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Causal Inference and RCT

• Causality is our main goal in the studies of empirical social science.

• The existence of selection bias makes social science more difficult than science.

• Although RCTs is a powerful tool for economists, every project or topic can NOT be carried
on by it.

• This is the reason why modern econometrics exists and develops. The main job of
econometrics is using non-experimental data to making convincing causal inference.
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Question: Class Size and Student’s Performance

• If fortunately, we can run a RCT, then how to answer the question quantitatively in a
standard model?

• Draw schools (n = 420) randomly from all school in California

• Variables:
• 5th grade test scores (Stanford-9 achievement test, combined math and reading), district
average

• Student-teacher ratio (STR) = no. of students in the district divided by no. full-time equivalent
teachers
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Descriptive Statistics

• Does this table tell us anything about the relationship between test scores and the STR?
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Scatterplot: test score v. student-teacher ratio

• What does this figure show? and it may suggest…?
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The California Test Score

• We need to get some numerical evidence on whether districts with low STRs have higher
test scores.

• But how?

1. Compare average test scores in districts with low STRs to those with high STRs
(“estimation”)

2. Test the “null” hypothesis that the mean test scores in the two types of districts are the
same, against the “alternative” hypothesis that they differ (“hypothesis testing”)

3. Estimate an interval for the difference in the mean test scores, high v. low STR districts
(“confidence interval”)
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The California Test Score

• Compare districts with “small” and “large” class sizes:

• Block: Small v.s. Large

1. Estimation of ∆ = differencebetweengroupmeans

2. Test the hypothesis that ∆ = 0

3. Construct a confidence interval for ∆
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Comparing Means from Different Populations

• In an RCT, we would like to estimate the average causal effects over the population

ATE = ATT = E{Yi(1) − Yi(0)}

• We only have random samples and random assignment to treatment, then what we can
estimate instead

difference in mean = Ytreated − Ycontrol

• Under randomization, difference-in-means is a good estimate for the ATE.
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Hypothesis Tests for the Difference

• To illustrate a test for the difference between two means, let µs be the mean scores in the
population of small classes and let µl be the population mean scores for the large classes.

• Then the null hypothesis and the two-sided alternative hypothesis are

H0 : µs = µl and H1 : µs ̸= µl

• Consider the null hypothesis that mean scores for these two populations differ by a
certain amount, say d0. The null hypothesis that large classes and small classes have the
same mean scores corresponds to H0 : d0 = µs − µl = 0

• Suppose we have samples of ns classes and nl classes drawn at random from the
population of CA. Let the sample average scores be Ys for the small and Yl for the large.
Then an estimator of µs − µl is Ys − Yl .
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The Difference Between Two Means

• Let us discuss the distribution of Ys − Yl .

• Recall Ys is approximately distributed N(µs,
σ2
s

ns
) and Yl is approximately distributed

N(µl,
σ2
l

nl
) according to the C.L.T.

• Then Ys − Yl is distributed as

∼ N(µs − µl,
σ2
s

ns
+

σ2
l

nl
)
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The Difference Between Two Means

• If σ2
s and σ2

l are known, then the this approximate normal distribution can be used to
compute p-values for the test of the null hypothesis.

• In practice, however, these population variances are typically unknown so they must be
estimated using the variance of the sample mean.

• Thus the standard error of Ys − Yl is

SE(Ys − Yl) =

√
s2s
ns

+
s2l
nl
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The Difference Between Two Means

• The t-statistic for testing the null hypothesis is constructed analogously to the t-statistic
for testing a hypothesis about a single population mean, thus a simplest t-statistic for
comparing two means is

tact =
Ys − Yl − d0
SE(Ys − Yl)

• If both nsand nl are large, then this t-statistic has a standard normal distribution when the
null hypothesis is true,thus

Ys − Yl = 0

.
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Confidence Intervals for the Difference

• the 95% two-sided confidence interval for d consists of those values of d within ±1.96
standard errors of Ys − Yl , thus d = µs − µl is

(Ys − Yl) ± 1.96SE(Ys − Yl)

• Reject the null hypothesis if

| tact |=| Yl − Ys − d0
SE(Yl − Ys)

|> critical value

• or if
p − value < significance level
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Causal Inference and RCT

• However,the existence of selection bias makes social science more difficult than science.

• Although RCTs is a powerful tool for economists, every project or topic can NOT be carried
on by it.

• This is the reason why modern econometrics exists and develops. The main job of
econometrics is using non-experimental data to making convincing causal inference.
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Furious Seven Weapons（七种武器）

• To build a reasonable counterfactual world or to find a proper control group is the core of
econometric methods.

1. Regression(回归)
2. Matching and Propensity Score（匹配与倾向得分）
3. Decomposition（分解）
4. Instrumental Variable（工具变量）
5. Regression Discontinuity（断点回归）
6. Panel Data and Difference in Differences（双差分或倍差法)
7. Sythetic Control Metnods(合成控制法)

• The most basic of these tools is regression, which compares treatment and control
subjects who have the same observable characteristics.

• Regression concepts are foundational, paving the way for the more elaborate tools used in
the class that follow.
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OLS Estimation: Simple Regression
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Question: Class Size and Student’s Performance

• Specific Question:
• What is the effect on district test scores if we would increase district average class size by 1
student (or one unit of Student-Teacher’s Ratio)

• If we could know the full relationship between two variables which can be summarized by
a real value function,f(·)

Testscore = f(ClassSize)

• Unfortunately, the function form is always unknown.
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Question: Class Size and Student’s Performance

• Two basic methods to describe the function.
• non-parametric: we don’t care the specific form of the function, unless we know all the values
of two variables, which actually are the whole distributions of class size and test scores.

• parametric: we have to suppose the basic form of the function, then to find values of some
unknown parameters to determine the specific function form.

• Both methods need to use samples to inference populations in our random and unknown
world.

20 / 134



Question: Class Size and Student’s Performance

• Suppose we choose parametric method, then we just need to know the real value of a
parameter β1 to describe the relationship between Class Size and Test Scores

β1 =
∆Testscore
∆ClassSize

• Next step, we have to suppose specific forms of the functionf(), still two categories: linear
and non-linear

• And we start to use a simplest function form: a linear equation, which is graphically a
straight line, to summarize the relationship between two variables.

Test score = β0 + β1 × Class size

where β1 is actually the the slope and β0 is the intercept of the straight line.
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Class Size and Student’s Performance

• BUT the average test score in district i does not only depend on the average class size

• It also depends on other factors such as
• Student background
• Quality of the teachers
• School’s facilitates
• Quality of text books
• Random deviation……

• So the equation describing the linear relation between Test score and Class size is better
written as

Test scorei = β0 + β1 × Class sizei + ui

where ui lumps together all other factors that affect average test scores.
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Terminology for Simple Regression Model

• The linear regression model with one regressor is denoted by

Yi = β0 + β1Xi + ui

• Where
• Yi is the dependent variable(Test Score)
• Xi is the independent variable or regressor(Class Size or Student-Teacher Ratio)
• β0 + β1Xi is the population regression line or the population regression function
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Terminology for Simple Regression Model

• The intercept β0 and the slope β1 are the coefficients of the population regression line,
also known as the parameters of the population regression line.

• ui is the error term which contains all the other factors besides X that determine the value
of the dependent variable, Y, for a specific observation, i.
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Graphics for Simple Regression Model
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How to find the “best” fitting line?

• In reality, we don’t know how to draw the straight line graphically, unless we know the
values of β0 and β1. Thus the parameters of population regression function.

• In general we have to calculate them using a bunch of data: the sample,which is called the
estimation.
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The Ordinary Least Squares Estimator (OLS)

The OLS estimator

• Chooses the best regression coefficients so that the estimated regression line is as close
as possible to the observed data, where closeness is measured by the sum of the squared
mistakes made in predicting Y given X.

• Let b0 and b1 be estimators of β0 and β1,thus b0 ≡ β̂0,b1 ≡ β̂1

• The predicted value of Yi given Xi using these estimators is b0 + b1Xi, or β̂0 + β̂1Xi formally
denotes as Ŷi
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The Ordinary Least Squares Estimator (OLS)

The OLS estimator

• The prediction mistake is the difference between Yi and Ŷi,which denotes as ûi

ûi = Yi − Ŷi = Yi − (b0 + b1Xi)

• The estimators of the slope and intercept that minimize the sum of the squares of ûi,thus

argmin
b0,b1

n∑
i=1

û2i = min
b0,b1

n∑
i=1

(Yi − b0 − b1Xi)2

are called the ordinary least squares (OLS) estimators of β0 and β1.

28 / 134



The Ordinary Least Squares Estimator (OLS)

• OLS minimizes sum of squared prediction mistakes:

min
b0,b1

n∑
i=1

û2i =
n∑

i=1

(Yi − b0 − b1Xi)2

• Solve the problem by F.O.C(the first order condition)
• Step 1 for β0:

∂

∂b0

n∑
i=1

(Yi − b0 − b1Xi)2 = 0

• Step 2 for β1:
∂

∂b1

n∑
i=1

(Yi − b0 − b1Xi)2 = 0
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OLS estimator of β0 and β1

OLS estimator of β0 and β1:

b0 ≡ β̂0 = Y − b1X

b1 ≡ β̂1 =

∑n
i=1(Xi − X)(Yi − Y)∑n
i=1(Xi − X)(Xi − X)
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The Estimated Regression Line

• Obtain the values of OLS estimator for a certain data,

β̂1 = −2.28 and β̂0 = 698.9

• Then the regression line is
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Measures of Fit: The R2

• Because the variation of Y can be summarized by a statistic: Variance,so the total variation
of Yi, which are also called as the total sum of squares (TSS), is:

TSS =
n∑

i=1

(Yi − Y)2

• Because Yi can be decomposed into the fitted value plus the residual: Yi = Ŷi + ûi,then
likewise Yi, we can obtain

• The explained sum of squares (ESS):
∑n

i=1(Ŷi − Y)2

• The sum of squared residuals (SSR):
∑n

i=1(Ŷi − Yi)2 =
∑n

i=1 û
2
i

• And more importantly, the variation of Yi should be a sum of the variations of Ŷi and ûi,
thus

TSS = ESS+ SSR

# The Least Squares Assumptions
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Review: Conditional Expectation Function(CEF)

• Expectation(for a continuous r.v.)

E(y) =
∫

yf(y)dy

• Conditional probability density function

fY|X(y|x) =
fX,Y(x, y)
fX(x)

• Conditional Expectation Function: the Expectation of Y conditional on X is

E(y|x) =
∫

yfY|X(y|x)dy
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Review: Properties of CEF

Let X, Y, Z are random variables; a, b ∈ R; g(·) is a real valued function, then we have

• E[a | Y] = a
• E[(aX+ bZ) | Y] = aE[X | Y] + bE[Z | Y]
• If X and Y are independent, then E[Y | X] = E[Y]
• E[Yg(X) | X] = g(X)E[Y | X]. In particular, E[g(Y) | Y] = g(Y)
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Review: the Law of Iterated Expectations(LIE)

the Law of Iterated Expectations
It states that an unconditional expectation can be written as the unconditional average of
conditional expectation function.

E(Yi) = E[E(Yi|Xi)]

and it can easily extend to

E(g(Xi)Yi) = E[E(g(Xi)Yi|Xi)] = E[g(Xi)E(Yi|Xi)]
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Proof: the Law of Iterated Expectation(LIE)

• Prove it by a continuous variable way

Proof

E[E(Y|X)] =

∫
E(Y|X = u)fX(u)du

=

∫ [ ∫
tfY(t|X = u)dt

]
fX(u)du

=

∫ ∫
tfY(t|X = u)fX(u)dtdu

=

∫
t
[ ∫

fY(t|X = u)fX(u)du
]
dt

=

∫
t
[ ∫

fXY(u, t)du
]
dt

=

∫
tfy(t)dt

= E(Y)
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Conditional Expectation and Covariance

• Please prove if E(Y|X) = 0 ⇒ Cov(X, Y) = 0

Proof

Cov(XY) = E(XY) − E(X)E(Y)

= E[E(XY|X)] − E(X)E[E(Y|X)]
= E[XE(Y|X)]
= 0
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Assumption 1: Conditional Mean is Zero
Assumption 1: Zero conditional mean of the errors given X
The error,ui has expected value of 0 given any value of the independent variable

E[ui | Xi = x] = 0

• An weaker condition that ui and Xi are uncorrelated:

Cov[ui, Xi] = E[uiXi] = 0

• if both are correlated, then Assumption 1 is violated.

• Equivalently, the population regression line is the conditional mean of Yi given Xi , thus

E[Yi|Xi] = β0 + β1Xi

38 / 134



Assumption 1: Conditional Mean is Zero
Assumption 1: Zero conditional mean of the errors given X
The error,ui has expected value of 0 given any value of the independent variable

E[ui | Xi = x] = 0

• An weaker condition that ui and Xi are uncorrelated:

Cov[ui, Xi] = E[uiXi] = 0

• if both are correlated, then Assumption 1 is violated.

• Equivalently, the population regression line is the conditional mean of Yi given Xi , thus

E[Yi|Xi] = β0 + β1Xi

38 / 134



Assumption 1: Conditional Mean is Zero

39 / 134



Assumption 2: Random Sample

Assumption 2: Random Sample
We have a i.i.d random sample of size , {(Xi, Yi), i = 1, ..., n} from the population regression
model above.

• This is an implication of random sampling. Then we have such as

Cov(Xi, Xj) = 0

Cov(Yi, Xj) = 0

Cov(ui, Xj) = 0

• And it generally won’t hold in other data structures.
• time-series, cluster samples and spatial data.
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Assumption 3: Large outliers are unlikely

Assumption 3: Large outliers are unlikely
It states that observations with values of Xi, Yi or both that are far outside the usual range of
the data(Outlier) are unlikely. Mathematically, it assume that X and Y have nonzero finite
fourth moments.

• Large outliers can make OLS regression results misleading.

• One source of large outliers is data entry errors, such as a typographical error or
incorrectly using different units for different observations.

• Data entry errors aside, the assumption of finite kurtosis is a plausible one in many
applications with economic data.
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Assumption 3: Large outliers are unlikely
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Underlying Assumptions of OLS

• The OLS estimator is unbiased, consistent and has asymptotically normal sampling
distribution if

1. Random sampling.
2. Large outliers are unlikely.
3. The conditional mean of ui given Xi is zero

• OLS is an estimator: it’s a machine that we plug data into and we get out estimates.

• It has a sampling distribution, with a sampling variance/standard error, etc. like the
sample mean, sample difference in means, or the sample variance.
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Properties of the OLS Estimators
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The OLS estimators

• Question of interest: What is the effect of a change in Xi(Class Size) on Yi(Test Score)

Yi = β0 + β1Xi + ui

• We derived the OLS estimators of β0 andβ1:

β̂0 = Ȳ − β̂1X̄

β̂1 =

∑
(Xi − X̄)(Yi − Ȳ)∑
(Xi − X̄)(Xi − X̄)
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Least Squares Assumptions

1. Assumption 1: Conditional Mean is Zero
2. Assumption 2: Random Sample
3. Assumption 3: Large outliers are unlikely

• If the 3 least squares assumptions hold the OLS estimators will be
• unbiased
• consistent
• normal sampling distribution
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Properties of the OLS estimator: Consistency

• Base on L.L.N(the law of large numbers) and random sample(i.i.d)

s2X
p−→ σ2

X = Var(X)

sxy
p−→ σXY = Cov(X, Y)

• Continuous Mapping Theorem: For every continuous function g(t) and random variable X:

plim(g(X)) = g(plim(X))

• Combining with Continuous Mapping Theorem,then we obtain the OLS estimator β̂1,when
n −→ ∞

plimβ̂1 = plim
(
sxy
s2x

)
=

Cov(Xi, Yi)
Var(Xi)
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Properties of the OLS estimator: Consistency

plimβ̂1 =
Cov(Xi, Yi)
Var(Xi)

=
Cov(Xi, (β0 + β1Xi + ui))

Var(Xi)

=
Cov(Xi, β0) + β1Cov(Xi, Xi) + Cov(Xi, ui)

Var(Xi)

= β1 +
Cov(Xi, ui)
Var(Xi)

• Then we could obtain
plimβ̂1 = β1 if E[ui|Xi] = 0
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Simple OLS and RCT
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OLS Regression and RCT

• We learned RCT is the “golden standard” for causal inference.Because it can naturally
eliminate selection bias.

• So far, we did not discuss the relationship between RCT and OLS regression, which means
that we can not be sure that the result from an OLS regression can be explained as “causal”.

• Instead of using a continuous regressor X, the regression where Di is a binary variable, a
so-called dummy variable, will help us to unveil the relationship between RCT and OLS
regression.
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Regression when X is a Binary Variable

• For example, we may define Di as follows:

Di =

1 if STR in ith school district < 20

0 if STR in ith school district ≥ 20
(4.2)

• The regression can be written as

Yi = β0 + β1Di + ui (4.1)
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Regression when X is a Binary Variable

• More precisely, the regression model now is

TestScorei = β0 + β1Di + ui (4.3)

• With D as the regressor, it is not useful to think of β1 as a slope parameter.
• Since Di ∈ {0, 1}, i.e., we only observe two discrete values instead of a continuum of
regressor values.

• There is no continuous line depicting the conditional expectation function E(TestScorei|Di)

since this function is solely defined for x-positions 0 and 1.
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Regression when X is a Binary Variable

• Therefore, the interpretation of the coefficients in this regression model is as follows:
• E(Yi|Di = 0) = β0, so β0 is the expected test score in districts where Di = 0 where STR is
below 20.

• E(Yi|Di = 1) = β0 + β1 where STR is above 20

• Thus, β1 is the difference in group specific expectations, i.e., the difference in expected test
score between districts with STR < 20 and those with STR ≥ 20,

β1 = E(Yi|Di = 1) − E(Yi|Di = 0)

.
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Causality and OLS

• Let us recall, the individual treatment effect

ICE = Y1i − Y0i = ρ ∀i

• then we can rewrite
Yi = Y0i + Di (Y1i − Y0i)
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Causality and OLS

• Regression function is
Yi = α + Diρ + ηi

• Further
Yi = α︸︷︷︸

E[Y0i]

+Di ρ︸︷︷︸
Y1i−Y0i

+ ηi︸︷︷︸
Y0i−E[Y0i]
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Causality and OLS

• Now write out the conditional expectation of Yi for both levels of Di

E [Yi | Di = 1] = E [α + ρ + ηi | Di = 1] = α + ρ + E [ηi|Di = 1]

E [Yi | Di = 0] = E [α + ηi | Di = 0] = α + E [ηi | Di = 0]

• Take the difference

E [Yi | Di = 1] − E [Yi | Di = 0] = ρ + E [ηi|Di = 1] − E [ηi | Di = 0]︸ ︷︷ ︸
Selection bias
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Causality and OLS

• Again, our estimate of the treatment effect (ρ) is only going to be as good as our ability to
shut down the selection bias.

• Selection bias in regression model: E [ηi|Di = 1] − E [ηi | Di = 0]

• There is something in our disturbance ηi that is affecting Yi and is also correlated with Di.
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Simple OLS Regression v.s. RCT

• In a simple regression model, OLS estimators are just a generalizing continuous version of
RCT when least squares assumptions are hold.

• Ideally,regression is a way to control observable confounding factors, which assume the
source of selection bias is only from the difference in observed characteristics.
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Simple OLS Regression v.s. RCT

• But in contrast to RCT, in observational studies, researchers cannot control the assignment
of treatment into a treatment group versus a control group,which means that the two
groups are incomparable.

• To make two groups comparable, we need to keep treatment and control group “other
thing equal”in observed characteristics and unobserved characteristics.

• OLS regression is valid only when least squares assumptions are hold.

• In most cases,it is not easy to obtain. We have to know how to make a convincing causal
inference when these assumptions are not hold.
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Make Comparison Make Sense
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Case: Smoke and Mortality

• Criticisms from Ronald A. Fisher
• No experimental evidence to incriminate smoking as a cause of lung cancer or other serious
disease.

• Correlation between smoking and mortality may be spurious due to biased selection of
subjects.

Z

MS

• Confounder, Z, creates backdoor path between smoking and mortality
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Case: Smoke and Mortality(Cochran 1968)

Table 1: Death rates(死亡率) per 1,000 person-years

Smoking group Canada U.K. U.S.
Non-smokers(不吸烟) 20.2 11.3 13.5
Cigarettes(香烟) 20.5 14.1 13.5
Cigars/pipes(雪茄/烟斗) 35.5 20.7 17.4

• It seems that taking cigars is more hazardous to the health?
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Case: Smoke and Mortality(Cochran 1968)

Table 2: Non-smokers and smokers differ in age

Smoking group Canada U.K. U.S.
Non-smokers(不吸烟) 54.9 49.1 57.0
Cigarettes(香烟) 50.5 49.8 53.2
Cigars/pipes(雪茄/烟斗) 65.9 55.7 59.7

• Older people die at a higher rate, and for reasons other than just smoking cigars.
• Maybe cigar smokers higher observed death rates is because they’re older on average.
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Case: Smoke and Mortality(Cochran 1968)

• The problem is that the age are not balanced, thus their mean values differ for treatment
and control group.

• let’s try to balance them, which means to compare mortality rates across the different
smoking groups within age groups so as to neutralize age imbalances in the observed
sample.

• It naturally relates to the concept of Conditional Expectation Function.
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Case: Smoke and Mortality(Cochran 1968)

How to balance?

1. Divide the smoking group samples into age groups.

2. For each of the smoking group samples, calculate the mortality rates for the age group.

3. Construct probability weights for each age group as the proportion of the sample with a
given age.

4. Compute the weighted averages of the age groups mortality rates for each smoking group
using the probability weights.
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Case: Smoke and Mortality(Cochran 1968)

Death rates Number of
Pipe-smokers Pipe-smokers Non-smokers

Age 20-50 0.15 11 29
Age 50-70 0.35 13 9
Age +70 0.5 16 2
Total 40 40

• Question: What is the average death rate for pipe smokers?

0.15 ·
(

11
40

)
+ 0.35 ·

(
13
40

)
+ 0.5 ·

(
16
40

)
= 0.355
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Case: Smoke and Mortality(Cochran 1968)

Table 3: Non-smokers and smokers differ in mortality and age

Smoking group Canada U.K. U.S.
Non-smokers(不吸烟) 20.2 11.3 13.5
Cigarettes(香烟) 28.3 12.8 17.7
Cigars/pipes(雪茄/烟斗) 21.2 12.0 14.2

• Conclusion: It seems that taking cigarettes is most hazardous, and taking pipes is not
different from non-smoking.
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Formalization: Covariates

Definition: Covariates
Variable X is predetermined with respect to the treatment D if for each individual i, X0i = X1i , i.e.,
the value of Xi does not depend on the value of Di. Such characteristics are called covariates.

• Covariates are often time invariant (e.g., sex, race), but time invariance is not a necessary
condition.
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Identification under Independence

• Recall that randomization in RCTs implies

(Y0, Y1) ⊥⊥ D

and therefore:

E[Y|D = 1] − E[Y|D = 0] = E[Y1|D = 1] − E[Y0|D = 0]︸ ︷︷ ︸
by the switching equation

= E[Y1|D = 1] − E[Y0|D = 1]︸ ︷︷ ︸
by independence

= E[Y1 − Y0|D = 1]︸ ︷︷ ︸
ATT

= E[Y1 − Y0]︸ ︷︷ ︸
ATE
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Identification under Conditional Independence

• Conditional Independence Assumption(CIA): which means that if we can “balance”
covariates X then we can take the treatment D as randomized, thus

(Y1, Y0) ⊥⊥ D|X

• Now as (Y1, Y0) ⊥⊥ D|X ⇎ (Y1, Y0) ⊥⊥ D,

E[Y1|D = 1] − E[Y0|D = 0] ̸= E[Y1|D = 1] − E[Y0|D = 1]
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Identification under Conditional Independence(CIA)

• But using the CIA assumption, then

E[Y1|D = 1] − E[Y0|D = 0]︸ ︷︷ ︸
association

= E[Y1|D = 1, X] − E[Y0|D = 0, X]︸ ︷︷ ︸
conditional on covariates

= E[Y1|D = 1, X] − E[Y0|D = 1, X]︸ ︷︷ ︸
conditional independence

= E[Y1 − Y0|D = 1, X]︸ ︷︷ ︸
conditional ATT

= E[Y1 − Y0|X]︸ ︷︷ ︸
conditional ATE
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Curse of Multiple Dimensionality

• Sub-classification in one or two dimensions as Cochran(1968) did in the case of Smoke and
Mortality is feasible.

• But as the number of covariates we would like to balance grows(like many personal
characteristics such as age, gender,education,working
experience,married,industries,income,…), then the method become less feasible.

• Assume we have k covariates and we divide each into 3 coarse categories (e.g., age: young,
middle age, old; income: low,medium, high, etc.)

• The number of cells(or groups)is 3K.
• If k = 10 then 310 = 59049
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Making Comparison Make Sense

• Selection on Observables
• Regression
• Matching

• Selection on Unobservables
• IV,RD,DID,FE and SCM.

• Simple Regression have to extend to Multiple OLS.
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Multiple OLS Regression: Introduction
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Violation of the 1st Least Squares Assumption

• Recall simple OLS regression equation

Yi = β0 + β1Xi + ui

• Question: What does ui represent?
• Answer: contains all other factors(variables) which potentially affect Yi.

• Assumption 1
E(ui|Xi) = 0

• It states that ui are unrelated to Xi in the sense that,given a value of Xi,the mean of these
other factors equals zero.

• But what if they (or at least one) are correlated with Xi?
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Example: Class Size and Test Score

• Many other factors can affect student’s performance in the school.

• One of factors is the share of immigrants in the class. Because immigrant children may
have different backgrounds from native children, such as

• parents’ education level
• family income and wealth
• parenting style
• traditional culture
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Scatter Plot: The share of immigrants and STR
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Scatter Plot: The share of immigrants and STR
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The share of immigrants as an Omitted Variable

• Class size may be related to percentage of English learners and students who are still
learning English likely have lower test scores.

• In other words, the effect of class size on scores we had obtained in simple OLS may contain
an effect of immigrants on scores.

• It implies that percentage of English learners is contained in ui, in turn that Assumption 1
is violated.

• More precisely,the estimates of β̂1 and β̂0 are biased and inconsistent.
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Omitted Variable Bias: Introduction

• As before, Xi and Yi represent STR and Test Score,repectively.

• Besides, Wi is the variable which represents the share of english learners.

• Suppose that we have no information about it for some reasons, then we have to omit in
the regression.

• Thus we have two regressions in mind:
• True model(the Long regression):

Yi = β0 + β1Xi + γWi + ui

where E(ui|Xi) = 0
• OVB model(the Short regression):

Yi = β0 + β1Xi + vi

where vi = γWi + ui
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Omitted Variable Bias(OVB): inconsistency

• Recall: simple OLS is consistency when n is large, thus plimβ̂1 =
Cov(Xi,Yi)
Var(Xi)

plimβ̂1 =
Cov(Xi, Yi)

VarXi

=
Cov(Xi, (β0 + β1Xi + vi))

VarXi

=
Cov(Xi, (β0 + β1Xi + γWi + ui))

VarXi

=
Cov(Xi, β0) + β1Cov(Xi, Xi) + γCov(Xi,Wi) + Cov(Xi, ui)

VarXi

= β1 + γ
Cov(Xi,Wi)

VarXi
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Omitted Variable Bias(OVB): inconsistency

• Thus we obtain

plimβ̂1 = β1 + γ
Cov(Xi,Wi)

VarXi

• β̂1 is still consistent
• if Wi is unrelated to X, thus Cov(Xi,Wi) = 0
• if Wi has no effect on Yi, thus γ = 0

• Only if both two conditions above are violated simultaneously, then β̂1 is inconsistent.
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Omitted Variable Bias(OVB):Directions

• If OVB can be possible in our regressions,then we should guess the directions of the bias,
in case that we can’t eliminate it.

• A summary of the directions of the OVB bias

Cov(Xi,Wi) > 0 Cov(Xi,Wi) < 0

γ > 0 Positive bias Negative bias
γ < 0 Negative bias Positive bias

86 / 134



Omitted Variable Bias(OVB):Directions

• If OVB can be possible in our regressions,then we should guess the directions of the bias,
in case that we can’t eliminate it.

• A summary of the directions of the OVB bias

Cov(Xi,Wi) > 0 Cov(Xi,Wi) < 0

γ > 0

Positive bias Negative bias
γ < 0 Negative bias Positive bias

86 / 134



Omitted Variable Bias(OVB):Directions

• If OVB can be possible in our regressions,then we should guess the directions of the bias,
in case that we can’t eliminate it.

• A summary of the directions of the OVB bias

Cov(Xi,Wi) > 0 Cov(Xi,Wi) < 0

γ > 0 Positive bias

Negative bias
γ < 0 Negative bias Positive bias
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Omitted Variable Bias: Examples

• Question: If we omit following variables, then what are the directions of these biases? and
why?

1. Time of day of the test
2. The number of dormitories
3. Teachers’ salary
4. Family income
5. Percentage of English learners(the share of immigrants)
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Omitted Variable Bias: Examples in R

• Regress Testscore on Class size

#>
#> Call:
#> lm(formula = testscr ~ str, data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -47.727 -14.251 0.483 12.822 48.540
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 698.9330 9.4675 73.825 < 2e-16 ***
#> str -2.2798 0.4798 -4.751 2.78e-06 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 18.58 on 418 degrees of freedom
#> Multiple R-squared: 0.05124, Adjusted R-squared: 0.04897
#> F-statistic: 22.58 on 1 and 418 DF, p-value: 2.783e-06
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Omitted Variable Bias: Examples in R

• Regress Testscore on Class size and the percentage of English learners

#>
#> Call:
#> lm(formula = testscr ~ str + el_pct, data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -48.845 -10.240 -0.308 9.815 43.461
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
#> str -1.10130 0.38028 -2.896 0.00398 **
#> el_pct -0.64978 0.03934 -16.516 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 14.46 on 417 degrees of freedom
#> Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
#> F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16
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Omitted Variable Bias: Examples in R

Table 5: Class Size and Test Score

Dependent variable:

testscr

(1) (2)

str −2.280∗∗∗ −1.101∗∗∗

(0.480) (0.380)
el_pct −0.650∗∗∗

(0.039)
Constant 698.933∗∗∗ 686.032∗∗∗

(9.467) (7.411)

Observations 420 420
R2 0.051 0.426

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Warp Up

• OVB is the most common bias when we run OLS regressions using nonexperimental data.

• OVB means that there are some variables which should have been included in the
regression but actually was not.

• Then the simplest way to overcome OVB: Put omitted the variable into the right side of the
regression, which means our regression model should be

Yi = β0 + β1Xi + γWi + ui

• The strategy can be denoted as controlling informally, which introduces the more general
regression model: Multiple OLS Regression.
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Multiple OLS Regression: Estimation
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Multiple regression model with k regressors

• The multiple regression model is

Yi = β0 + β1X1,i + β2X2,i + ... + βkXk,i + ui, i = 1, ..., n (4.1)

where
• Yi is the dependent variable
• X1, X2, ...Xk are the independent variables(includes one is our of interest and some control
variables)

• βi, j = 1...k are slope coefficients on Xi corresponding.
• β0 is the estimate intercept, the value of Y when all Xj = 0, j = 1...k
• ui is the regression error term, still all other factors affect outcomes.
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Interpretation of coefficients βi, j = 1...k

• βj is partial (marginal) effect of Xj on Y.

βj =
∂Yi
∂Xj,i

• βj is also partial (marginal) effect of E
[
Yi|X1..Xk

]
.

βj =
∂E[Yi|X1, ..., Xk]

∂Xj,i

• it does mean that we are estimate the effect of X on Y when “other things equal”, thus the
concept of ceteris paribus.
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OLS Estimation in Multiple Regressors

• As in a Simple OLS Regression, the estimators of Multiple OLS Regression is just a
minimize the following question

argmin
∑

b0,b1,...,bk

(Yi − b0 − b1X1,i − ... − bkXk,i)2

where b0 = β̂1, b1 = β̂2, ..., bk = β̂k are estimators.
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OLS Estimation in Multiple Regressors

• Similarly in Simple OLS, based on F.O.C,the multiple OLS estimators β̂0, β̂1, ..., β̂k are
obtained by solving the following system of normal equations

∂

∂b0

n∑
i=1

û2i =
∑ (

Yi − β̂0 − β̂1X1,i − ... − β̂kXk,i
)

= 0

∂

∂b1

n∑
i=1

û2i =
∑ (

Yi − β̂0 − β̂1X1,i − ... − β̂kXk,i
)
X1,i = 0

... =
... =

...

∂

∂bk

n∑
i=1

û2i =
∑ (

Yi − β̂0 − β̂1X1,i − ... − β̂kXk,i
)
Xk,i = 0
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û2i =
∑ (

Yi − β̂0 − β̂1X1,i − ... − β̂kXk,i
)

= 0

∂

∂b1

n∑
i=1
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A transformation of FWL theorem

Regression anatomy theorem
The multiple regression model is

Yi = β0 + β1X1,i + β2X2,i + ... + βkXk,i + ui, i = 1, ..., n

Then estimator of β̂0, β̂1, ..., β̂k can be expressed as following

β̂j =

∑n
i=1 X̃j,iYi∑n
i=1 X̃

2
j,i

for j = 1, 2, .., k

where X̃j,i is the fitted OLS residual of the regression Xj on the other Xs.
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Test Scores and Student-Teacher Ratios

• Now we put one additional control variables into our OLS regression model

Testscore = β0 + β1STR+ β2elpct+ ui

• elpct: the share of English learners as an indicator for immigrants
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Test Scores and Student-Teacher Ratios(2)

tilde.str <- residuals(lm(str ~ el_pct, data=ca))
mean(tilde.str) # should be zero

#> [1] -1.0111e-16

sum(tilde.str) # also is zero

#> [1] -4.240358e-14
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Test Scores and Student-Teacher Ratios(3)

• Multiple OLS estimator

β̂j =

∑n
i=1 X̃j,iYi∑n
i=1 X̃

2
j,i

for j = 1, 2, .., k

sum(tilde.str*ca$testscr)/sum(tilde.str^2)

#> [1] -1.101296
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Test Scores and Student-Teacher Ratios(4)

reg3 <- lm(testscr ~ tilde.str,data = ca)
summary(reg3)

#>
#> Call:
#> lm(formula = testscr ~ tilde.str, data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -48.693 -14.124 0.988 13.209 50.872
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 654.1565 0.9254 706.864 <2e-16 ***
#> tilde.str -1.1013 0.4986 -2.209 0.0277 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 18.97 on 418 degrees of freedom
#> Multiple R-squared: 0.01154, Adjusted R-squared: 0.009171
#> F-statistic: 4.878 on 1 and 418 DF, p-value: 0.02774
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Test Scores and Student-Teacher Ratios(5)

reg4 <- lm(testscr ~ str+el_pct,data = ca)
summary(reg4)

#>
#> Call:
#> lm(formula = testscr ~ str + el_pct, data = ca)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -48.845 -10.240 -0.308 9.815 43.461
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
#> str -1.10130 0.38028 -2.896 0.00398 **
#> el_pct -0.64978 0.03934 -16.516 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 14.46 on 417 degrees of freedom
#> Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
#> F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16
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Table 6: Class Size and Test Score

Dependent variable:

testscr

(1) (2)

tilde.str −1.101∗∗

(0.499)
str −1.101∗∗∗

(0.380)
el_pct −0.650∗∗∗

(0.039)
Constant 654.157∗∗∗ 686.032∗∗∗

(0.925) (7.411)

Observations 420 420
R2 0.012 0.426
Adjusted R2 0.009 0.424

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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The intuition of partitioned regression

Partialling Out

• First, we regress Xj against the rest of the regressors (and a constant) and keep X̃j which is
the “part” of Xj that is uncorrelated

• Then, to obtain β̂j , we regress Y against X̃j which is “clean” from correlation with other
regressors.

• β̂j measures the effect of X1 after the effects of X2, ..., Xk have been partialled out or netted
out.
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Multiple OLS Regression and Causality
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Independent Variable v.s Control Variables

• Generally, we would like to pay more attention to only one independent variable(thus we
would like to call it treatment variable), though there could be many independent
variables.

• Because βj is partial (marginal) effect of Xj on Y.

βj =
∂Yi
∂Xj,i

which means that we are estimate the effect of X on Y when “other things equal”, thus the
concept of ceteris paribus.

• Therefore,other variables in the right hand of equation, we call them control variables,
which we would like to explicitly hold fixed when studying the effect of X1 or D on Y.
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Independent Variable v.s Control Variables

• In a multiple regression, OLS is a way to control observable confounding factors, which
assume the source of selection bias is only from the difference in observed
characteristics(Selection-on-Observables)

• If the multiple regression model is

Yi = β0 + β1X1,i + β2X2,i + ... + βkXk,i + ui, i = 1, ..., n

• Generally, we would like to pay more attention to only one independent variable(thus we
would like to call it treatment variable), though there could be many independent
variables.

• Other variables in the right hand of equation, we call them control variables, which we
would like to explicitly hold fixed when studying the effect of X1 on Y.
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OLS Regression, Covariates and RCT

• More specifically,regression model turns into

Yi = β0 + β1Di + γ2C2,i + ... + γkCk,i + ui, i = 1, ..., n

• transform it into
Yi = β0 + β1Di + γ2...kC′

2...k,i + ui, i = 1, ..., n

• It turns out
Yi = α + ρDi + γC′ + ui
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OLS Regression, Covariates and RCT

• Now write out the conditional expectation of Yi for both levels of Di conditional on C

E [Yi | Di = 1, C] = E [α + ρ + γC+ ui | Di = 1, C]

= α + ρ + γ + E [ui|Di = 1, C]

E [Yi | Di = 0, C] = E [α + γC+ ui | Di = 0, C]

= α + γ + E [ui | Di = 0, C]

• Taking the difference

E [Yi | Di = 1, C] − E [Yi | Di = 0, C]

= ρ + E [ui|Di = 1, C] − E [ui | Di = 0, C]︸ ︷︷ ︸
Selection bias
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OLS Regression, Covariates and RCT

• Again, our estimate of the treatment effect (ρ) is only going to be as good as our ability to
eliminate the selection bias,thus

E [u1i|Di = 1, C] − E [u0i | Di = 0, C] ̸= 0

Conditional Independence Assumption(CIA)
”balance” covariates C then we can take the treatment D as randomized, thus

(Y1, Y0) ⊥⊥ D|C
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OLS Regression, Covariates and RCT

• This is the equivalence of the CIA assumption, which is also equivalent to the 1st
assumption of Multiple OLS

E [u1i|Di = 1, C] − E [u0i | Di = 0, C] = E [u1i|C] − E [u0i|C] = 0

• Then we can eliminate the selection bias, thus making

E [u1i|Di = 1, C] = E [u0i | Di = 0, C]

• Thus
E [Yi | Di = 1, C] − E [Yi | Di = 0, C] = ρ
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Controls
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Picking Control Variables

• Questions: Are “more controls” always better (or at least never worse)?

• Answer: It depends on.

• Irrelevant Variables: the variables have a ZERO partial effect on the dependent variable, thus the
coefficient in the population equation is zero.

• Relevant Variables: the variables have a NONZERO partial effect on the dependent variable.

• Non-Omitted Variables：W is not correlated with X, thus

Cov(Xi,Wi) = 0

• Omitted Variables: W is correlated with X.

Cov(Xi,Wi) ̸= 0

• Highly-correlated Variables: Multicollinearity
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Recall: the Standard Error of β̂

• Our multiple OLS regression model is

Yi = β0 + β1X1i + β2X2i + ... + βkXki + ui

• Under 4 basic assumptions,we can prove the unbiasedness of β̂j. Based on the content in
multiple OLS and partitioned regressions,we have

β̂j = βj +

(∑n
i=1 X̃ijui

)(∑n
i=1 X̃

2
ij

)
• Where X̃ij is the residual of a regression of Xj on all others Xs

• For simplicity, under the 5th assumption of multiple OLS regression: homoskedastic
variance, thus

Var(ui|X1i, X2i..., Xki) = Var(ui|X) = Var(ui) = σ2
u

• where X = X1iX2i..., Xki
114 / 134



Recall: the Standard Error of β̂

• Then we have

Var(β̂j) = Var

βj +

(∑n
i=1 X̃ijui

)(∑n
i=1 X̃

2
ij

)


=

(∑n
i=1 X̃

2
ijVar(ui)

)
(∑n

i=1 X̃
2
i1
)2

=

(∑n
i=1 X̃

2
ijσ

2
u

)
(∑n

i=1 X̃
2
ij

)2

=
σ2
u(∑n

i=1 X̃
2
ij

)
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Recall: the Standard Error of β̂

• Do not forget: The X̃ij is obtained from a multiple OLS regression model

Xij = δ̂0 + δ̂1X1i + δ̂2X2i + ... + δ̂j−1Xj−1,i+

δ̂j+1Xj+1,i + ...δ̂kXki + X̃ji

• The R-Squared of this regression is

R2
j = 1 − SSRj

TSSj

⇒SSRj = TSSj × (1 − R2
j )

⇒X̃2ij =
n∑

i=1

(Xji − X̄j)2(1 − R2
j )

• where R2
j is the R-squared from the regression of Xj on all other Xs.
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Recall: the Standard Error of β̂

• Then under 4 basic assumptions and homoskedastic variance of ui,the variance of the OLS
estimators βj simplify to

Var
(
β̂j

)
= σ2

β̂j
=

σ2
u∑n

i=1(Xij − X̄)2(1 − R2
j )

• Under 3 basic assumptions and homoskedastic variance of ui, the variance of the OLS
estimators β1 simplify to

Var
(
β̂1

)
= σ2

β̂1
=

σ2
u∑

(Xi − X̄)2
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Irrelevant Variables: Models

• Irrelevant Variables: the variables have a ZERO partial effect on the dependent variable,
thus the coefficient in the population equation is zero.

• Assume that our model is

Yi = β0 + β1X1i + β2X2i + β3X3i + ui (8.1)

• Where X1 is the variable of interest or treatment variable.
• X2 is a control variable, which should be balanced or controlled.
• X3 is irrelevant variable, thus

β3 = 0

• The model excluding irrelevant variable is

Yi = β̃0 + β̃1X1 + β̃2X2i + vi (8.2)
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Irrelevant Variables: Estimate

• Then based on the OVB formula,we have

plimβ̂1 = β1 + β3
Cov(X̃12,i, X3i)

VarX̃12,i
= β1

• the OLS estimator β̂1 is still consistent.

Irrelevant Variables: Variance

• The variance of β̂1 in 8.1 is

Var(β̂1) =
σ2
u∑n

i=1(X1i − X̄)2(1 − R2
23)

(8.3)

Where R2
23 is the R-Squared of the regression of X1 on X2 and X3

• The variance of ˆ̃β1 in 8.2 is

Var( ˆ̃β1) =
σ2
v∑n

i=1(X1i − X̄)2(1 − R2
2)

(8.4)

Where R2
2 is the R-Squared of the regression of X1 on X2
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Irrelevant Variables: Variance

• Based on 8.1 and 8.2, we have

ui = Y − β0 + β1X1i + β2X2i + β3X3i

vi = Y − β̃0 + β̃1X1i + β̃2X2i

• Because β3 = 0 then Var(ui) = Var(vi) ⇒ σ2
u = σ2

v

• Because R2
2 ≤ R2

23 then we have

Var(β̂1) ≥ Var( ˆ̃β1)

• It means controlling an irrelevant variable will only enlarge the variance of the estimator,
in other words, make our estimate less precise.
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Irrelevant Variables: Wrap up

• The OLS estimator is still unbiased and consistent.

• It increase the variance of estimator, in other words,it will make the estimate less precise.

• Conclusion: we should avoid to put irrelevant variables into our regression.
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Relevant Variables: Non-Omitted

• What about Relevant but Non-Omitted variables? Our regression models is still 8.1 and 8.2,
but X3 now is not an irrelevant variable but a Non-omitted variable, thus

Cov(X1i, X3i) = 0

Cov(X2i, X3i) = 0

• Then based on the OVB formula,we have

plimβ̂1 = β1 + β3
Cov(X̃12,i, X3i)

VarX̃12,i
= β1

• the OLS estimator β̂1 is still consistent.
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Relevant Variables: Non-Omitted

• Because Cov(X1i, X3i) = 0 and Cov(X2i, X3i) = 0, then we also have

R2
2 = R2

23

• Then the variance of β̂1 and
ˆ̃
β1 are following respectively.

Var(β̂1) =
σ2
u∑n

i=1(X1i − X̄)2(1 − R2
2)

Var( ˆ̃β1) =
σ2
v∑n

i=1(X1i − X̄)2(1 − R2
2)

123 / 134



Revevant Variables: Non-Omitted

• Because β3 ̸= 0 and Cov(X1i, X3i) = 0 and Cov(X2i, X3i) = 0,then

Var(ui) ≤ Var(vi) ⇒ σ2
u ≤ σ2

v

• then we have
Var(β̂1) ≤ Var( ˆ̃β1)

• It decrease the variance of estimator, in other words,it will make the estimate more precise.

• Conclusion: we should always put Relevant but Non-Omitted Variables into our regression.
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Bad Controls v.s Omitted Variable Bias

• It seems that controlling for more covariates always increases the likelihood that
regression estimates have a causal interpretation.

• often true, but not always.

• eg. Some researchers regressing earnings(Yi) on schooling(Si) (and experience) include
controls for occupation(Oi). Thus our regression model is

Yi = β0 + β1Si + γOi + ui

where β1 is the most of interest coefficient.

• Clearly we can also think of schooling(Si) affecting the access to higher level
occupations(Oi),

• e.g. you need a Ph.D. to become a university professor. thus

Oi = λ0 + λ1Si + ei
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Bad Controls v.s Omitted Variable Bias

• Assume that the true relation is a two equation system: a simultaneous equations system

Yi = β0 + β1Si + γOi + ei

Oi = λ0 + λ1Si + ui

• In the case, Occupation Oi is an endogenous variable.

• As a result, you could not necessarily estimate the first equation by OLS, which means that
the estimation of β1 is not unbiased and consistent, because of controlling Occupation(Oi).
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Bad Controls: Occupation

• Let us come back to the wage premium of college graduation: the conditional
expectation.But now we have additional control variable-occupations: white-color and
blue-olor

• Two reasonable assumptions:
1. white-collar jobs, on average, pay more than blue-collar jobs.
2. graduating college increases the likelihood of a white-collar job.

• Question: Is occupation an omitted variable in the regression of college degree on wage?

• However, should we control for occupation type when considering the effect of college
graduation on wages?
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Bad Controls: Occupation

• Assume that college degrees are randomly assigned, then we just need to compare the
wage difference between workers with college degrees and those without degrees.

• Now we control the occupation, which means when we do as follows conditional on
occupation:

• compare degree-earners who chose blue-collar jobs to non-degree-earners who chose
blue-collar jobs.

• or compare degree-earners who chose white-collar jobs to non-degree-earners who chose
white-collar jobs.

• Note: the assumption of random degrees says nothing about random job selection.
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Bad Controls: Occupation

More formally,

• Yi denotes i’s earnings

• Wi is also a dummy for whether individual i has a white-collar job

• Di a dummy variable, refers to i’s college-graduation status which is randomly assigned,
which indicates

{Y1, Y0 ⊥ D} and {W1,W0 ⊥ D}

• Then
Yi = DiY1i + (1 − Di) Y0i

Wi = DiW1i + (1 − Di)W0i
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Bad Controls: Occupation

• Because we’ve assumed Di is randomly assigned, differences in means yield causal
estimates, i.e.

E [Yi | Di = 1] − E [Yi | Di = 0] = E [Y1i − Y0i]

E [Wi | Di = 1] − E [Wi | Di = 0] = E [W1i − W0i]
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Bad Controls: Occupation

• What happens when we estimate the wage-effect of college graduation for white-collar
jobs by controlling occupations?

E [Yi | Wi = 1, Di = 1] − E [Yi | Wi = 1, Di = 0]

= E [Y1i | W1i = 1, Di = 1] − E [Y0i | W0i = 1, Di = 0]

= E [Y1i | W1i = 1] − E [Y0i | W0i = 1]

= E [Y1i | W1i = 1]− E [Y0i | W1i = 1] + E [Y0i | W1i = 1] − E [Y0i | W0i = 1]

= E [Y1i − Y0i | W1i = 1]︸ ︷︷ ︸
ATT on white-collar workers

+ E [Y0i | W1i = 1] − E [Y0i | W0i = 1]︸ ︷︷ ︸
Selection bias

• By introducing a bad control, we introduced selection bias into a setting that did not have
selection bias without controls.
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Bad Controls: Occupation

• Specifically,
E [Y1i − Y0i | W1i = 1]︸ ︷︷ ︸
ATT on white-collar workers

+ E [Y0i | W1i = 1] − E [Y0i | W0i = 1]︸ ︷︷ ︸
Selection bias

• The First term: Expected potential non-college earnings, given that potential white collar
status associated with college education is equal to 1.

• If the occupational choice between white-collor and blue-collor is randomly assigned, then

E [Y0i | W1i = 1] = E [Y0i | W0i = 1]

• It describes how college graduation changes the composition of the pool of white-collar
workers, which in turn change the wage premium between college and high school
graduates.

• Even if the true wage causal effect is zero, this selection bias need not be zero.
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Bad Controls v.s Omitted Variable Bias

• Putting a bunch of “control” variables might actually be a really bad idea: when these
variables are themselves outcomes of the X variable of interest(another Y).

• But if you don’t control more variables,you may suffer Omitted Variable Bias, which also
lead a unbiased and inconsistent estimate.

• How to deal with bad control and omitted variable bias, “one of the hard questions in the
social sciences” by King(2010).

• Traditionally, economists believe that Good control variables should be fixed
characteristics or pre-determined by the time of treatment(Angrist and Pischke,2008).

• A more elaborate way to examine the control variables by logic, we may need new tools
• Directed Acylic Graphs(DAGs) by Pearl(2009)
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Wrap up?

• Which variables belong on the right hand side of a regression equation?
• Relevant and Omitted Variables : variables determining the treatment and correlated with the
outcome.

• in general these variables will be fixed characteristics or pre-determined by the time of
treatment.(Not bad controls)

• Relevant but Non-omitted Variables: Variables uncorrelated with the treatment but correlated
with the outcome.

• these variables may help reducing standard errors.

• Which variables should NOT be included in the right hand side of the equation?
• Variables which are outcomes of the treatment itself. These are bad controls.
• Variables are irrelevant.
• Variables are highly correlated.
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