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Review the Last Lecture
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OLS and Controls
The main identification strategy of OLS regression is Control, ie. putting covariates into the regression as
control variables.

The main identifying assumption of an OLS regression is

Conditional Independence Assumption(CIA): which means that if we can "balance" covariates 
then we can take the treatment D as randomized, thus

Then ATE or ATT can be obtained to estimate the CEF

Essentially the strategy compares treatment and control subjects who have the same observable
characteristics, which is often called Selection on observables.

X

(Y1, Y0) ⊥⊥ D|X

δ = E[Y1i − Y0i ∣ Xi]
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Internal v.s. External Validity
There are five primary threats to the internal validity of a multiple regression study:

1. Omitted variables
2. Functional form misspecification
3. Errors in variables (measurement error in the regressors)
4. Sample selection
5. Simultaneous causality

the data structure may violate the 2th OLS regression assumption, thus random sampling.

1. Times series(including Panel)
2. Cluster data
3. Spatial data

Last but not least, the magnitude of  matters.β̂
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Matching: Introduction
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Introduction
In observational studies, we cannot obtain the causal effect directly because the counterfactural outcome
of the treated group is unknown(in other words we cannot find a proper control group).

The idea of matching method is quite simple.

What if we can construct a reasonable control group by selecting some(or all) samples in untreated
group in some way

Then we can obtain the treatment effect easily by making a difference

 is the corresponding counterfactual outcomes by matching(selecting) the sample from untreated
group.

δi = Yi1 − Y c
i0

Y c
i
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A Trainning Example
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A Trainning Example

29 / 66



A Trainning Example: before matching
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A Trainning Example: after matching
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Two Assumptions
Two assumptions: one old and one new.

1. Conditional independence: 

2. Overlap: 

(Y0i, Y1i) ⊥⊥ Di|Xi

0 < Pr(Di = 1 ∣ Xi) < 1

32 / 66



Matching Estimators: Exact matching is hard
The training case is an example of Exact matching which means that only units with identical covariate
values are used to construct the control group.

But what if we have multiple covariates using to match, thus ?

In this case, it is impossible to find proper units with identical values in all covariates .

Two complementary solutions running in parallel

1. lower the accuracy of the comparison.
From find a unit in the untreated group with the same covariate values to find a unit in the untreated group
with similar covariate values.

1. Directly reduce dimensionality by converting multiple variables into a single numerical value.

Actually matching methods develop on both directions.

X = (X1, X2, . . . Xk)′

X1, X2, . . . Xk
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Matching: Theory and ApplicationMatching: Theory and Application
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Matching: Theory and Application

Formally
Construct a counterfactual for each individual with .

Based on CIA,the counterfactual for  should only use individuals that match .

Let there be  treated individuals and  control individuals.

There is a weight to adjust : 

Assume . Our estimate for the counterfactual of treated  is

Di = 1

i Xi

NT NC

Yj wi(j) (i = 1, … , NT ; j = 1, … , NC)

∑j wi(j) = 1 i

Ŷ0i = ∑
j∈(D=0)

wi(j)Yj
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Matching: Theory and Application

More formally
If our estimated counterfactual for treated individual  is

then our estimated treatment effect (for individual ) is

∴ a generic matching estimator for the treatment effect on the treated is

i

Ŷ0i = ∑
j

wi(j)Yj

i

τ̂ i = Y1i − Ŷ0i = Y1i −∑
j

wi(j)Yj

τ̂ M = ∑
i∈(D=1)

(Y1i − Ŷ0i) = ∑
i∈(D=1)

⎛

⎝
Y1i − ∑

j∈(D=0)

wi(j)Yj

⎞

⎠

1

NT

1

NT
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Matching: Theory and Application

Weight for it†
Question How to obtain these weights?

Answer Many options, but need to choose carefully/responsibly.

E.g., if  for all , then we're back to a difference in means.

Right Answer Choose weights  that indicate how close  is to .

wi(j) = 1
NC

(i, j)

wi(j) Xj Xi
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Matching: Theory and Application

Proximity
Our weights  should be a measure of how close  is to .

If  is discrete, then we can consider equality, i.e., , scaling as necessary to get
.

wi(j) Xj Xi

X wi(j) = I(Xi = Xj)

∑j wi(j) = 1
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Matching: Theory and Application

Proximity
Our weights  should be a measure of how close  is to .

If  is continuous, then we need proximity rather than equality.

Nearest-neighbor matching chooses the closest control observation using the Euclidean distance between 
and , i.e.,

, where  is 's nearest neighbor in the control group.
Estimator: 
Produces causal estimates if CIA is valid and we have sufficient overlap.

wi(j) Xj Xi

X

Xi

Xj

∥(Xi − Xj)∥ = √(Xi − Xj)
′(Xi − Xj) = √Σk

n=1(Xni − Xnj)
2

τ̂ i = Y1i − Yi
0j Yi

0j i

τ̂ M = ∑i τ̂ i
1

NT
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Matching: Theory and Application

Proximity
Our weights  should be a measure of how close  is to .

If  is continuous, then we need proximity rather than equality.

The Euclidean distance is not invariant to changes in the scale of the X's. A more commonly used distance
is the normalized Euclidean distance

where  is the symmetric and positive semidefinite variance matrix of X of .

No scale problem but still no correlations between Xs.

wi(j) Xj Xi

X

∥(Xi − Xj) ∥= √(Xi − Xj)
′V −1

X (Xi − Xj)

V −1
X X
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Matching: Theory and Application

Proximity
Our weights  should be a measure of how close  is to .

If  is continuous, then we need proximity rather than equality.

Nearest-neighbor matching with Mahalanobis distance chooses the single closest control using Mahalanobis
distance between  and , i.e.,

where  is the covariance matrix of .

Estimator:  where 
Produces causal estimates if CIA is valid and we have sufficient overlap.
No scale problem and taking correlations between Xs into account.

wi(j) Xj Xi

X

Xi Xj

∥(Xi − Xj) ∥= √(Xi − Xj)
′Σ−1

X (Xi − Xj)

Σ−1
X X

τ̂ M = ∑i τ̂ i
1

NT
(τ̂ i = Y1i − Yi

0j)
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Matching: Theory and Application

More neighbors?
Why limit ourselves to a single or some "best" match?

If we're going to let a function/algorithm choose the nearest match, can't we also let the
function/algorithm choose how many matches?

Furthermore, if , it we're throwing away a lot of information.

Don't forget we assume that , then we could use the property of c.d.f to transform the
weight in a distribution.

NC ≫ NT

∑j wi(j) = 1
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Matching: Theory and Application

More neighbors!
Kernel matching gives positive weight to all control observations within some bandwidth , with higher
weight for closer matches determined by some kernel function ,

Example The Epanechnikov kernel is defined as

h

K(⋅)

wi(j) =

K( )
Xj − Xi

h

∑j∈(D=0) K( )
Xj − Xi

h

K(z) = (1 − z2) × I(|z| < 1)
3

4
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The Epanechnikov kernel K(z) = (1 − z2) × I(|z| < 1)3
4
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The Epanechnikov kernel K(z) = (1 − z2) × I(|z| < 1)3
4
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The Triangle kernel K(z) = (1 − |z|) × I(|z| < 1)
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The Uniform kernel K(z) = × I(|z| < 1)1
2
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The Gaussian kernel K(z) = (2π)−1/2 exp(−z2/2)
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Propensity-score methods
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Propensity-score methods

The magic
It turns out that if  then we actually only need to match/condition on

.

 is the propensity score,the probability of treatment given 

Propensity-score theorem If  then 

This theorem extends CIA assumption from a multiple dimensions to a one-dimensional score, avoiding
the curse of dimensionality.

(Y0i, Y1i) ⊥⊥ Di|Xi,

p(Xi) = E[Di|Xi]

p(Xi) Xi.

(Y0i, Y1i) ⊥⊥ Di|Xi, (Y0i, Y1i) ⊥⊥ Di|p(Xi).
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Propensity-score methods
Theorem If  then 

Proof

(Y0i, Y1i) ⊥⊥ Di|Xi, (Y0i, Y1i) ⊥⊥ Di|p(Xi).

Pr[Di = 1∣∣
∣Y0i, Y1i, p(Xi)]

= E[Di
∣∣∣Y0i, Y1i, p(Xi)]

= E[E(Di
∣∣∣Y0i, Y1i, p(Xi), Xi)

∣∣∣Y0i, Y1i, p(Xi)]

= E[E(Di
∣∣∣Y0i, Y1i, Xi)

∣∣∣Y0i, Y1i, p(Xi)]
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Propensity-score methods
Theorem If  then 

Proof

∴  ✔

(Y0i, Y1i) ⊥⊥ Di|Xi, (Y0i, Y1i) ⊥⊥ Di|p(Xi).

Pr[Di = 1∣∣
∣Y0i, Y1i, p(Xi)] = ⋯ = E[E(Di

∣∣
∣Y0i, Y1i, Xi)

∣∣
∣Y0i, Y1i, p(Xi)]

= E[E(Di
∣∣∣Xi)

∣∣∣Y0i, Y1i, p(Xi)]

= E[p(Xi)
∣∣∣Y0i, Y1i, p(Xi)]

= p(Xi)

(Y0i, Y1i) ⊥⊥ Di|Xi ⟹ (Y0i, Y1i) ⊥⊥ Di|p(Xi)

53 / 66



Propensity-score methods

Intuition
Question

 carries way more information than , so how can we still get conditional independence of
treatment by only conditioning on ?

Answer 1 Conditional independence of treatment isn't about extracting all of the information possible from .
We actually only care about creating a situation in which something is independent of .

Answer 2 Back to our main concern: selection bias. People select into treatment. If  says two people were
equally likely to be treated, and if  explains all of selection (CIA), then there cannot be selection between
these two people.

Xi p(Xi)

p(Xi)

Xi

Di| (Y0i, Y1i)

X

Xi
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Propensity-score methods

Estimation
Question:where do propensity scores come from?

there are a lot of ways to estimate it.

1. Flexible (i.e., interactions) logit specification
2. Kernel regression (remember kernel functions?)
3. Many others—machine learning, series-logit estimator, etc.

The most common way is to use logit regression.
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Propensity-score methods

Estimation
From MHE (p. 83)

Question

A big question here is how to best model and estimate ...

Answer

The answer to this is inherently application-specific. A growing empirical literature suggests that a
logit model for the propensity score with a few polynomial terms in continuous covariates works
well in practice...

p(Xi)
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Propensity-score methods

Major requirements
still have two major requirements for any of these methods to work.

1. Is the conditional-independence assumption true?

2. Do we have overlap between treatment and control units.

We can look for evidence of (2) in the data—particularly if we're using propensity-score methods.†

How? Plot the distributions of  for T and C.p(Xi)

† Checking for overlap in -space, can be tough as the dimensions of  expand.X X
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Missing overlap in p(Xi)
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Authentic (enforced) overlap in p(Xi)
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Logit-based  hiding some of the missing overlap in p̂(Xi) p(Xi)
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Matching in practice

Choosing Variables
Question: Which variables among many available ones should be used to match treatment and control
units?

Answer: All variables that you think are likely to be confounders.(Recall "good and bad controls story")

all variables that determine both treatment uptake and the outcome.
Pre-treatment covariates are the best.
Post-treatment variables,especially the outcomes should not be used.

Similar to OLS regression analysis, different results of including different variable sets can be considered
as the sensitivity analysis.
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Matching in practice

With or Without Replacement
Matching with replacement means that control units can be used as a match for more than once.

each control unit is “placed back” into the controls after being used once.

Two advantages:

treatment and control units after matching will be better balanced.
the order in which we match the units does not matter, in turn the matching algorithm is reduced in
complexity.

Nonetheless, it is very common to match with replacement.
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Matching in practice

1:1 Matching v.s 1:m
1:1 matching: each treated unit can be matched to only one control.

1:m matching: each one can be matched to more than one control.

Benefit: This can be useful in large samples where there are more control units than treated units, because
the inclusion of more units will increase the precision of our estimates.

Cost: often the second, third and fourth matches may be poorer than the first match, meaning that we
may end up including control units that are not very similar to the treatment
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Matching in practice

Assessing Balance
As in RCTs,after carrying out matching we should first carry out balance tests to compare the treatment
and control units.

If matching was successful, then by definition they should be very similar to each other in terms of their
covariates.

Balance tests are particularly useful in matching because they might be able to help us choose between
different distance metrics or matching with vs. without replacement.
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Matching in practice

In a Summary
Choosing the "best" matching method highly depends on the unique characteristics of the dataset as well
as the goals of the analysis.

Similar to the logic of Machine learning

Therefore, sensitivity analysis is very crucial to Matching Method.
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Matching in practice

Matching v.s Regression
Both matching and regression rely on CIA (selection on observables). Most biases we could suffer in
regression, such as OVB, measurement error, and simultaneous causality, will not be avoided even if we
use matching.

Why we still need matching?

Due to its non-parametric characteristics, matching does not impose any restrictions on empirical
specification or estimate specific parameters of the CEF function.

Regression does not account for the common support issue.

--

Using matching alone is less common in economics, more frequently combined with other methods like
DID and SCM.
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