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DAGs
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Judea Pearl(UCLA)

Computer Scientist, Turing Award in 2011.

"for fundamental contributions to
artificial intelligence through the
development of a calculus for
probabilistic and causal reasoning"

The Book of Why

What's a DAG?

DAG stands for directed acyclic graph, which graphically illustrates the causal relationships and non-
causal associations within a network of random variables.
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Graphs

More formally
In graph theory, a graph is a collection of nodes connected by edges.

Nodes(结点) connected by an edge(边或者连线) are called adjacent(邻近).
Paths run along adjacent nodes, e.g., .
The graph above is undirected, since the edges don't have direction.

A − B − C
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Graphs

Directed
Directed graphs have edges with direction.

Directed paths follow edges' directions, e.g., .
Nodes that precede a given node in a directed path are its ancestors.
The opposite: descendants come a�er the node, e.g., .

A → B → C

D = de(C)
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Graphs

Cycles
If a node is its own descendant (e.g., ), your graph has a cycle.

If your directed graph does not have any cycles, then you have a
directed acyclic graph (DAG).

de(D) = D
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OVB in a DAG
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OVB in a DAG

Example Omi�ed-variable bias in a DAG

A pre�y standard DAG.
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OVB in a DAG

Example Omi�ed-variable bias in a DAG

Nodes are random variables.
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OVB in a DAG

Example Omi�ed-variable bias in a DAG

Edges depict causal links. Causality flows in the direction of the arrows.

Connections ma�er!
Direction ma�ers (for causality).
Non-connections also ma�er! (More on this topic soon.)
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OVB in a DAG

Example Omi�ed-variable bias in a DAG

Here we can see that Y is affected by both D and W.

W also affects D.

Q How does this graph exhibit OVB?
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OVB in a DAG

Example Omi�ed-variable bias in a DAG

There are two pathways from D to Y.

1. The path from D to Y  is our casual relationship of interest.(D → Y)
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OVB in a DAG

Example Omi�ed-variable bias in a DAG

There are two pathways from D to Y.

1. The path from D to Y  is our casual relationship of interest.
2. The path  creates a non-causal association btn D and Y.

(D → Y)
(Y ← W → D)
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OVB in a DAG

Example Omi�ed-variable bias in a DAG

There are two pathways from D to Y.

1. The path from D to Y  is our casual relationship of interest.
2. The path  creates a non-causal association btn D and Y.

To shut down this pathway creating a non-causal association, we must condition on W. Sound familiar?

(D → Y)
(Y ← W → D)
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DAGs in probability
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DAGs in probability

The origin story
Many developments in causal graphical models came from work in probabilistic graphical models—
especially Bayesian networks.

Recall what you know about joint probabilities:

This final product can include a lot of terms.
E.g., even when  are binary,  requires  parameters.

2 P(x1, x2) = P(x1)P(x2|x1)

3 P(x1, x2, x3) = P(x1)P(x2, x3|x1) = P(x1)P(x2|x1)P(x3|x2, x1)

⋮

n P(x1, x2, … , xn) = P(x1)
n

∏
i=2

P(xi|xi−1, … , x1)

xi P(x4|x3, x2, x1) 23 = 8
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DAGs in probability

Thinking locally
DAGs help us think through simplifying .

Given a prob. dist. and a DAG, can we assume some independencies?
Given , is it reasonable to assume  is independent of  and ?

P(xk|xk−1, xk−2, … , x1)

C D A B
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Ex. Consider the DAG to the right:

With the Local Markov Assumption,
 simplifies to .

Conditional on its parent ,
 is independent of  and .

DAGs in probability

Local Markov
This intuitive approach is the Local Markov Assumption

Given its parents in the DAG, a node  is independent of all of its non-descendants.X

P(D|A, B, C) P(D|C)

(C)
D A B
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DAGs in probability

Local Markov and factorization
The Local Markov Assumption is equiv. to Bayesian Network Factorization

For prob. dist.  and DAG ,  factorizes according to  if

where  refers to 's parents in .

Bayesian network factorization is also called the chain rule for Bayesian networks and Markov compatibility.

P G P G

P(x1, … , xn) = ∏
i

P(xi|pai)

pai xi G

20 / 58



Factorization via B.N. chain rule

DAGs in probability

Factorize!
You can now (more easily) factorize the DAG/dist. below! (You're welcome.)

P(A, B, C, D)

= ∏
i

P(xi|pai)

= P(A)P(B|A)P(C|A, B)P(D|C)
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DAGs in probability

Independence
What have we learned so far? (Why should you care about this stuff?)

Local Markov and Bayesian Network Factorization tell us abount independencies within a probability
distribution implied by the given DAG.

You're now able to say something about which variables are independent.

There's more: Great start, but there's more to life than independence.
We also want to say something about dependence.
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DAGs in probability

Dependence
We need to strengthen our Local Markov assumption to be able to interpret adjacent nodes as dependent.
(I.e., add it to our small set of assumptions.)

The Minimality Assumption†

1. Local Markov Given its parents in the DAG, a node  is independent of all of its non-
descendants.

2. (NEW) Adjacent nodes in the DAG are dependent.

With the minimality assumption, we can learn both dependence and independence from connections (or non-
connections) in a DAG.

X

† The name minimality refers to the minimal set of independencies for  and —we cannot remove any more edges
from the graph (while staying Markov compatible with ).

P G

G
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DAGs in probability

Causality
We need one last assumption move DAGs from statistical to causal models.

Strict Causal Edges Assumption

Every parent is a direct cause of each of its children.

For , the set of direct causes is the set of variables to which  responds.

This assumption actually strengthens the second part of Minimality:

2. Adjacent nodes in the DAG are dependent.

Y Y
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DAGs in probability

Assumptions
Thus, we only need two assumptions to turn DAGs into causal models:

1. Local Markov Given its parents in the DAG, a node  is independent of all of its non-descendants.

2. Strict Causal Edges Every parent is a direct cause of each of its children.

Not bad, right?

X
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DAGs in probability

Flows
Brady Neal emphasizes the flow(s) of association and causation in DAGs,
and I find it to be a super helpful way to think about these models.

Flow of association refers to whether two nodes are associated (statistically dependent) or not (statistically
independent).

We will be interested in unconditional and conditional associations.
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DAGs in probability

Building blocks
We will run through a few simple building blocks (DAGs) that make up more complex DAGs.

For each simple DAG, we want to ask a few questions:

1. Which nodes are unconditionally or conditionally independent?†

2. Which nodes are dependent?

3. What is the intuition?

† To prove  and  are conditionally independent, we can show  factorizes as .A B P(A, B|C) P(A|C)P(B|C)
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Building block 1: Two unconnected nodes

Intuition:  and  appear independent—no link between the nodes.

Proof: By Bayesian network factorization,

(since neither node has parents). 

A B

P(A, B) = P(A)P(B)

✓
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Building block 2: Two connected nodes

Intuition:  "is a cause of" : there is clear (causal) dependence.†

Proof: By the Strict Causal Edges Assumption, every parent (here, ) is a direct cause of each of its children
. 

A B

† I'm not a huge fan of the "is a cause of" wording, but it appears to be (unfortunately) common in this literature. IMO,
 causes (or affects)  would be clearer (and more grammatical), but no one asked me. One argument for "a cause

of" (vs. "causes") is it emphasizes that events o�en have multiple causes.
‘‘A B"

A
(B) ✓
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Building block 3: Chains

Intuition: We already showed two connected nodes are dependent:

 and  are dependent.
 and  are dependent.

The question is whether  and  are dependent:
Does association flow from  to  through ?

The answer generally† is "yes": changes in  typically cause changes in .

A B
B C

A C
A C B

A C
† Section 2.2 of Pearl, Glymour, and Jewell provides a "pathological" example of "intransitive dependence". It's
basically when  induces variation in  that is not relevant to  outcome.A B C
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Building block 3: Chains

Proof: Here's the unsatisfying part.

Without more assumptions, we can't prove this association of  and .

We'll think of this as a potential (even likely) association.

A C
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Building block 3: Chains with conditions

Q How does conditioning on  affect the association between  and ?

Intuition:

1.  affects  by changing .
2. When we hold  constant,  cannot "reach" .

We've blocked the path of association between  and .

Conditioning blocks the flow of association in chains. ("Good" control!)

B A C

A C B
B A C

A C
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Building block 3: Chains with conditions

Proof: We want to show  and  are independent conditional on ,
i.e., .

Start with BN factorization:  .

Now apply Bayes' rule for the LHS of our goal: .

And substitute our factorization into the Bayes' rule expression:

   (Bayes rule again)

A C B
P(A, C|B) = P(A|B)P(C|B)

P(A, B, C) = P(A)P(B|A)P(C|B)

P(A, C|B) =
P(A,B,C)

P(B)

P(A, C|B) =
P(A)P(B|A)P(C|B)

P(B)
= P(A|B)P(C|B)✓
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Building block 3: Chains

Note This association of  and  is not directional. (It is symmetric.)

On the other hand, causation is directional (and asymmetric).

As you've been warned for years: Associations are not necessarily causal.

A C
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Building block 4: Forks

Forks are another very common structure in DAGs: .A ← B → C
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Building block 4: Forks

 and  are usually associated in forks. (As with chains.)

This chain of association follows the path .

Intuition:  induces changes in  and . An observer will see  change when  also changes—they are
associated due to their common cause.

A C

A ← B → C

B A B A C
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Building block 4: Forks

Another way to think about forks:

OVB when a treatment  does not affect the outcome .

Without controlling for ,  and  are (usually) non-causally associated.

D Y

W Y D
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Building block 4: Forks

 and  are usually associated in forks. (As with chains.)

This chain of association follows the path .

Proof: Same problem as chains: We can't show  and  are independent, so we assume they're likely
(potentially?) dependent.

A C

A ← B → C

A C
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Building block 4: Blocked forks

Conditioning on  makes  and  independent. (As with chains.)

Intuition:  and  are only associated due to their common cause .

When we shutdown (hold constant) this common cause ,
there is way for  and  to associate.

Also: Think about Local Markov. Or think about OVB.

B A C

A C B

(B)
A C
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Building block 4: Blocked forks

Proof: We want to show .

Step 1: Bayesian net. factorization: 

Step 2: Bayes' rule: 

Step 3: Combine 2 & 1:  

P(A, C|B) = P(A|B)P(C|B)

P(A, B, C) = P(B)P(A|B)P(C|B)

P(A, C|B) =
P(A,B,C)

P(B)

P(A, C|B) = = P(A|B)P(C|B)
P(A,B,C)

P(B) ✓
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Building block 4: Forks

Two more items to emphasize:

1. Association need not follow paths' directions, e.g., .

2. Causation follows directed paths.

A ← B → C
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Building block 5: Immoralities

An immorality occurs when two nodes share a child without being otherwise connected.† 

The child (here: ) at the center of this immorality is called a collider.

Notice: An immorality is a fork with reversed directions of the edges.

A → B ← C

† I'm not making this up.

B
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Building block 5: Immoralities

Q Are  and  independent?
A Yes. .

Intuition: Causal effects flow from  and  and stop there.

Neither  nor  is a descendant of the other.
 and  do not share any common causes.

A C
A ⊥⊥ C

A C

A C
A C
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Building block 5: Immoralities

Proof: Start with marginalizing dist. of  and . Then BNF.

  (  without conditioning)

A C

P(A, C) = ∑B P(A, B, C)

P(A, C) = ∑B P(A)P(C)P(B|A, C)

P(A, C) = P(A)P(C) (∑B P(B|A, C) = 1)

P(A, C) = P(A)P(C) ✓ A ⊥⊥ C
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Building block 5: Immoralities with conditions

Q What happens when we condition on ?
A We unblock (or open) the previously blocked (closed) path.

While  and  are independent, they are conditionally dependent.

Important: When you condition on a collider, you open up the path.

B

A C
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Building block 5: Immoralities with conditions

Intuition:  is a combination of  and .

Conditioning on a value of  jointly constrains  and —they can no longer move independently.

Example: Let  take on  and  take on  (independently).

Conditional on ,  and  are perfectly negatively correlated.

B A C

B A C

A {0, 1} C {0, 1}

B = 1 A C
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Building block 5: Immoralities with conditions

In MHE vocabulary: The collider  is a bad control.

 is affected by both your treatment  and outcome .

The result: A spurious relationship between  and 
Remember: they're actually (unconditionally) independent.

This spurious relationship is o�en called collider bias.

X

X D Y

Y D
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DAGs

Blocked paths
Let's formally define a blocked path (blocking is important).

A path between  and  is blocked by conditioning on a set of variables  (possibly empty) if either of the
following statements is true:

1. On the path, there is a chain  or a fork , and we condition on 
.

2. On the path, there is a collider , and we do not condition on   or any of its
descendants .

Association flows along unblocked paths.

X Y Z

(⋯ → W → …) (⋯ ← W → …) W
(W ∈ Z)

(⋯ → W ← …) W (W ∉ Z)
(de(W) ⊈ Z)
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DAGs

d-separation and d-connected(-ness)
Finally, we'll define whether nodes are separated or connected in DAGs.

Separation: Nodes  and  are d-separated by a set of nodes  if all paths between  and  are blocked by
.

Notation for d-separation: 

Connection: If there is at least one path between  and  that is unblocked, then  and  are d-connected.

X Y Z X Y
Z

X ⊥⊥G Y|Z

X Y X Y
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DAGs

d-separation and causality
d-separation tells us that two nodes are not associated.

To measure the causal effect of  on :
We must eliminate non-causal association.

Pu�ing these ideas together, here is our criterion to isolate causal effects:

If we remove all edges flowing out of  (its causal effects),
then  and  should be d-separated.

This criterion ensures that we've closed the backdoor paths that generate non-causal associations between 
and .

X Y

X
X Y

X
Y
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Examples
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Example 1: OVB

Q OVB using DAG fundamentals: When can we isolate causal effects?

52 / 58



Example 2: Mediation

Here  is a mediator: it mediates the effect of  on .

Q1 What do we need to condition on to get the effect of  on ?
Q2 What happens if we condition on  and ?

M D Y

D Y
W M
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Example 3: Partial mediation

Q1 What do we need to condition on to get the effect of  on ?
Q2 What happens if we condition on  and ?

D Y
W M
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Example 4: Non-mediator descendants

Q1 What do we need to condition on to get the effect of  on ?
Q2 What happens if we condition on  and/or ?

D Y
W Z
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Example 5: M-Bias

Notice that  here is not a result of treatment (could be "pre-treatment").

Q1 What do we need to condition on to get the effect of  on ?
Q2 What happens if we condition on ?
Q3 What happens if we condition on  along with  and/or ?

C

D Y
C
C B C
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One more note:

DAGs are o�en drawn without "noise variables" (disturbances).

But they still exist—they're just "outside of the model."
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DAGs

Limitations
So what can't DAGs do (well)?

Simultaneity: Defined causality as unidirectional and prohibited cycles.

Dynamics: You can sort of allow a variable to affect itself... .

Uncertainty: DAGs are most useful when you can correctly draw them.

Yt=1 → Yt=2

58 / 58


