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Review the last lecture

Introduction to basic ideas of machine learning

Prediction vs Causal Inference
Supervised vs unsupervised learning
Regression and classification problems

The loss function and the performance of the model

The dangers of overfitting: the bias-variance trade off

Spliting the data into training and testing sets

Using the training set to fit the model
Using the testing set to evaluate the performance of the model

Cross-validation and model selection

We use temperature data to predict the demand of the electricity for COAST area in Texas.
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Linear regression using many predictors
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Regression using many predictors

Now we have many predictors  to predict one outcome , the basic model is still the same as before:

Then as the tricky problem we met in causal inference

How to choose the best predictors? As many as possible?

Answer: NO

We need to balance the bias and the variance of the model to avoid overfitting.

Two strategies:

Subset selection: choose a subset of predictors from the full set of predictors.

Shrinkage methods: shrink the coefficients of the predictors towards zero to reduce the variance of the
model.

Xs Y

yi = β0 + β1x1,i + β2x2,i + ⋯ + βpxp,i + εi
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Subset selection
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Subset selection

In subset selection, we

Choose a subset of the  potential predictors (using some algorithm or professional judgement)

Estimate the chosen linear model using OLS

Use the model to make predictions

Question: How to choose the subset of predictors?

Several options:

Best subset selection: fit a model for every possible subset of predictors.

Forward stepwise selection: start with an intercept and add predictors one by one.

Backward stepwise selection: start with all predictors and remove predictors one by one.

Hybrid approaches: a combination of forward and backward selection.

p
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Best subset selection

Best subset selection is based upon a simple idea: Estimate a model for every possible subset of variables;
then compare their performances.

1. Define  as the model with no predictors.

2. For  in 1 to :

Fit every possible model with  predictors.

Define  as the "best" model with  predictors.

3. Select the "best" model from .

4. Estimate cross-validated error for each .

5. Choose the  that minimizes the CV error.

6. Train the chosen model on the full dataset.

M0

k p

k

Mk k

M0, … , Mp

Mk

Mk
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Best subset selection

Question: So what's the problem? (Why do we need other selection methods?)

Answer: "a model for every possible subset" can mean a huge number  of models.

Example:

10 predictors  1,024 models to fit
25 predictors  33.5 million models to fit
100 predictors  1.5 trillion models to fit

To avoid computational intensity, we need some other selection methods.

(2p)

→

→

→
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Credit data

str(ISLR::Credit)

#> 'data.frame':    400 obs. of  12 variables:
#>  $ ID       : int  1 2 3 4 5 6 7 8 9 10 ...
#>  $ Income   : num  14.9 106 104.6 148.9 55.9 ...
#>  $ Limit    : int  3606 6645 7075 9504 4897 8047 3388 7114 3300 6819 ...
#>  $ Rating   : int  283 483 514 681 357 569 259 512 266 491 ...
#>  $ Cards    : int  2 3 4 3 2 4 2 2 5 3 ...
#>  $ Age      : int  34 82 71 36 68 77 37 87 66 41 ...
#>  $ Education: int  11 15 11 11 16 10 12 9 13 19 ...
#>  $ Gender   : Factor w/ 2 levels " Male","Female": 1 2 1 2 1 1 2 1 2 2 ...
#>  $ Student  : Factor w/ 2 levels "No","Yes": 1 2 1 1 1 1 1 1 1 2 ...
#>  $ Married  : Factor w/ 2 levels "No","Yes": 2 2 1 1 2 1 1 1 1 2 ...
#>  $ Ethnicity: Factor w/ 3 levels "African American",..: 3 2 2 2 3 3 1 2 3 1 ...
#>  $ Balance  : int  333 903 580 964 331 1151 203 872 279 1350 ...

Outcomes: balance

Predictors: income , limit , rating , cards , age , education , gender , student , married ,
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Credit data

1 14.891 3606 283 2 34 11 Male No Yes Caucasian

2 106.025 6645 483 3 82 15 Female Yes Yes Asian

3 104.593 7075 514 4 71 11 Male No No Asian

4 148.924 9504 681 3 36 11 Female No No Asian

5 55.882 4897 357 2 68 16 Male No Yes Caucasian

6 80.18 8047 569 4 77 10 Male No No Caucasian

7 20.996 3388 259 2 37 12 Female No No
African
American

8 71.408 7114 512 2 87 9 Male No No Asian

9 15.125 3300 266 5 66 13 Female No No Caucasian

African

ID▲▼ Income▲▼ Limit▲▼ Rating▲▼ Cards▲▼ Age▲▼ Education▲▼ Gender▲▼ Student▲▼ Married▲▼ Ethnicity▲▼
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Stepwise selection

Stepwise selection provides a less computational intensive alternative to best subset selection.

The basic idea behind stepwise selection

Start with an arbitrary model.

Try to find a "better" model by adding/removing variables.

Repeat.

Stop when you have the best model. (Or choose the best model.)

The two most-common varieties of stepwise selection:

Forward starts with only intercept  and adds variables

Backward starts with all variables  and removes variables

(M0)

(Mp)
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Forward stepwise selection

The process...

1. Start with a model with only an intercept (no predictors), .

2. For :

Estimate a model for each of the remaining  predictors, separately adding the predictors to model
.

Define  as the "best" model of the  models.

3. Select the "best" model from .

What do we mean by "best"?

use cross-validation to choose minimized RMSE.

M0

k = 0, … , p

p − k

Mk

Mk+1 p − k

M0, … , Mp
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Forward stepwise selection with caret  in R for the Credit  dataset

1 231.86 0.750 175.9

2 163.30 0.878 122.3

3 104.59 0.951 84.7

4 102.18 0.953 82.1

5 100.20 0.955 79.5

6 100.44 0.955 80.1

7 100.87 0.955 80.2

8 101.16 0.954 80.6

9 101.25 0.954 80.6

10 101.66 0.954 81.1

N vars▲▼ RMSE▲▼ R2▲▼ MAE▲▼
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Model selection

Backward stepwise selection
The process for backward stepwise selection is quite similar...

1. Start with a model that includes all  predictors: .

2. For :

Estimate  models, where each model removes exactly one of the  predictors from .

Define  as the "best" of the  models.

3. Select the "best" model from .

p Mp

k = p, p − 1, … , 1

k k Mk

Mk−1 k

M0, … , Mp
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Backward stepwise selection with caret  in R for the Credit  dataset

1 232.08 0.749 178.1

2 166.51 0.869 125.7

3 104.48 0.948 83.8

4 99.67 0.953 79.2

5 99.88 0.953 79.7

6 99.39 0.953 79.4

7 99.68 0.953 79.6

8 99.90 0.953 80.0

9 99.83 0.953 79.9

10 99.65 0.953 79.8

N vars▲▼ RMSE▲▼ R2▲▼ MAE▲▼
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Note: forward and backward step. selection can choose different models.
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Model selection

Stepwise selection
Less computationally intensive (relative to best subset selection)

With , BSS fits 1,048,576 models.

With , foward/backward selection fits 211 models.

However, there is no guarantee that stepwise selection finds the best model.

Best is defined by your fit criterion (as always).

Again, cross validation is key to avoiding overfitting.

p = 20

p = 20
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Regularization
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Regularization: some intuition

The key to modern statistical learning is regularization: departing from optimality to stabilize a system.

two common penalties

Ridge regression
Lasso regression

Prediction using many predictors for test scores

Predicting test scores for a school using variable describing the school, its students, and its community.

the full data set consists of data gathered on  elementary schools in CA in 2013

The task is to use these data to develop a prediction model that will provide good out-of-sample
predictions.

The variable to be predicted is the average fifth-grade test score at the school.

3932
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Application: 817 predictors
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Ridge Regression
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Ridge regression and OLS regression

Recall in OLS regression, our model is

Least-squares regression finds  by minimizing SSR

Ridge regression makes a small change

adds a .hi-purple[shrinkage penalty]: the sum of squared coefficents 
still minimizes the (weighted) sum of SSR and the shrinkage penalty.

Yi = β0 + β1X1 + β2X2+. . . +βpXp + ui

β̂j

min
β̂

SSR = min
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n
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Ridge regression and OLS regression

The ridge regression estimator minimizes the penalized sum of squared residuals 

 is a tuning parameter for the harshness of the penalty.

 implies no penalty: back to OLS.

Each value of  produces a new set of coefficients.

Ridge's approach to the bias-variance tradeoff: Balance

reducing SSR, i.e., 
reducing coefficients'magnitudes.
 determines how much ridge "cares about" these two quantities.

SSRridge(b)
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Ridge regression estimator

When , based on F.O.C, then

Then we have Ridge regression estimator

k = 1

= −2
n

∑
i=1

Xi (Yi − bXi) + 2λb = 0
∂SSRridge

∂b
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Ridge regression estimator
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How to obtain the Parameter 

Question: Can we use the F.O.C to obtain it as we did for  as we did in OLS?

Answer: No.

Then the optimal value of  will be ZERO.

Instead, it can be chosen by minimizing the m-fold cross-validated estimate of the RMSE.

Choose some value of  , and estimate the MSPE by m-fold cross-validation

Repeat for many values of , and choose the one that yields the lowest RMSE.

λ

β

λ

λ

λ
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Penalization and standardization

Note: Scale of X can drastically affect ridge regression results.

Because the scale of X will affect  and ridge is very sensitive to .

Ridge regression pays a much larger penalty for different 

Therefore, you have to standardize variables firstly before you use ridge regression, thus you have to
standardize the predictors.

where  is the mean of  and  is the standard deviation of .

β̂ β

β

X∗
i,j =

Xi,j − X̄j

sj

X̄j Xj sj Xj
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Predicting School-level test scores

 estimated by minimizing the 10-fold cross-validated RMSE.

Ridge have a smaller RMSE than OLS

λ

λ̂ = 2233

RMSEols = 78.2;RMSEridge = 39.5
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Lasso Regression
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Introduction

Least Absolute Shrinkage and Selection Operator(LASSO): it simply replaces ridge's squared coefficients
with absolute values.

where  is the penalty.

Unlike ridge, lasso's penalty does not increase with the size of .

The only way to avoid lasso's penalty is to set s to zero.

This feature has two benefits

1. Some coefficients will be set to zero.
2. Lasso can be used for subset/feature selection.

min
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β̂

n

∑
i=1

(Yi − [β̂1Xi,1 + ⋯ + β̂pXi,p]
=ŷ i
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Estimate the Lasso estimator

For simplicity, 

Suppose , then

Suppose , then

p = 1

Rlasso =
n

∑
i=1

(Yi − β̂Xi,1)
2

+ λL|β|

β̂ > 0

Rlasso =
n

∑
i=1

(Yi − β̂Xi,1)
2

+ λLβ

β̂ < 0

Rlasso =
n

∑
i=1

(Yi − β̂Xi,1)
2

− λLβ
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Estimate the Lasso estimator

Then F.O.C

Because we suppose , then

Similar reasoning shows that when 

(−2)
n
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⇒
n
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The Lasso estimator

When the OLS estimator is large, the Lasso estimator shrinks it slightly towards zero— less than ridge.
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The Lasso estimator

Lasso sets many s to ZERO, which means "select" some useful predictors for prediction and drops the
others.

It means that Lasso can work especially well when in reality many of the predictors are irrelevant.

Models in which most of the true  are zero are called sparse models.

β

β
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Predicting School-level test scores

 estimated by minimizing the 10-fold cross-validated RMSE.

Only use  predictors and Lasso have a smaller RMSE than OLS

λ

λ̂Lasso = 4527

p = 56

RMSELasso = 39.7
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Principal Components
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Introduction

Ridge and Lasso reduce the RMSE by shrinking (biasing) the estimated coefficients to zero.

In the case of Lasso, by eliminating many of the regressors entirely.

Instead, Principal components regression(PCR) collapses the very many predictors(k) into a much smaller
number(p) of linear combinations of the predictors.

These linear combinations – called the principal components of X – are computed so that they capture as
much of the variation in the original X's as possible.

Because the number p of principal components is small, OLS can be used, with the principal components
as (new) regressors.
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Principal Components(k=2)

The easy way to combine  and  is a linear equation

Question : What values of a and b should be used?

The Principal Components solution is to choose a and b to solve

For  and  are positively correlated, then ,

the first principal component(PC_1) is 

the second principal component(PC_2) is , which is uncorrelated with the first.

The principal component weights are normalized so that the sum of squared weights adds to 1.

X1 X2

aX1 + bX2

max Var(aX1 + bX2), subject to a2 + b2 = 1

X1 X2 a = b = 1

√2

(X1 + X2)/√2

(X1 − X2)/√2
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Principal Components(k=2)
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Principal Components

Principal components can be thought of as a data compression tool, so that the compressed data have
fewer regressors with as little information loss as possible.

Data compression is used all the time to reduce very large data sets to smaller ones.

eg. image compression, where the goal is to retain as many of the features of the image (photograph)
as possible, while reducing the file size.
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Principal Components

 explains  of the variation of all Xs.

The first 10 PCs thus  ...  explains .

The first 40 PCs explains .

The first 40 PCs explains .

PC1 18%

PC1 PC10 63%

92%

92%
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Principal Components

It turns out that  by CV method.p = 46

RMSEPC = 39.7
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Predicting School Test Scores
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Basic procedure

Split observations into two parts.

1. The first half for model training.
2. The second half for testing.

There sets of predictors are used

1. Small(k=4): Student-teacher ratio, median local income, teacher's average years of experience,
instructional expenditures per student.

2. Large(k=817)
3. Vary Large(k=2065):Additional school and demographic variables, squares and cubes, and

interactions. Note .k > n
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The Three Sets of Predictors

46 / 52



Compare predictive models by predictions
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Compare predictive models by predictions
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Compare predictive models by predictions

The tighter the spread of the scatter along the 45 degree line, the better the prediction.
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Compare predictive models by predictions
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Compare predictive models by predictions

The most important conclusion from this application is that for the large data set the many-predictor
methods succeed where OLS fails.

Because the many-predictor methods allow the coefficients to be biased in a way that reduces their
variance by enough to compensate for the increased bias.

One finding that may not generalize: three methods happen to perform equally well in these data.
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Summary

With many predictors, OLS will produce poor out-of-sample predictions.

By introducing the right type of bias— shrinkage towards zero— the variance of the prediction can be
reduced by enough to offset the bias and result in smaller RMSE.

Ridge and Lasso reduce the RMSE by shrinking (biasing) the estimated coefficients to zero— and in the
case of Lasso, by eliminating many of the regressors entirely.

Principal components collapses X into fewer uncorrelated linear combinations that capture as much of the
variation of the X's as possible. Predictions are then made using the OLS regression of Y on the principal
components.
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