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Definitions

• The concepts of internal and external validity provide a general framework for assessing
whether a empirical studies answers a specific question of interest rightly and usefully.

• Internal validity: the statistical inferences about causal effects are valid for the population
and setting being studied.

• External validity: the statistical inferences can be generalized from the population and
setting studied to other populations and settings.

• Internal and external validity distinguish between
• the population and setting studied
• the population and setting to which the results are generalized.
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Differences between studied and interest

• The population and setting studied
• The population studied is the population of entities-people, companies, school districts, and
so forth-from which the sample is drawn.

• The setting studied refers to as the institutional, legal, social, and economic environment in
which the population studied fits in and the sample is drawn.

• The population and setting of interest
• The population and setting of interest is the population and setting of entities to which the
causal inferences from the study are to be applied(generalized).

• Example: Class size and test score
• the population studies: elementary schools in CA
• the population of interest: middle schools in CA
• different populations and settings: elementary schools in MA
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Warp up

• Internal validity is top priority in the causal inference studies.

• External validity is the second job only if internal validity can be secured.

• In result, we care about the internal validity over 50 times than the external validity in one
studies.
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Internal validity
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Internal Validity in OLS Regression

• Suppose we are interested in the causal effect of X1 on Y and we estimate the following
multiple regression model

Yi = β0 + β1X1,i + β2X2,i + ... + βkXk,i + ui, i = 1, ..., n

• Internal validity has three components:
1. The estimators of β1 are unbiased and consistent, which is the most important.
2. Both hypothesis tests and confidence intervals should have the desired significance level. (at

least 5% significant)
3. The value of β1 should be large enough to make it sense.
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Threats to Internal Validity

• Threats to internal validity:
• Omitted variables
• Function form misspecification
• Measurement error
• Simultaneous causality
• Missing Data and Sample Selection
• Heteroskedasticity and/or correlated error terms
• Significant coefficients or marginal effects

• In an informal way
• Internal Invalidity = endogeneity in the estimation

9 / 72



OVB and Controls
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Wrap up?

• Which variables belong on the right hand side of a regression equation?
• Relevant and Omitted Variables : variables determining the treatment and correlated with the
outcome.

• in general these variables will be fixed characteristics or pre-determined by the time of
treatment.(Not bad controls)

• Relevant but Non-omitted Variables: Variables uncorrelated with the treatment but correlated
with the outcome.

• these variables may help reducing standard errors.

• Which variables should NOT be included in the right hand side of the equation?
• Variables which are outcomes of the treatment itself. These are bad controls.
• Variables are irrelevant.
• Variables are highly correlated.
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Functional form misspecification
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Functional form misspecification

• Functional form misspecification also makes the OLS estimator biased and inconsistent.

• It can be seen as an special case of OVB,in which the omitted variables are the terms that
reflect the missing nonlinear aspects of the regression function.

• It often can be detected by plotting the data and the estimated regression functions, and it
can be corrected by using different functional forms.

• It can also use nonparametric or semi-parametric methods to make a robust estimate.
• Matching and Propensity Scores Matching
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Measurement error
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Introduction

• When a variable is measured imprecisely,then it might make OLS estimator biased.

• This bias persists even in very large samples, so the OLS estimator is inconsistent if there
is measurement error.

• for example: recall last year’s earnings
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Types of Measurement errors

There are different types of measurement error

1. Measurement error in the dependent variable Y
• Less problematic than measurement error in X
• Usually not a violation of internal validity
• But leads to less precise estimates

2. Measurement error in the independent variable X(errors-in-variables bias)
• Classical measurement error
• Measurement error correlated with X
• Both types of measurement error in X are a violation of internal validity
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Measurement error in the dependent variable Y

• Suppose the true population regression model(Simple OLS) is

Yi = β0 + β1Xi + ui with E[ui|Xi] = 0

• Suppose because Y is measured with errors, thus we can not observe Yi but observe Ỹi,
which is a noisy measure of Yi,thus

Ỹi = Yi + ωi

• The noisy part of Ỹi, ωi, satisfies
E[ωi|Yi] = 0

• It means that Cov(ωi, Yi) = 0 and Cov(ωi, ui) = 0,which is a key hypothesis and is called
classical measurement error

• For example: measurement error due to someone making random mistakes when imputing
data in a database.
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Measurement error in the dependent variable Y

• And we can only estimate
Ỹi = β0 + β1Xi + ei

where ei = ui + ωi

• The OLS estimate β̂1 will be unbiased and consistent because E[ei|Xi] = 0

• Nevertheless,the estimate will be less precise because

Var(ei) > Var(ui)

• Measurement error in Y is generally less problematic than measurement error in X
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Measurement error in X: classical measurement error

• The true model is
Yi = β0 + β1X1i + ui

with E[ui|Xi] = 0

• Due to the classical measurement error,we only have X∗
1i thus X

∗
1i = X1i + wi,we have to

estimate the model is
Yi = β0 + β1X∗

1i + ei

• where ei = −β1wi + ui
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Measurement error in X: classical measurement error

• Similar to OVB bias in simple OLS model

plim
(
β̂1
)
=

Cov(Yi, X∗
1i)

Var(X∗
1i)

=
Cov
[
β0 + β1X1i + ui, (X1i + wi)

]
Var(X1i + wi)

=
β1Cov(X1i, X1i)
Var(X1i + wi)

= β1

(
Var(X1i)

Var(X1i) + Var(wi)

)
= β1

σ2
X1i

σ2
X1i + σ2

w
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Measurement error in X: classical measurement error

• Because

0 ≤
σ2
X1i

σ2
X1i + σ2

w
≤ 1

• we have

plim
(
β̂1
)
= β1

σ2
X1i

σ2
X1i + σ2

w
≤ β1

• The classical measurement error β1 is biased towards 0, which is also called attenuation
bias.
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Measurement error in X: classical measurement error
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Solutions to errors-in-variables bias

• The best way to solve the errors-in-variables problem is to get an accurate measure of
X.(Say nothing useful)

• Instrumental Variables
• It relies on having another variable (the “instrumental” variable) that is correlated with the
actual value Xi but is uncorrelated with the measurement error. We will discuss it later on.
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Simultaneous Causality
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Introduction

• So far we assumed that X affects Y, but what if Y also affects X simultaneously ?
• thus we have Yi = β0 + β1X1 + ui

• we also have Xi = γ0 + γ1Y1 + vi

• Assume that Cov(vi, ui) = 0, then

Cov(Xi, ui) = Cov(γ0 + γ1Y1 + vi, ui)

= Cov(γ1Yi, ui)

= Cov(γ1(β0 + β1X1 + ui), ui)

= γ1β1Cov(Xi, ui) + γ1Var(ui)

• Simultaneous causality leads to biased & inconsistent OLS estimate.

Cov(Xi, ui) =
γ1

1 − γ1β1
Var(ui)
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Simultaneous causality bias

• Substituting Cov(Xi, ui) in the formula for the β̂1

plimβ̂1

= β1 +
Cov(Xi, ui)
Var(X1i)

= β1 +
γ1Var(ui)

(1 − γ1β1)Var(Xi)
̸= β1

• OLS estimate is inconsistent if simultaneous causality bias exits.
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Solutions to simultaneous causality bias

• Instrumental Variables
• and other experimental designs
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Missing Data and Sample Selection
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Introduction

• Missing data are a common feature of economic data sets. Whether missing data pose a
threat to internal validity depends on why the data are missing.

• We consider 3 types of missing data
1. Data are missing at random: this will not impose a threat to internal validity.

• the effect is to reduce the sample size but not introduce bias.

2. Data are missing based on X: This will not impose a threat to internal validity.

• suppose that we used only the districts in which the student–teacher ratio exceeds 20.
Although we are not able to draw conclusions about what happens when STR ≤ 20, this
would not introduce bias into our analysis of the class size effect for districts with STR ≥ 20
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Introduction

3. Data are missing because of a selection process that is related to the value of the
dependent variable (Y),then this selection process can introduce correlation between the
error term and the regressors: Sample Selection Bias.

• Eg. The Survivorship Bias.

• Solutions to sample selection bias:
• Heckman Selection Model(or Heckit
Model)
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Example: Wage determination of migrants

• A Classical Example: wage determination for migrants

Yi = β0 + β1Xi + ui

• Yi is logwage
• Xi is schooling years

• The sample selection problem arises in that the sample consists only of migrants who
chose to migrant from other places.

• If the selection to migration is random,then OK.
• But in reality, people choose to migrant probably they are smarter,more ambitious and more
risk-preferent which normally can not observed or measured in the data.
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Example: Wage determination of migrants

• When y is regressed on X,OLS regression
throws away the hollow circles and just use
grey circles to estimate β .
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Heckman Sample Selection Model

• A two-equation behavioral model

1. selection equation
Z∗
i = W′

iγ + ei

where Zi is a latent variable which indicates the propensity of working for a married woman

• and the error term ei satisfies
E[ei|Wi] = 0

• Then Zi is a dummy variable to represent whether a woman to work or not actually,thus

Zi =

1 if Z∗ > 0

0 if Z∗ ≤ 0
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Heckman Sample Selection Model

2. outcome equation
Y∗
i = X′

iβ + ui

• where the outcome(Yi) can be observed only when Zi=1 or Z∗
i > 0

Y∗
i =

Yi if Zi = 1

0 or missing if Zi = 0

• The error term ui satisfies E[ui|Xi] = 0
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Heckman Sample Selection Model

• The conditional expectation of wages on Xi is

E[Y∗
i |Xi] = X′

iβ

• The conditional expectation of wages on Xi is only for women who work(Z∗ > 0)

E[Y∗
i |Xi, Z∗

i > 0] = E[Yi|Xi, Z∗
i > 0]

= E[X′
iβ + ui|Xi, Z∗

i > 0]

= X′
iβ + E[ui|Z∗

i > 0]

= X′
iβ + E[ui|ei > −W′

iγ]
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Heckman Sample Selection Model

• If ui and ei is independent, then E[ui|ei > −W′
iγ] = 0, then

E[Y∗
i |Xi, Z∗

i > 0] = E[Y∗
i |Xi] = X′

iβ

• It means that only using sample-selected data does not make the estimation of β biased.

• But in reality, unobservables in the two equations, thus ui and ei, are likely to be correlated
• eg. innate ability,ambitions,…

• Instead assume that ui and ei are jointly normal distributed, which can be standardized
easily, thus(

ui
ei

)
∼ N

((
µu

µe

)
,

(
σ2
u σeu

σue σ2
e

))
=

N
((

0
0

)
,

(
σ2
u ρσu

ρσu 1

))
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Math Review: Two Normal Distributed R.V.s

Two Normal Distributed R.V.s
For any two normal variables (n0, n1) with zero mean, we can write n1 = α0n0 + η, where
η ∼ N (0, ση) and E (η|n0) = 0.Then we have

α0 =
Cov(n0, n1)
Var(n0)

or

E (n1 | n0) =
Cov(n0, n1)
Var(n0)

n0

Then

n1 = E (n1 | n0) + η =
Cov(n0, n1)
Var(n0)

n0 + η

37 / 72



Math Review: Two Normal Distributed R.V.s

Two Normal Distributed R.V.s
For any two normal variables (n0, n1) with zero mean, we can write n1 = α0n0 + η, where
η ∼ N (0, ση) and E (η|n0) = 0.Then we have

α0 =
Cov(n0, n1)
Var(n0)

or

E (n1 | n0) =
Cov(n0, n1)
Var(n0)

n0

Then

n1 = E (n1 | n0) + η =
Cov(n0, n1)
Var(n0)

n0 + η

37 / 72



Math Review: Two Normal Distributed R.V.s

Two Normal Distributed R.V.s
For any two normal variables (n0, n1) with zero mean, we can write n1 = α0n0 + η, where
η ∼ N (0, ση) and E (η|n0) = 0.Then we have

α0 =
Cov(n0, n1)
Var(n0)

or

E (n1 | n0) =
Cov(n0, n1)
Var(n0)

n0

Then

n1 = E (n1 | n0) + η =
Cov(n0, n1)
Var(n0)

n0 + η

37 / 72



Math Review: Two Normal Distributed R.V.s

Two Normal Distributed R.V.s
For any two normal variables (n0, n1) with zero mean, we can write n1 = α0n0 + η, where
η ∼ N (0, ση) and E (η|n0) = 0.Then we have

α0 =
Cov(n0, n1)
Var(n0)

or

E (n1 | n0) =
Cov(n0, n1)
Var(n0)

n0

Then

n1 = E (n1 | n0) + η =
Cov(n0, n1)
Var(n0)

n0 + η

37 / 72



Heckman Sample Selection Model

• For two normal variables ui and ei with zero means, we have

α0 =
Cov(ui, ei)
Var(ei)

=
σue

σ2
e

• Then
ui = α0ei + η =

σue

σ2
e
ei + η

where η ∼ N (0, ση) and E (η|ei) = 0
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Heckman Sample Selection Model

• Then the conditional expectation of ui

E[ui|ei > −W′
iγ]

= E[
σue

σ2
e
ei + η|ei > −W′

iγ]

=
σue

σ2
e
E[ei|ei > −W′

iγ] + E[η|ei > −W′
iγ]

=
σue

σ2
e
E[ei|ei > −W′

iγ]
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Math Review: Truncated Density Function

Truncated Density Function
If a continuous random variable X has p.d.f. f(x) and c.d.f. F(x) and a is a constant, then the
conditional density function

f(x|x > a) =


f(x)

1−F(a) if x > a

0 if x ≤ a
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Math Review: Truncated Density Function

Truncated Density Function
The proof follows from the definition of a conditional probability is

Pr(A|B) = Pr(AB)
Pr(B)

then,

F(x|X > c) =

Pr(X < x, X > c)
Pr(X > c)

=
Pr(c < X < x)

1 − F(c)

=
F(x) − F(c)
1 − F(c)

then,

f(x|x > c) =
d
dx

F(x|X > c) =
d
dx [F(x)] − 0
1 − F(c)

=
f(x)

1 − F(c)
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Math Review: Truncated Density Function

• It amounts merely to scaling the density so that it integrates to one over the range above a.
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Standard Normal Truncated Density Function

• If X is distributed as standard normal, thus X ∼ N (0, 1), then the p.d.f and c.d.f are as
follow

ϕ(x) =
1√
2π

e− x2
2

Φ(x) =
1√
2π

∫ x

−∞
e− t2

2 dt

• And c is a scalar, then we can get the Truncated Density Function of an R.V. distributed in
Standard Normal

f (x | x > c) =
ϕ (x)

1 − Φ(c)
• The Expectation of in a standard normal truncated p.d.f

E(x|x > c) =
f(c)

1 − Φ(c)
≡ λ (c)

where λ (c) is called by Inverse Mills Ratio.
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The Expectation in a Standard Normal Truncated
Proof

E(x|x > c) =

∫ +∞

c
xf(x|x > c)dx =

∫ +∞

c
x

ϕ (x)

1 − Φ(c)
dx

=
1

1 − Φ(c)

∫ +∞

c
x

1√
2π

e− x2
2 dx

=
1

1 − Φ(c)

∫ +∞

c

1√
2π

e− x2
2 d(

x2

2
)

=
1

1 − Φ(c)

∫ +∞

c2
2

1√
2π

e−td(t)

=
1

1 − Φ(c)
× 1√

2π
− e−t |+∞

c2
2

=
1

1 − Φ(c)
× 1√

2π
e− c2

2 =
f(c)

1 − Φ(c)
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Heckman Sample Selection Model

• Then the conditional expectation of ui

E[ui|ei > −W′
iγ] =

σue

σ2
e
E[ei|ei > −W′

iγ]

=
σue

σe
E[

ei
σe

| ei
σe

>
−W′

iγ

σe
]

=
σue

σe

ϕ(−W′
iγ/σe)

1 − Φ(−W′
iγ/σe)

=
σue

σe

ϕ(W′
iγ/σe)

Φ(W′
iγ/σe)

= σλλ(W′
iγ)
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Heckman Sample Selection Model

• Then the conditional expectation of wages on Xi is only for women who work(Z∗ > 0)

E[Y∗
i |Xi, Z∗

i > 0] = E[Yi|Xi, Zi = 1] = X′
iβ + σλλ(W′

iγ)

• Turning it into a regression form

Yi = X′
iβ + σλλ(W′

iγ) + ui

• Recall our original wage determination equation

Yi = β0 + β1Xi + ui

• It means that if we could include λ(W′
iγ) as an additional regressor into the outcome

equation, thus we run
Yi = X′

iβ + σλλ(W′
iγ) + ui

then we can obtain the unbiased and consistent estimate β using a self-selected sample.
• The coefficient before λ(·) can be testing significance to indicate whether the term should
be included in the regression, in other words, whether the selection should be correctted. 46 / 72



Heckit Model Estimation: a two-step method

1. Estimate selection equation using all observations,thus

Zi = W′
iγ + eI

• obtain estimates of parameters γ̂

• computer the Inverse Mills Ratio(IMR)
ϕ(W′

i γ̂)

Φ(W′
i γ̂)

= λ̂(W′
i γ̂)

2. Estimate the outcome equation using only the selected observations.

Yi = X′
iβ + σλλ̂(W′

i γ̂) + ui

• Note: standard error is not right, have to be adjusted because we use λ̂(W′
i γ̂) instead of

λ(W′
iγ) in the estimation.
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An Example: Wage Equation for Married Women
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Sources of Inconsistency of OLS Standard Errors
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Introduction

• A different threat to internal validity. Even if the OLS estimator is consistent and the
sample is large, inconsistent standard errors will let you make a bad judgment about the
effect of the interest.

• There are two main reasons for inconsistent standard errors:

1. Heteroskedasticity: The solution to this problem is to use heteroskedasticity-robust
standard errors and to construct F-statistics using a heteroskedasticity-robust variance
estimator.
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Sources of Inconsistency of OLS Standard Errors

2. Correlation of the error term across observations.
• This will not happen if the data are obtained by sampling at random from the population.(i.i.d)
• Sometimes, however, sampling is only partially random.

• When the data are repeated observations on the same entity over time
• Another situation in which the error term can be correlated across observations is when sampling
is based on a geographical unit.(cluster)

• Both situation means that the assumptions

Cov(ui, uj) ̸= 0

the second key assumption in OLS is partially violated.

• the OLS estimator is still unbiased and consistent, but inconsistent standard errors is not
right.
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Clustering Standard Error

• Suppose we focus on the topic of class size and student performance, but now the data
are collecting on students rather than school district.

• Our regression model is

TestScoreig = β0 + β1ClassSizeg + uig

• TestScoreig is the dependent variable for student i in class g, with G groups.

• ClassSizeg the independent variable, varies only at the group level.

• Intuitively,the test score of students in the same class(g) tend to be correlated. Thus

Cov[uig, ujg] = ρσ2
u

where ρ is the intraclass correlation coefficient.
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Clustering Standard Error

• Stata: use option vce(cluster clustvar). Where clustvar is a variable that
identifies the groups in which on observables are allowed to correlate.

• R: the vcovHC() function from plm package
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Magnitude of β1
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Introduction

• The value of β1 should be large enough to make it sense.
• Question: How large is large enough?

• Recall: the explanation of β1 is the effect of one unit X change on Y

• However, the scale on which these tests are scored is often arbitrary and not easy to
interpret.

• If we are interested in how a particular individual’s score compares with the population.
• Thus, instead of asking about the effect on test scores if, say, a test score is 10 points higher,
• it makes more sense to ask what happens when the test score is one or two standard
deviation higher.
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Standardized Variables

• Assume Xs and Y are all continuous variables, then we run a multiple regression model

Yi =β̂0 + β̂1Xi1 + β̂2Xi2 + · · · + β̂kXik + ûi

• Because Σûi = 0 and Y = β̂0 + β̂1X̄1 + · · · + β̂kX̄k,then

Yi − Ȳ =β̂1(Xi1 − X̄1) + β̂2(Xi2 − X̄2) + · · · + β̂k(Xik − X̄k) + ûi

• Then, we obtain following expressions

Yi − Ȳ
σy

=β̂1
σx1

σy

(Xi1 − X̄1)
σx1

+ β̂2
σx1

σy

(Xi2 − X̄2)
σx2

+ · · ·+

β̂k
σx1

σy

(Xi2 − X̄k)
σxk

+
ûi
σy
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Standardized Variables

• Then we have a standardized regression model

Zy = ϕ̂1Z1 + ϕ̂2Z2 + · · · + ϕ̂kZk + vi

where Zy denotes the Z-score of Y, Z1 denotes the Z-score of X1,and so on.

• The estimate coefficients

ϕ̂j = (σ̂j/σ̂y) β̂j for j = 1, . . . , k

• ϕ̂j are traditionally called standardized coefficients or beta coefficients，which can be
explained as if Xj increases by 1 standard deviation, then Y changes by ϕ standard
deviations.
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Wrap Up

• There are five primary threats to the internal validity of a multiple regression study:
1. Omitted variables
2. Functional form misspecification
3. Errors in variables (measurement error in the regressors)
4. Sample selection
5. Simultaneous causality

• Besides, the data structure may violate the 2th OLS regression assumption, thus random
sampling.

1. Times series
2. Cluster data
3. Spatial data

• Last but not least, the magnitude of β1 matters.
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Wrap Up

• Each of these, if present, results in failure of the first least squares assumption,which in
turn means that the OLS estimator is biased and inconsistent.

• Incorrect calculation of the standard errors also poses a threat to internal validity.

• Applying this list of threats to a multiple regression study provides a systematic way to
assess the internal validity of that study.
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External validity
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Definition

• Suppose we estimate a regression model that is internally valid.
• Can the statistical inferences be generalized from the population and setting studied to
other populations and settings?
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Threats to external validity

1. Differences in populations
• The population from which the sample is drawn might differ from the population of interest
• For example, if you estimate the returns to education for men, these results might not be
informative if you want to know the returns to education for women.

2. Differences in settings
• The setting studied might differ from the setting of interest due to differences in laws,
institutional environment and physical environment.

• For example, the estimated returns to education using data from the U.S might not be
informative for China.

• Because the educational system is different and different institutions of the labor market.
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Application to the case of class size and test score

• This analysis was based on test results for California school districts.

• Suppose for the moment that these results are internally valid. To what other populations
and settings of interest could this finding be generalized?

• generalize to colleges: it is implausible
• generalize to other U.S. elementary school districts: it is plausible
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Wrap up

• It is not easy to make your studies valid internally.
• Even harder when you consider generalize your findings.
• Then common way to generalize the findings actually is to repeat to make the studies
internal valid.

• Then we make a generalizing conclusions based on a bunch of internal valid studies.
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Example: Test Scores and Class Size
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External Validity

• Whether the California analysis can be generalized—that is, whether it is externally
valid—depends on the population and setting to which the generalization is made.

• we consider whether the results can be generalized to other elementary public school
districts in the United States.

• more specifically, 220 public school districts in Massachusetts in 1998.
• if we find similar results in the California and Massachusetts, it would be evidence of external
validity of the findings in California.

• Conversely, finding different results in the two states would raise questions about the internal
or external validity of at least one of the studies.

66 / 72



Comparison of the California and Massachusetts data.
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Test scores and class size in MA
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Test scores and class size in MA
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Internal Validity

• The similarity of the results for California and Massachusetts does not ensure their
internal validity.

• Omitted variables: teacher quality or a low student-teacher ratio might have families that
are more committed to enhancing their children’s learning at home or migrating to a better
district.

• Functional form: Although further functional form analysis could be carried out, this
suggests that the main findings of these studies are unlikely to be sensitive to using
different nonlinear regression specifications.

• Errors in variables: The average student-teacher ratio in the district is a broad and
potentially inaccurate measure of class size.

• Because students’ mobility, the STR might not accurately represent the actual class sizes,
which in turn could lead to the estimated class size effect being biased toward zero.
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Internal Validity

• Selection: data cover all the public elementary school districts in the state that satisfy
minimum size restrictions, so there is no reason to believe that sample selection is a
problem here.

• Simultaneous causality: it would arise if the performance on tests affected the
student–teacher ratio.

• Heteroskedasticity and correlation of the error term across observations.
• It does not threaten internal validity.
• Correlation of the error term across observations, however, could threaten the consistency of
the standard errors because the assumption of simple random sampling is violated.
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