Di) into multiple dummy
variables(D1i, D2i, D3i)

D1i =
{

1 small-sized class if STR in ith school district < 18
0 middle-sized class or large-sized class if not

D2i =
{

1 middle-sized class if 18 ≤ STR in ith school district < 22
0 large-sized class or small-sized class if not

D3i =
{

1 large-sized class if STR in ith school district ≥ 22
0 middle-sized class or small-sized class if not
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Multiple OLS Regression

A Special Case: Categoried Variables as X

We put these dummies into a multiple regression

TestScorei = β0 + β1D1i + β2D2i + β3D3i + ui (4.6)

Then as a dummy variable as the independent variable in a simple
regression The coefficients (β1, β2, β3) represent the effect of every
categoried class on testscore respectively.
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Multiple OLS Regression

A Special Case: Categoried Variables as X

In practice, we can’t put all dummies into the regression, but only
have n − 1 dummies unless we will suffer perfect multi-collinearity.
The regression may be like as

TestScorei = β0 + β1D1i + β2D2i + ui (4.6)

The default intercept term, β0,represents the large-sized class.Then,
the coefficients (β1, β2) represent testscore gaps between small_sized,
middle-sized class and large-sized class,respectively.
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Multiple Regression: Assumption

Multiple Regression: Assumption
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Multiple Regression: Assumption

Multiple Regression: Assumption

Assumption 1: The conditional distribution of ui given X1i, ..., Xki has
mean zero,thus

E[ui|X1i, ..., Xki] = 0

Assumption 2: (Yi, X1i, ..., Xki) are i.i.d.
Assumption 3: Large outliers are unlikely.
Assumption 4: No perfect multicollinearity.
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Multiple Regression: Assumption

Perfect multicollinearity

Perfect multicollinearity arises when one of the regressors is a perfect
linear combination of the other regressors.

Binary variables are sometimes referred to as dummy variables
If you include a full set of binary variables (a complete and mutually
exclusive categorization) and an intercept in the regression, you will
have perfect multicollinearity.

eg. female and male = 1-female
eg. West, Central and East China

This is called the dummy variable trap.
Solutions to the dummy variable trap: Omit one of the groups or the
intercept
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Multiple Regression: Assumption

Perfect multicollinearity
regress Testscore on Class size and the percentage of English learners

#>
#> Call:
#> lm(formula = testscr ~ str + el_pct, data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -48.845 -10.240 -0.308 9.815 43.461
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
#> str -1.10130 0.38028 -2.896 0.00398 **
#> el_pct -0.64978 0.03934 -16.516 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 14.46 on 417 degrees of freedom
#> Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
#> F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16
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Multiple Regression: Assumption

Perfect multicollinearity
add a new variable nel=1-el_pct into the regression

#>
#> Call:
#> lm(formula = testscr ~ str + nel_pct + el_pct, data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -48.845 -10.240 -0.308 9.815 43.461
#>
#> Coefficients: (1 not defined because of singularities)
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 685.38247 7.41556 92.425 < 2e-16 ***
#> str -1.10130 0.38028 -2.896 0.00398 **
#> nel_pct 0.64978 0.03934 16.516 < 2e-16 ***
#> el_pct NA NA NA NA
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 14.46 on 417 degrees of freedom
#> Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
#> F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16
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Multiple Regression: Assumption

Perfect multicollinearity
Table 6: Class Size and Test Score

Dependent variable:
testscr

(1) (2)
str −1.101∗∗∗ −1.101∗∗∗

(0.380) (0.380)
nel_pct 0.650∗∗∗

(0.039)
el_pct −0.650∗∗∗

(0.039)
Constant 686.032∗∗∗ 685.382∗∗∗

(7.411) (7.416)
Observations 420 420
R2 0.426 0.426

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01Zhaopeng Qu ( NJU ) Lecture 2: Regression October 08 2021 95 / 190



Multiple Regression: Assumption

Multicollinearity

Multicollinearity means that two or more regressors are highly correlated,
but one regressor is NOT a perfect linear function of one or more of the
other regressors.

multicollinearity is NOT a violation of OLS assumptions.
It does not impose theoretical problem for the calculation of OLS
estimators.
But if two regressors are highly correlated, then the the coefficient on
at least one of the regressors is imprecisely estimated (high variance).
to what extent two correlated variables can be seen as “highly
correlated”?

rule of thumb: correlation coefficient is over 0.8.
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Multiple Regression: Assumption

Venn Diagrams for Multiple Regression Model

1) In a simple model
(y on X), OLS uses
‘Blue‘ + ‘Red‘ to
estimate β. 2) When
y is regressed on X
and W: OLS throws
away the red area and
just uses blue to
estimate β. 3) Idea:
red area is
contaminated(we do
not know if the
movements in y are
due to X or to W).
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Multiple Regression: Assumption

Venn Diagrams for Multicollinearity

less information (compare the Blue and Green areas in both figures) is
used, the estimation is less precise.
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Multiple Regression: Assumption

Multiple regression model: class size example
Table 7: Class Size and Test Score

testscr
(1) (2) (3)

str −2.280∗∗∗ −1.101∗∗∗ −0.069
(0.480) (0.380) (0.277)

el_pct −0.650∗∗∗ −0.488∗∗∗

(0.039) (0.029)
avginc 1.495∗∗∗

(0.075)
Constant 698.933∗∗∗ 686.032∗∗∗ 640.315∗∗∗

(9.467) (7.411) (5.775)
N 420 420 420
R2 0.051 0.426 0.707
Adjusted R2 0.049 0.424 0.705

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Multiple Regression: Assumption

The Distribution of the OLS Estimators

In addition, in large samples, the sampling distribution of β̂1 and β̂0 is
well approximated by a bivariate normal distribution.
Under the least squares assumptions,the OLS estimators β̂1 and β̂0,
are unbiased and consistent estimators of β1 and β0.
The OLS estimators are averages of the randomly sampled data, and
if the sample size is sufficiently large, the sampling distribution of
those averages becomes normal. Because the multivariate normal
distribution is best handled mathematically using matrix algebra, the
expressions for the joint distribution of the OLS estimators are
deferred to Chapter 18(SW textbook).
If the least squares assumptions hold, then in large samples the OLS
estimators β̂0, β̂1, ..., β̂k are jointly normally distributed and each

β̂j ∼ N(βj, σ2
β̂j

) , j = 0, ..., k
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Multiple Regression: Assumption

Multiple Regression: Assumptions

If the four least squares assumptions in the multiple regression model hold:

Assumption 1: The conditional distribution of ui given X1i, ..., Xki has
mean zero,thus

E[ui|X1i, ..., Xki] = 0

Assumption 2: (Yi, X1i, ..., Xki) are i.i.d.
Assumption 3: Large outliers are unlikely.
Assumption 4: No perfect multicollinearity.

Then

The OLS estimators β̂0, β̂1...β̂k are unbiased.
The OLS estimators β̂0, β̂1...β̂k are consistent.
The OLS estimators β̂0, β̂1...β̂k are normally distributed in large
samples.
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Hypothesis Testing

Hypothesis Testing
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Hypothesis Testing

Introduction: Class size and Test Score

Recall our simple OLS regression mode is

TestScorei = β0 + β1STRi + ui (4.3)
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Hypothesis Testing

Introduction: Class Size and Test Score
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Hypothesis Testing

Class Size and Test Score

Then we got the result of a simple OLS regression

̂TestScore = 698.9 − 2.28 × STR, R2 = 0.051, SER = 18.6

Don’t forget: the result are not obtained from the population but
from the sample.
How can you be sure about the result? In other words, how confident
you can make the result from the sample infering to the population?
If someone believes that cutting the class size will not help boost test
scores. Can you reject the claim based your scientifical evidence-based
data analysis?
This is the work of Hypothesis Testing in OLS regression.
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Hypothesis Testing

Review: Hypothesis Testing:

A hypothesis is (usually) an assertion or statement about unknown
population parameters.
Using the data, we want to determine whether an assertion is true or
false by a probability law.
Let µY,0 is a specific value to which the population mean equals(we
suppose)

the null hypothesis:
H0 : E(Y) = µY,0

,
the alternative hypothesis(two-sided):

H1 : E(Y) ̸= µY,c
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Hypothesis Testing

Review: Testing a hypothesis of Population Mean

Step 1 Compute the sample mean Y
Step 2 Compute the standard error of Y, recall

SE(Y) = sY√n

Step 3 Compute the t-statistic actually computed

tact = Ȳact − µY,0
SE(Ȳ)

Step 4 See if we can Reject the null hypothesis at a certain
significance levle α,like 5%, or p-value is less than significance level.

|tact| > critical value

p − value < significance level
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Hypothesis Testing

Simple OLS: Hypotheses Testing

A Simple OLS regression

Yi = β0 + β1Xi + ui

This is the population regression equation and the key unknown
population parameters is β1.
Then we woule like to test whether β1 equals to a specific value β1,s
or not

the null hypothesis:
H0 : β1 = β1,s

the alternative hypothesis:

H1 : β1 ̸= β1,s
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Hypothesis Testing

A Simple OLS: Hypotheses Testing

Step1: Estimate Yi = β0 + β1Xi + ui by OLS to obtain β̂1

Step2: Compute the standard error of β̂1

Step3: Construct the t-statistic

tact = β̂1 − β1,c

SE
(
β̂1
)

Step4: Reject the null hypothesis if

| tact |>critical value
or p − value <significance level
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Hypothesis Testing

Recall: General Form of the t-statistics

t = estimator − hypothesized value
standard error of the estimator

Now the key unknown statistic is the standard error(S.E).
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Hypothesis Testing

The Standard Error of β̂1

Recall if the least squares assumptions hold, then in large samples β̂0
and β̂1 have a joint normal sampling distribution.

β̂1 ∼ N(β1, σ2
β̂1

)

The variance of the normal distribution, σ2
β̂1

is

σβ̂1
=
√

1
n

Var[(Xi − µX)ui]
[Var(Xi)]2

(4.21)

The value of σβ̂1
is unknown and can not be obtained directly by the

data.
Var[(Xi − µX)ui] and [Var(Xi)]2 are both unknown.
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Hypothesis Testing

The Standard Error of β̂1

Because Var(X) = EX2 − (EX)2, then the nummerator in the square
root in (4.21) is

Var[(Xi − µX)ui] = E[(Xi − µX)ui]2 − (E[(Xi − µX)ui])2

Based on the Law of Iterated Expectation(L.I.E), we have

E[(Xi − µX)ui = E
(
E[(Xi − µX)ui]|Xi

)
Again by the 1st OLS assumption, thus E(ui|Xi) = 0,

E[(Xi − µX)ui] = 0

Then the second term in the equation above

Var[(Xi − µX)ui] = E[(Xi − µX)ui]2
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Hypothesis Testing

The Standard Error of β̂1

Because plime(X) = µX, then we use X and µ̂i to replace µX and µi in
(4.21)(in large sample), then

Var[(Xi − µX)ui] =E[(Xi − µX)ui]2

=E[(Xi − µX)2u2
i ]

=plim
( 1

n − 2

n∑
i=1

(Xi − X)2û2
)

where n − 2 is the freedom of degree.
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Hypothesis Testing

The Standard Error of β̂1

Because plim(sx) = σ2
x = Var(Xi), then

Var(Xi) = σ2
x

= plim(sx)

= plim
(n − 1

n (sx)
)

= 1
n

n∑
i=1

(Xi − X)2

Then the denominator in the square root in (4.21) is

[Var(Xi)]2 = plim
[1
n

n∑
i=1

(Xi − X)2]2
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Hypothesis Testing

The Standard Error of β̂1

The standard error of β̂1 is an estimator of the standard deviation
of the sampling distribution σβ̂1

, thus

SE
(
β̂1
)

=
√

σ̂2
β̂1

=

√√√√√1
n ×

1
n−2

∑
(Xi − X̄)2û2

i[
1
n
∑

(Xi − X̄)2
]2 (5.4)

Everthing in the equation (5.4) are known now or can be obtained by
calculation.
Then we can construct a t-statistic and then make a hypothesis test

t = estimator − hypothesized value
standard error of the estimator
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Hypothesis Testing

Application to Test Score and Class Size

the OLS regression line

̂TestScore =698.9 − 22.8 × STR, R2 = 0.051, SER = 18.6
(10.4) (0.52)
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Hypothesis Testing

Testing a two-sided hypothesis concerning β1

the null hypothesis H0 : β1 = 0
It means that the class size will not affect the performance of students.

the alternative hypothesis H1 : β1 ̸= 0
It means that the class size do affect the performance of students
(whatever positive or negative)

Our primary goal is to Reject the null, and then safy make a
conclusion: Class Size does matter for the performance of students.
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Hypothesis Testing

Testing a two-sided hypothesis concerning β1

Step1: Estimate β̂1 = −2.28
Step2: Compute the standard error: SE(β̂1) = 0.52
Step3: Compute the t-statistic

tact = β̂1 − β1,c

SE
(
β̂1
) = −2.28 − 0

0.52 = −4.39

Step4: Reject the null hypothesis if
| tact |=| −4.39 |> critical value = 1.96
p − value = 0 < significance level = 0.05
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Hypothesis Testing

Application to Test Score and Class Size

We can Reject the null hypothesis that H0 : β1 = 0, which means
β1 ̸= 0 with a high probability(over 95%).
It suggests that Class size does matter the students’ performance in
a very high chance.
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Hypothesis Testing

Critical Values of the t-statistic
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Hypothesis Testing

1% and 10% significant levels

Step4: Reject the null hypothesis at a 10% significance level
| tact |=| −4.39 |> critical value = 1.64
p − value = 0.00 < significance level = 0.1

Step4: Reject the null hypothesis at a 1% significance level
| tact |=| −4.39 |> critical value = 2.58
p − value = 0.00 < significance level = 0.01
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Hypothesis Testing

Wrap up

Hypothesis tests are useful if you have a specific null hypothesis in
mind (as did our angry taxpayer).
Being able to accept or reject this null hypothesis based on the
statistical evidence provides a powerful tool for coping with the
uncertainty inherent in using a sample to learn about the population.
Yet, there are many times that no single hypothesis about a
regression coefficient is dominant, and instead one would like to know
a range of values of the coefficient that are consistent with the data.
This calls for constructing a confidence interval.
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Hypothesis Testing

Confidence Intervals

Because any statistical estimate of the slope β1 necessarily has
sampling uncertainty, we cannot determine the true value of β1
exactly from a sample of data.
It is possible, however, to use the OLS estimators and its standard
error to construct a confidence interval for the slope β1
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Hypothesis Testing

CI for β1

Method for constructing a confidence interval for a population mean
can be easily extended to constructing a confidence interval for a
regression coefficient.
Using a two-sided test, a hypothesized value for β1 will be rejected at
5% significance level if

| tact |> critical value = 1.96

.
So β̂1 will be in the confidence set if | tact |≤ critical value = 1.96
Thus the 95% confidence interval for β1 are within ±1.96 standard
errors of β̂1

β̂1 ± 1.96 · SE
(
β̂1
)
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Hypothesis Testing

CI for βClassSize

Thus the 95% confidence interval for β1 are within ±1.96 standard
errors of β̂1

β̂1 ± 1.96 · SE
(
β̂1
)

= −2.28 ± (1.96 × 0.519) = [−3.3, −1.26]
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Hypothesis Testing

Heteroskedasticity & homoskedasticity
The error term ui is homoskedastic if the variance of the conditional
distribution of ui given Xi is constant for i = 1, ...n, in particular does
not depend on Xi.
Otherwise, the error term is heteroskedastic.
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Hypothesis Testing

An Actual Example: the returns to schooling

The spread of the dots around the line is clearly increasing with years
of education Xi.
Variation in (log) wages is higher at higher levels of education.
This implies that

Var(ui | Xi) ̸= σ2
u
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Hypothesis Testing

Homoskedasticity: S.E.

Recall the standard deviation of β1, σ2
β̂1

, is

σβ̂1
=
√

1
n

Var[(Xi − µX)ui]
[Var(Xi)]2

(4.21)

The nummerator in the square root in (4.21) can be transformed into

Var[(Xi − µX)ui] = E[(Xi − µX)ui]2 − (E[(Xi − µX)ui])2

= E[(Xi − µX)ui]2

= E[(Xi − µX)2E(u2
i |Xi)]

= E[(Xi − µX)2Var(ui|Xi)]
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Hypothesis Testing

Homoskedasticity: S.E.

So if we assume that the error terms are homoskedastic, then the
standard errors of the OLS estimators β1 simplify to

SEHomo
(
β̂1
)

=
√

σ̂2
β̂1

=

√√√√ s2
û∑

(Xi − X̄)2

However,in many applications homoskedasticity is NOT a plausible
assumption.
If the error terms are heteroskedastic, then you use the homoskedastic
assumption to compute the S.E. of β̂1. It will leads to

The standard errors are wrong (often too small)
The t-statistic does NOT have a N(0, 1) distribution (also not in large
samples).
But the estimating coefficients in OLS regression will not change.
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Hypothesis Testing

Heteroskedasticity & homoskedasticity

If the error terms are heteroskedastic, we should use the original
equation of S.E.

SEHeter
(
β̂1
)

=
√

σ̂2
β̂1

=

√√√√√1
n ×

1
n−2

∑
(Xi − X̄)2û2

i[
1
n
∑

(Xi − X̄)2
]2

It is called as heteroskedasticity robust-standard errors,also referred to
as Eicker-Huber-White standard errors,simply Robust-Standard
Errors
In the case, it is not to find that homoskedasticity is just a special
case of heteroskedasticity.
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Hypothesis Testing

Heteroskedasticity & homoskedasticity

Since homoskedasticity is a special case of heteroskedasticity, these
heteroskedasticity robust formulas are also valid if the error terms are
homoskedastic.
Hypothesis tests and confidence intervals based on above SE’s are
valid both in case of homoskedasticity and heteroskedasticity.
In reality, since in many applications homoskedasticity is not a
plausible assumption, it is best to use heteroskedasticity robust
standard errors. Using robust standard errors rather than standard
errors with homoskedasticity will lead us lose nothing.
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Hypothesis Testing

Heteroskedasticity & homoskedasticity

It can be quite cumbersome to do this calculation by
hand.Luckily,computer can help us do the job.

In Stata, the default option of regression is to assume
homoskedasticity, to obtain heteroskedasticity robust standard errors
use the option “robust”:

regress y x , robust

In R, many ways can finish the job. A convenient function named
vcovHC() is part of the package sandwich.
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Hypothesis Testing

Test Scores and Class Size
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Hypothesis Testing

Test Scores and Class Size
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Hypothesis Testing

Wrap up: Heteroskedasticity in a Simple OLS

If the error terms are heteroskedastic
The fourth simple OLS assumption is violated.
The Gauss-Markov conditions do not hold.
The OLS estimator is not BLUE (not most efficient).

But (given that the other OLS assumptions hold)
The OLS estimators are still unbiased.
The OLS estimators are stilll consistent.
The OLS estimators are normally distributed in large samples
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Hypothesis Testing

OLS with Multiple Regressors: Hypotheses tests

The multiple regression model is

Yi = β0 + β1X1,i + β2X2,i + ... + βkXk,i + ui, i = 1, ..., n

Four Basic Assumptions
Assumption 1 : E[ui | X1i, X2i..., Xki] = 0
Assumption 2 : i.i.d sample
Assumption 3 : Large outliers are unlikely.
Assumption 4 : No perfect multicollinearity.

The Sampling Distrubution: the OLS estimators β̂j for j = 1, ..., k are
approximately normally distributed in large samples.
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Hypothesis Testing

Standard Errors for the Multiple OLS Estimators

There is nothing conceptually different between the single- or
multiple-regressor cases.

Standard Errors for a Simple OLS estimator β1

SE
(

β̂1
)

= σ̂β̂1

Standard Errors for Mutiple OLS Regression estimators βj

SE
(

β̂j
)

= σ̂β̂j

Remind: since now the joint distribution is not only for (Yi, Xi),but
also for (Xij, Xik).
The formula for the standard errors in Multiple OLS regression are
related with a matrix named Variance-Covariance matrix
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Hypothesis Testing

Test Scores and Class Size

Zhaopeng Qu ( NJU ) Lecture 2: Regression October 08 2021 138 / 190



Hypothesis Testing

Case: Class Size and Test scores

Does changing class size, while holding the percentage of English
learners constant, have a statistically significant effect on test scores?
(using a 5% significance level)
H0 : βClassSize = 0 H1 : βClassSize ̸= 0
Step1: Estimate β̂1 = −1.10
Step2: Compute the standard error: SE(β̂1) = 0.43
Step3: Compute the t-statistic

tact = β̂1 − β1,c

SE
(
β̂1
) = −1.10 − 0

0.43 = −2.54

Step4: Reject the null hypothesis if
| tact |=| −2.54 |> critical value.1.96
p − value = 0.011 < significance level = 0.05
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Hypothesis Testing

Tests of Joint Hypotheses: on 2 or more coefficients

Can we just test individual coefficients one at a time?
Suppose the angry taxpayer hypothesizes that neither the
student–teacher ratio nor expenditures per pupil have an effect on
test scores, once we control for the percentage of English learners.
Therefore, we have to test a joint null hypothesis that both the
coefficient on student–teacher ratio and the coefficient on
expenditures per pupil are zero?

H0 : βstr = 0 & βexpn = 0,

H1 : βstr ̸= 0 and/or βexpn ̸= 0
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Hypothesis Testing

Testing 1 hypothesis on 2 or more coefficients

If either tstr or texpn exceeds 1.96, should we reject the null
hypothesis?
We have to assume that tstr and texpn are uncorrelated at first:

Pr(|tstr| > 1.96 and/or |texpn| > 1.96)
= 1 − Pr(|tstr| ≤ 1.96 and |texpn| ≤ 1.96)
= 1 − Pr(|tstr| ≤ 1.96) ∗ Pr |texpn| ≤ 1.96)
= 1 − 0.95 × 0.95
= 0.0975 > 0.05

This “one at a time” method rejects the null too often.
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Hypothesis Testing

Testing 1 hypothesis on 2 or more coefficients

If tstr and texpn are correlated, then it is more complicated. So simple
t-statistic is not enough for hypothesis testing in Multiple OLS.
In general, a joint hypothesis is a hypothesis that imposes two or
more restrictions on the regression coefficients.

H0 : βj = βj,c, βk = βk,c, ..., for a total of q restrictions
H1 : one or more of q restrictions under H0 does not hold

where βj, βk, ... refer to different regression coefficients.
There is another approach to testing joint hypotheses that is more
powerful, especially when the regressors are highly correlated. That
approach is based on the F-statistic.
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Hypothesis Testing

Testing 1 hypothesis on 2 or more coefficients

If we want to test joint hypotheses that involves multiple coefficients
we need to use an F-test based on the F-statistic
F-Statistic with q = 2 : when testing the following hypothesis

H0 : β1 = 0 & β2 = 0 H1 : β1 ̸= 0 and/or β2 ̸= 0

Then the F-statistic combines the two t-statisticst1 and t2 as follows

F = 1
2

(
t2
1 + t2

2 − 2ρ̂t1t2t1t2
1 − ρ̂2

t1t2

)

where ρ̂t1t2 is an estimator of the correlation between the two
t-statistics.
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Hypothesis Testing

The F-statistic with q restrictions.

That is, in large samples, under the null hypothesis,

F − statistic ∼ Fq,∞

here q is the number of restrictions
then we can compute

the heteroskedasticity-robust F-statistic
the p-value using the F-statistic
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Hypothesis Testing

F-Distribution
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Hypothesis Testing

General procedure for testing joint hypothesis with q
restrictions

H0 : βj = βj,0, ..., βm = βm,0 for a total of q restrictions.
H1:at least one of q restrictions under H0 does not hold.
Step1: Estimate Yi = β0 + β1X1i + ... + βjXji + ... + βkXki + ui by OLS
Step2: Compute the F-statistic
Step3 : Reject the null hypothesis if F − Statistic > Fact

q,∞ or
p − value = Pr[Fq,∞ > Fact]
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Hypothesis Testing

Case: Class Size and Test Scores
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Hypothesis Testing

Case: Class Size and Test Scores

We want to test hypothesis that both the coefficient on
student–teacher ratio and the coefficient on expenditures per pupil
are zero?

H0 : βstr = 0 &βexpn = 0
H1 : βstr ̸= 0 and/or βexpn ̸= 0

The null hypothesis consists of two restrictions q = 2
It can be shown that the F-statistic with two restrictions has an
approximate F2,∞ distribution in large samples

Fact = 5.43 > F2,∞ = 4.61 at 1% significant level

This implies that we reject H0 at a 1% significance level.
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Hypothesis Testing

The “overall” regression F-statistic

The “overall” F-statistic test the joint hypothesis that all the k slope
coefficients are zero

H0 : βj = βj,0, ..., βm = βm,0 for a total of q = k restrictions.
H1: at least one of q = k restrictions under H0 does not hold.
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Hypothesis Testing

The “overall” regression F-statistic
The overall F − Statistics = 147.2
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Hypothesis Testing

Case: Analysis of the Test Score Data Set

How to use multiple regression in order to alleviate omitted variable
bias and demonstrate how to report results.
So far we have considered two variables that control for unobservable
student characteristics which correlate with the student-teacher ratio
and are assumed to have an impact on test scores:

English, the percentage of English learning students
lunch, the share of students that qualify for a subsidized or even a free
lunch at school
calworks,the percentage of students that qualify for a income
assistance program
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Hypothesis Testing

Five different model equations:

We shall consider five different model equations:

(1) TestScore = β0 + β1STR + u,

(2) TestScore = β0 + β1STR + β2english + u,

(3) TestScore = β0 + β1STR + β2english + β3lunch + u,

(4) TestScore = β0 + β1STR + β2english + β4calworks + u,

(5) TestScore = β0 + β1STR + β2english + β3lunch + β4calworks + u
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Hypothesis Testing

Scatter Plot: English learners and Test Scores
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Hypothesis Testing

Scatter Plot: Free lunch and Test Scores
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Hypothesis Testing

Scatter Plot: Income assistant and Test Scores
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Hypothesis Testing

Table 8

Dependent Variable: Test Score
(1) (2) (3) (4) (5)

str −2.280∗∗∗ −1.101∗∗ −0.998∗∗∗ −1.308∗∗∗ −1.014∗∗∗

(0.519) (0.433) (0.270) (0.339) (0.269)
el_pct −0.650∗∗∗ −0.122∗∗∗ −0.488∗∗∗ −0.130∗∗∗

(0.031) (0.033) (0.030) (0.036)
meal_pct −0.547∗∗∗ −0.529∗∗∗

(0.024) (0.038)
calw_pct −0.790∗∗∗ −0.048

(0.068) (0.059)
Constant 698.933∗∗∗ 686.032∗∗∗ 700.150∗∗∗ 697.999∗∗∗ 700.392∗∗∗

(10.364) (8.728) (5.568) (6.920) (5.537)
Observations 420 420 420 420 420
Adjusted R2 0.049 0.424 0.773 0.626 0.773
Residual Std. Error 18.581 14.464 9.080 11.654 9.084
F Statistic 22.575∗∗∗ 155.014∗∗∗ 476.306∗∗∗ 234.638∗∗∗ 357.054∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust S.E. are shown in the parentheses
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Hypothesis Testing

Table 9

Dependent Variable: Test Score
(1) (2) (3) (4) (5)

str −2.280∗∗∗ −1.101∗∗ −0.998∗∗∗ −1.308∗∗∗ −1.014∗∗∗

(0.519) (0.433) (0.270) (0.339) (0.269)
el_pct −0.650∗∗∗ −0.122∗∗∗ −0.488∗∗∗ −0.130∗∗∗

(0.031) (0.033) (0.030) (0.036)
meal_pct −0.547∗∗∗ −0.529∗∗∗

(0.024) (0.038)
calw_pct −0.790∗∗∗ −0.048

(0.068) (0.059)
Constant 698.933∗∗∗ 686.032∗∗∗ 700.150∗∗∗ 697.999∗∗∗ 700.392∗∗∗

(10.364) (8.728) (5.568) (6.920) (5.537)
Observations 420 420 420 420 420
Adjusted R2 0.049 0.424 0.773 0.626 0.773
Residual Std. Error 18.581 14.464 9.080 11.654 9.084
F Statistic 22.575∗∗∗ 155.014∗∗∗ 476.306∗∗∗ 234.638∗∗∗ 357.054∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust S.E. are shown in the parentheses
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Hypothesis Testing

Table 10

Dependent Variable: Test Score
(1) (2) (3) (4) (5)

str −2.280∗∗∗ −1.101∗∗ −0.998∗∗∗ −1.308∗∗∗ −1.014∗∗∗

(0.519) (0.433) (0.270) (0.339) (0.269)
el_pct −0.650∗∗∗ −0.122∗∗∗ −0.488∗∗∗ −0.130∗∗∗

(0.031) (0.033) (0.030) (0.036)
meal_pct −0.547∗∗∗ −0.529∗∗∗

(0.024) (0.038)
calw_pct −0.790∗∗∗ −0.048

(0.068) (0.059)
Constant 698.933∗∗∗ 686.032∗∗∗ 700.150∗∗∗ 697.999∗∗∗ 700.392∗∗∗

(10.364) (8.728) (5.568) (6.920) (5.537)
Observations 420 420 420 420 420
Adjusted R2 0.049 0.424 0.773 0.626 0.773
Residual Std. Error 18.581 14.464 9.080 11.654 9.084
F Statistic 22.575∗∗∗ 155.014∗∗∗ 476.306∗∗∗ 234.638∗∗∗ 357.054∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust S.E. are shown in the parentheses
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Hypothesis Testing

Table 11

Dependent Variable: Test Score
(1) (2) (3) (4) (5)

str −2.280∗∗∗ −1.101∗∗ −0.998∗∗∗ −1.308∗∗∗ −1.014∗∗∗

(0.519) (0.433) (0.270) (0.339) (0.269)
el_pct −0.650∗∗∗ −0.122∗∗∗ −0.488∗∗∗ −0.130∗∗∗

(0.031) (0.033) (0.030) (0.036)
meal_pct −0.547∗∗∗ −0.529∗∗∗

(0.024) (0.038)
calw_pct −0.790∗∗∗ −0.048

(0.068) (0.059)
Constant 698.933∗∗∗ 686.032∗∗∗ 700.150∗∗∗ 697.999∗∗∗ 700.392∗∗∗

(10.364) (8.728) (5.568) (6.920) (5.537)
Observations 420 420 420 420 420
Adjusted R2 0.049 0.424 0.773 0.626 0.773
Residual Std. Error 18.581 14.464 9.080 11.654 9.084
F Statistic 22.575∗∗∗ 155.014∗∗∗ 476.306∗∗∗ 234.638∗∗∗ 357.054∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust S.E. are shown in the parentheses
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Hypothesis Testing

Table 12

Dependent Variable: Test Score
(1) (2) (3) (4) (5)

str −2.280∗∗∗ −1.101∗∗ −0.998∗∗∗ −1.308∗∗∗ −1.014∗∗∗

(0.519) (0.433) (0.270) (0.339) (0.269)
el_pct −0.650∗∗∗ −0.122∗∗∗ −0.488∗∗∗ −0.130∗∗∗

(0.031) (0.033) (0.030) (0.036)
meal_pct −0.547∗∗∗ −0.529∗∗∗

(0.024) (0.038)
calw_pct −0.790∗∗∗ −0.048

(0.068) (0.059)
Constant 698.933∗∗∗ 686.032∗∗∗ 700.150∗∗∗ 697.999∗∗∗ 700.392∗∗∗

(10.364) (8.728) (5.568) (6.920) (5.537)
Observations 420 420 420 420 420
Adjusted R2 0.049 0.424 0.773 0.626 0.773
Residual Std. Error 18.581 14.464 9.080 11.654 9.084
F Statistic 22.575∗∗∗ 155.014∗∗∗ 476.306∗∗∗ 234.638∗∗∗ 357.054∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust S.E. are shown in the parentheses

Zhaopeng Qu ( NJU ) Lecture 2: Regression October 08 2021 160 / 190



Hypothesis Testing

The “Star War” and Regression Table
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Hypothesis Testing

Warp Up

OLS is the most basic and important tool in econometricians’ toolbox.
The OLS estimators is unbiased, consistent and normal distributions
under key assumptions.
Using the hypothesis testing and confidence interval in OLS
regression, we could make a more reliable judgment about the
relationship between the treatment and the outcomes.
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Regression and Conditional Expectation Function

Regression and Conditional Expectation Function
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Regression and Conditional Expectation Function

Case: Education and Earnings

Most of what we want to do in the social science is learn about how
two variables are related, such as Education and Earnings.
On average, people with more schooling earn more than people with
less schooling.

The connection between schooling and average earnings has
considerable predictive power, in spite of the enormous variation in
individual circumstances.
The fact that more educated people earn more than less educated
people does not mean that schooling causes earnings to increase.
However, it’s clear that education predicts earnings in a narrow
statistical sense.

This predictive power is compellingly summarized by the Conditional
Expectation Function.
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Regression and Conditional Expectation Function

Review: Conditional Expectation Function(CEF)

Both X and Y are r.v., then conditional on X, Y’s probability density
function is

fY|X (y|x) = f(x, y)
f(x)

Conditional on X, Y’s expectation is

E(Y|X) =
∫

Y
yfY|X(y|x)dy =

∫
Y

yf(x, y)
f(x) dy

So Conditional Expectation Function(CEF) is a function of x, since x
is a random variable, so CEF is also a random variable
直观理解：期望就是求平均值，而条件期望就是 “分组取平均” 或
“在…条件下的均值”。
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Regression and Conditional Expectation Function

The CEF: Education and Earnings
The conditional distributions of Yi for Xi = x in 8, …, 22.
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Regression and Conditional Expectation Function

The CEF: Education and Earnings
The CEF, E [Yi | Xi], connects these conditional distributions’ means.
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Regression and Conditional Expectation Function

The CEF: Education and Earnings
Focusing in on the CEF, E [Yi | Xi]…
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Regression and Conditional Expectation Function

Review:Expectation Function(CEF)

1 Additivity : expectation of sums are sums of expectations

E[(X + Y)|Z] = E[X|Z] + E[Y|Z]

2 Homogeneity: Suppose that a and b are constants. Then

E[(aX + b)|Z] = aE[X|Z] + b

3 If X is a r.v,then any function of X, g(X), we have

E[g(X) | X] = g(X)

4 If X and Y are independent r.v.s, then

E[Y | X = x] = E[Y]
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Regression and Conditional Expectation Function

Review: the Law of Iterated Expectations(LIE)

the Law of Iterated Expectations
It states that an unconditional expectation can be written as the
unconditional average of conditional expectation function.

E(Yi) = E[E(Yi|Xi)]

and it can easily extend to

E(g(Xi)Yi) = E[E(g(Xi)Yi|Xi)]

where g(Xi) is a continuous function of Xi

直观理解：分组平均值 (CEF) 再取平均，应该等于无条件均值。
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Regression and Conditional Expectation Function

Review: Expectation

Expectation(for a continuous r.v.)

E(x) =
∫

xf(x)dx

Conditional probability density function

fY|X(y|x) = fX,Y(x, y)
fX(x)

Conditional Expectation Function:Conditional on X, the Conditional
Expectation of Y is

E(y|x) =
∫

yfY|X(y|x)dy
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Regression and Conditional Expectation Function

Proof: the Law of Iterated Expectation(LIE)
Prove it by a continuous variable way

Proof

E[E(Y|X)] =

∫
E(Y|X = u)fX(u)du

=
∫ [ ∫

tfY(t|X = u)dt
]
fX(u)du

=
∫ ∫

tfY(t|X = u)fX(u)dtdu

=
∫

t
[ ∫

fY(t|X = u)fX(u)du
]
dt

=
∫

t
[ ∫

fXY(u, t)du
]
dt

=
∫

tfy(t)dt

= E(Y)
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Regression and Conditional Expectation Function
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Regression and Conditional Expectation Function

Proof: the Law of Iterated Expectation(LIE)
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Regression and Conditional Expectation Function

The CEF Decomposition Property

Theorem: Every random variable such as Yi can be written as

Yi = E[Yi | Xi] + εi

where εi is mean-independent of Xi, i.e., E[εi | Xi] = 0. and therefore
εi is uncorrelated with any function of Xi.
This theorem says that any random variable, Yi, can be decomposed
into two parts
– a piece that’s “explained by Xi”, i.e. the CEF,
– a piece left over which is orthogonal to (i.e. uncorrelated with) any
function of Xi.
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Regression and Conditional Expectation Function

The CEF Decomposition Property

Proof.
εi = Y − E[Yi | Xi]

⇒ E[εi | Xi] = E [Yi − E[Yi | Xi] | Xi]
= E[Yi | Xi] − E[E[Yi | Xi] | Xi]
= 0

We also have
E[h(Xi)εi] = E

[
E[h(Xi)εi] | Xi

]
= E

[
h(Xi)E[εi | Xi]

]
= 0
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Regression and Conditional Expectation Function

The CEF Prediction Property

Theorem
Let m(Xi) be any function of Xi. The CEF is the Minimum Mean Squared
Error (MMSE) predictor of Yi given Xi. Thus

E[Yi | Xi] = argmin
m(Xi)

E
[
[Yi − M(Xi)]2

]

m(Xi) can be any class of functions use to predict Yi
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Regression and Conditional Expectation Function

The CEF Prediction Property

Proof.
(Y − m(Xi))2 = [(Yi − E[Yi | Xi]) + (E[Yi | Xi] − m(Xi))]2

= (Yi − E[Yi | Xi)2 +
2 (Yi − E[Yi | Xi]) (E[Yi | Xi] − m(Xi)) +
(E[Yi | Xi] − m(Xi))2

Only The last term matters with m(Xi, then the function value is
minimized at zero when m(Xi) is the CEF.
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Regression and Conditional Expectation Function

The CEF Prediction Property

Suppose we are interested in predicting Y using some function m(Xi),
the optimal predictor under the MMSE (Minimized Mean Squared
Error) criterion is CEF.
Therefore ,CEF is a natural summary of the relationship between Y
and X under MMSE.
It means that if we can know CEF, then we can describe the
relationship of Y and X.
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The CEF and Regression

The CEF and Regression
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The CEF and Regression

The CEF and Regression

So far,We have already learned CEF is a natural summary of the
relationships which we would like to know it.
But CEF is an unknown functional form, so the next question is

How to model CEF, E(Y | X)?
Answer: Two basic approaches

Nonparametric(Matching, Kernel Density etc.)
Parametric(OLS,NLS,MLE)

Regression estimates provides a valuable baseline for almost all
empirical research because Regression is tightly linked to CEF.
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The CEF and Regression

Population Regression: What is a Regression?
population regression as the solution to the population least squares
problem. Specifically, the K»1 regression coefficient vector β is
defined by solving

β = arg min
b

E
[(

Yi − X′
ib
)2]

Using the first order condition

E
[
Xi(Yi − X′

ib)
]

= 0

The solution for b can be written

β = E
[
XiX′

i
]−1 E

[
XiY′

i
]

Regression is a feature of data: just like expectation, correlation, etc.
It’s a parametric linear function of population second moments to
model m(Xi).
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The CEF and Regression

Population Regression: What is a Regression?

Our “new” result: β = E
[
XiX′

i
]−1 E [XiYi]

In simple linear regression (an intercept and one regressor xi),

β1 = Cov (Yi, xi)
Var (xi)

β0 = E [Yi] − β1 E [xi]

For multivariate regression, the coefficient on the kth regressor xki is

βk = Cov (Yi, x̃ki)
Var (x̃ki)

where x̃ki is the residual from a regression of xki on all other
covariates.
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The CEF and Regression

Linear Regression and the CEF: Why Regress?

There are three reasons (three justifications) why the vector of
population regression coefficient might be of interest.

1 The Best Linear Predictor Theorem
2 The Linear CEF Theorem
3 The Regression-CEF Theorem
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The CEF and Regression

Regression Justification I

The Best Linear Predictor Theorem
Regression solves the population least squares problem and is therefore
the Best Linear Predictor(BLP) of Yi given Xi.

Proof. By definition of regression.
In other words, just as CEF, which is the best predictor of Yi given Xi
in the class of all functions of Xi, the population regression function is
the best we can do in the class of linear functions.
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The CEF and Regression

Regression Justification II

Theorem
The Linear CEF Theorem Suppose the CEF is linear. Then the Regression
function is it.

Proof: Suppose E(Yi|Xi) = X′
iβ

∗ for a K»1 vector of coefficients. By
the CEF decomposition property, we have

E [Xi(Yi − E[Yi | Xi])] = 0

Then substitute using E(Yi|Xi) = X′
iβ

∗

At last find that

β∗ = E
[
XiX′

i
]−1 E [XiYi] = β
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The CEF and Regression

Regression Justification II(cont.)

If the CEF is linear,then the population regression is the CEF.
Linearity can be a strong assumption. When might we expect
linearity?

1 Situations in which (Yi, Xi)follows a multivariate normal distribution.
2 Saturated regression models: the most easy case is a model with two

binary indicators and their interaction.
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The CEF and Regression

Regression Justification III

Theorem
The Regression-CEF Theorem The population regression function X′

iβ
provides the MMSE linear approximation to E(Yi|Xi), thus

β = arg min
b

E
[(

E[Yi|Xi] − X′
ib
)2]
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The CEF and Regression

Regression Justification III

Proof. (
Yi − X′

ib
)2 = [(Yi − E[Yi | Xi]) + (E[Yi | Xi] − Xib)]2

= (Yi − E[Yi | Xi])2 + (E[Yi | Xi] − Xib)2 +
2 (Yi − E[Yi | Xi]) (E[Yi | Xi] − Xib)

The first term has no b and the last term by the CEF-decomposition
property. Therefore the minimized problem has the same solution as
the regression least squares problems.
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The CEF and Regression

The CEF Function
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The CEF and Regression

Warp up: Regression and the CEF

Model CEF to describe the relationship of Y and X.
Regression provides the best linear predictor for the dependent variable
in the same way that the CEF is the best unrestricted predictor of the
dependent variable.
When the CEF is linear, the regression function is the CEF.
When the CEF is nonlinear, we can still use regression because
regression provides the best linear approximation of the CEF.

Actually, The regression-CEF theorem is our favorite way to motivate
regression. The statement that regression approximates the CEF lines
up with our view of empirical work as an effort to describe the
essential features of statistical relationships, without necessarily trying
to pin them down exactly.
We are not really interested in predicting individual Yi; it’s the
distribution of Yi that we care about.
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