Quantitative Social Science in the Age of Big Data and AI

Lecture 11: Classification

Zhaopeng Qu Hopkins-Nanjing Center May 27 2025

2 / 44

Outline

- 1. Review of the last lecture
- 2. Classification
- 3. Logistic Regression
- 4. Predictions Assessment

Classification

Introduction

- So far our dependent variable or outcome is always continuous, however, in many cases, we are also interested in the discrete or categorical outcomes as well.
- Examples in traditional data:
 - Y= person smokes, or not; X = cigarette tax rate in the state, income, education, age, gender, etc.
 - Y= Civil War, or not; X = economic, social, political, etc.
 - Y= Presidential election, or not; X = economic, social, political, etc.
- In the ML literature, this kind of problem is called **classification**
 - Binary classification: two categories
 - Multi-class classification: more than two categories

- Examples in Big Data:
 - sentiment analysis in text: positive or negative
 - topic classification for news or social media: news, sports, entertainment, etc.
 - image classification: cat or dog

Binary Classification: Linear Probability Model

- The linear probability model(LPM) is a simple extension of the linear regression model to the case of a binary outcome.
- If a outcome variable *Y* is binary, thus

$$y_i = egin{cases} 1 & ext{if} D = 1 \ 0 & ext{if} D = 0 \end{cases}$$

• The unconditional expectation of *Y* is

E[Y]=1 imes Pr(Y=1)+0 imes Pr(Y=0)=Pr(Y=1)

which is the probability of Y = 1.

• Then we can extend it to the conditional expectation of *Y* on *X*, thus $E[Y|X_{1i}, ..., X_{ki}]$ equals to the the probability of *Y* = 1 conditional on $X_{1i}, ..., X_{ki}$, thus

$$E[Y|X_{1i},\ldots,X_{ki}]=Pr(Y=1|X_{1i},\ldots,X_{ki})$$

which is the probability of Y = 1 conditional on X_{1i}, \ldots, X_{ki} .

Multiple OLS Regression

• Suppose our regression model is

 $Y_i=eta_0+eta_1X_{1i}+eta_2X_{2i}+\ldots+eta_kX_{ki}+u_i$

• Based on supervised learning assumption, thus

 $E[\epsilon_i|X_{1i},\ldots,X_{ki}]=0$

• The conditional expectation equals the probability that $Y_i = 1$ conditional on X_{1i}, \ldots, X_{ki}

 $E[Y|X_{1i},\ldots,X_{ki}] = Pr(Y=1|X_{1i},\ldots,X_{ki}) = eta_0 + eta_1 X_{1i} + eta_2 X_{2i} + \ldots + eta_k X_{ki}$

• Now a Linear Probability Model can be defined as following

$$Pr(Y=1|X_{1i},\ldots,X_{ki})=eta_0+eta_1X_{1i}+eta_2X_{2i}+\ldots+eta_kX_{ki}$$

• In other words, we could use the linear regression model to predict the probability of Y = 1 based on X_{1i}, \ldots, X_{ki}

Example: Default Data

default 🔶	student 🔶	balance	income
No	No	939.10	45,519
No	Yes	397.54	22,711
Yes	No	1,511.61	53,507
No	No	301.32	51,540
No	No	878.45	29,562
Yes	No	1,673.49	49,310
No	No	310.13	37,697
No	No	1,272.05	44,896
No	No	887.20	41,641
No	No	230.87	32,798 / 44

Example: Default Data

• The outcome, default, only takes two values (only 3.3% default).

Scatter Plot: Balance vs Default

Linear Probability Model

• The serious problem of the LPM is that the predicted probability can be less than 0 or greater than $1! _{11/44}$

Case Study: Presidential Election Prediction

• Let's consider a more politically relevant example: predicting voter choice in presidential elections

Research Question:

• Can we predict whether a voter will vote for the incumbent party candidate based on economic and demographic factors?

Variables:

- Y: Vote for incumbent (1) or challenger (0)
- X1: Personal income change (%)
- X₂: National unemployment rate (%)
- X₃: Age of voter
- X4: Education level (years)
- X₅: Party identification (scale 1-7)

Why Classification?

- Voting is a binary choice
- Traditional polling has limitations
- Economic voting theory suggests economic conditions influence electoral outcomes
- Can help campaigns target resources

Applications:

- Campaign strategy
- Electoral forecasting
- Understanding voter behavior
- Resource allocation for campaigns

Election Data: Simulated Example

	Sample of Election Data (First 10 observations)						
Vote Choice	Income Change (%)	Unemployment (%)	Age	Education (years)	Party ID (1-7)		
Incumbent	-1.8	4.6	36	13	4		
Incumbent	1.0	1.7	48	20	1		
Incumbent	-3.2	4.5	33	17	6		
Incumbent	1.0	5.6	55	19	5		
Incumbent	-0.3	6.5	52	17	5		
Incumbent	2.3	3.1	59	18	1		
Challenger	1.4	5.5	36	13	2		
Challenger	2.1	8.7	21	18	1		
Challenger	3.6	5.0	30	18	1		
Incumbent	-1.1	6.6	73	19	5		

Election Data: Descriptive Statistics

Vote Choice Challenger Incumbent

Election Data: Descriptive Statistics

Linear Probability Model: Election Example

Linear Probability Me	odel Results:	Predicting	Vote for In	cumbent
Variable	Coefficient	Std. Error	t-statistic	p-value
Intercept	0.4305	0.0636	6.77	< 0.001
Income Change (%)	0.0184	0.0028	6.64	< 0.001
Unemployment (%)	-0.0255	0.0041	-6.29	< 0.001
Age	0.0007	0.0004	1.61	0.109
Education (years)	0.0067	0.0031	2.12	0.034
Party ID (1-7)	0.0957	0.0045	21.25	< 0.001

- A 1% increase in personal income change increases probability of voting incumbent by 0.018.
- A 1% increase in unemployment decreases probability by 0.026.
- Strong party identification effect: each unit increase in party ID (toward Republican) increases incumbent vote probability by 0.096.

Problems with Linear Probability Model

Key Problems:

- 1. 297 predictions fall outside the valid probability range [0,1]
- 2. Heteroskedasticity: Error variance depends on X values
- 3. Non-normal errors: Binary outcomes violate normality assumption

Logistic Regression

Introduction to Logistic Regression

- Probabilities must be bounded between 0 and 1.
- To address this limitation, we consider a general probability model:

 $Pr(Y_i=1|X_1,\ldots X_k)=G(Z)=G(eta_0+eta_1X_{1,i}+eta_2X_{2,i}+\ldots+eta_kX_{k,i})$

- where $Z = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \ldots + \beta_k X_{k,i}$
- The function $G(\cdot)$ must satisfy two essential conditions:
 - $\circ \ 0 \leq G(Z) \leq 1$
 - monotonicity and continuity

Introduction to Logistic Regression

• Using the standard logistic cumulative distribution function

$$Pr(Y_i=1|X_{1,i},\ldots,X_{k,i})=rac{1}{1+e^{-Z}}=rac{e^Z}{1+e^Z}$$

- Where $Z = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \ldots + \beta_k X_{k,i}$
- Like LPM model, the logistic regression estimates the probability of Y = 1 conditional on $X_{1,i}, \ldots, X_{k,i}$
- And then we could use the **estimated probabilities** to **make predictions**
 - if $p(Balance) \ge 0.5$, we could predict "Yes" for Default
 - \circ or, to be conservative, we could predict "Yes" if $p(Balance) \ge 0.1$

Logistic Regression

- Suppose we only have one feature, *X*, then $Z = \beta_0 + \beta_1 X$
- Then the logistic regression model is

$$p(x) = Pr(Y_i = 1 | X_{1,i}, \dots, X_{k,i}) = rac{1}{1 + e^{eta_0 + eta_1 X_{1,i}}}$$

• With a little math, you can show

$$p(X) = rac{e^{eta_0+eta_1 X}}{1+e^{eta_0+eta_1 X}} \implies \logigg(rac{p(X)}{1-p(X)}igg) = eta_0+eta_1 X$$

- This is the log odds ratio, which is the log of the odds ratio of Y = 1 and Y = 0
- If we could know the values of β_j s, we could predict p(x) for any x
- Question: how to obtain the values of β_j s?

Estimation: Maximum Likelihood Estimation

- Because Logit model is a non-linear model, we cannot use the OLS or other linear regression methods to estimate the parameters.Instead, we use the Maximum Likelihood Estimation (MLE) method to estimate the parameters.
- The likelihood function is a *joint probability distribution* of the data, treated as a function of the unknown coefficients. It describes the probability of the data we observed or the sample from the population, given the unknown coefficients.
- The maximum likelihood estimator (MLE) are the estimate values of the unknown coefficients that maximize the likelihood function.
- MLE's logic

the most likely function is the function to have produce the data we observed.

 In other words, the MLE method searches for the β_js that make our data most likely given the model we've written.

Estimates and predictions

• Thus, our estimates are $\hat{\beta}_0 \approx -10.65$ and $\hat{\beta}_1 \approx 0.0055$.

Remember: These coefficients are for the **log odds**.

• If we want **to make predictions** for y_i (whether or not *i* defaults), then we first must **estimate the probability** p(x), more specifically, p(Balance) here,

$$\hat{p}(ext{Balance}) = rac{e^{\hat{eta}_0 + \hat{eta}_1 ext{Balance}}}{1 + e^{\hat{eta}_0 + \hat{eta}_1 ext{Balance}}} pprox rac{e^{-10.65 + 0.0055 \cdot ext{Balance}}}{1 + e^{-10.65 + 0.0055 \cdot ext{Balance}}}$$

- If Balance = 0, we then estimate $\hat{p} \approx 0.000024$
- If Balance = 2,000, we then estimate $\hat{p} \approx 0.586$
- If Balance = 3,000, we then estimate $\hat{p} \approx 0.997$ †

+ You get a sense of the nonlinearity of the predictors' effects.

Logistic Regression for default data

Logistic Regression: Election Example

Logistic regression results, i realeting vote for incumbent						
Variable	Coefficient	Std. Error	z-statistic	p-value		
Intercept	-1.1250	0.4921	-2.29	0.022		
Income Change (%)	0.1472	0.0226	6.50	< 0.001		
Unemployment (%)	-0.2104	0.0323	-6.51	< 0.001		
Age	0.0060	0.0035	1.72	0.085		
Education (years)	0.0561	0.0244	2.30	0.022		
Party ID (1-7)	0.8203	0.0482	17.00	< 0.001		

Logistic Regression Results Predicting Vote for Incumbent

- All variables are statistically significant predictors of vote choice
- Party ID has the strongest effect (coefficient = 0.8203)
- Economic variables matter: income growth helps incumbent, unemployment hurts
- Demographics also play a role: older and more educated voters slightly favor incumbent

Predicted Probabilities: Election Example

Predictions Assessment: the correct rate

- First, we need to set a **threshold** for the predicted probability.
 - For example, if the predicted probability is greater than 0.5, we predict $\hat{y} = 1$ (vote for incumbent), otherwise $\hat{y} = 0$ (vote for challenger).
- Then we could calculate the accuracy of the predictions as the ratio of the number of **correct predictions** to the total number of **predictions**.
 - $\circ~$ The correct prediction rate here is 82.6%
- Question: 82.6% is fairly good?
- However, recall that 78.6% of voters actually voted for the incumbent.
- It means that even if we guessed "Incumbent" for everyone, we would get 78.6% right.
- The formal assessment of the classification model is to use the **confusion matrix**.

The confusion matrix

• It is used to display the correct and incorrect predictions for each class of the outcome.

Confusion Matrix: Election Prediction				
	Actual Vote Choice			
Prediction	Challenger	Incumbent		
Challenger	True Negative (TN)	False Negative (FN)		
Incumbent	False Positive (FP)	True Positive (TP)		

• The accuracy of a method is the share of correct predictions, *i.e.*,

Accuracy = (TN + TP) / (TN + TP + FN + FP)

The confusion matrix

Confusion Matrix: Election Prediction

	Actual Vote Choice			
Prediction Challenger		Incumbent		
Challenger	True Negative (TN)	False Negative (FN)		
Incumbent	False Positive (FP)	True Positive (TP)		

• Sensitivity : the share of positive outcomes *Y* = 1, where it is the incumbent voters, that we correctly predict.

Sensitivity = TP / (TP + FN)

• Sensitivity is also called recall and the true-positive rate.

The confusion matrix

Confusion Matrix: Election Prediction

	Actual Vote Choice				
Prediction Challenger		Incumbent			
Challenger	True Negative (TN)	False Negative (FN)			
Incumbent	False Positive (FP)	True Positive (TP)			

• Specificity : the share of negative outcomes *Y* = 0, where it is the challenger voters, that we correctly predict.

Specificity = **TN** / (**TN** + **FP**)

The confusion matrix

Confusion Matrix: Election Prediction

	Actual Vote Choice				
Prediction Challenger		Incumbent			
Challenger	True Negative (TN)	False Negative (FN)			
Incumbent	False Positive (FP)	True Positive (TP)			

• Precision : the share of predicted positives $(\hat{Y} = 1)$ that are correct.

Precision = TP / (TP + FP)

The confusion matrix

Confusion Matrix: Election Prediction

	Actual Vote Choice			
Prediction Challenger		Incumbent		
Challenger	True Negative (TN)	False Negative (FN)		
Incumbent	False Positive (FP)	True Positive (TP)		

• F1 Score : the harmonic mean of precision and sensitivity, thus it is a good measure of the overall performance of the model.

$$\mathrm{F1\:Score} = rac{2 imes \mathrm{Precision} imes \mathrm{Sensitivity}}{\mathrm{Precision} + \mathrm{Sensitivity}} = rac{2 imes \mathrm{TP}}{\mathrm{TP} + \mathrm{FP} + \mathrm{FN}}$$

Which one should we use?

- Question: which criterion should we use?
- Answer: use the *right* criterion based on specific context.
- Are true positives more valuable than true negatives?
 If yes, then *Sensitivity* will be the key.
 eg: Campaign wants to identify all potential incumbent voters for mobilization (missing supporters is costly)
- Do you want to have high confidence in predicted positives?
 Precision will be the key.
 eg: Targeted advertising budget want to be sure before spending money on "incumbent voters"
- Are all errors equal?

Accuracy is perfect.

eg: General election forecasting where both types of prediction errors are equally important

Election Case: Model Performance Assessment

Confusion Matrix: Election Prediction Results				
	Actual Vote Choice			
Prediction	Challenger	Incumbent		
Challenger	167 (TN)	262 (FP)		
Incumbent	87 (FN)	1484 (TP)		

Model Performance Metrics

Metric	Value	Interpretation
Accuracy	82.6%	Overall correct prediction rate
Sensitivity	94.5 %	Correctly identified incumbent voters
Specificity	38.9 %	Correctly identified challenger voters
Precision	85.0%	Accuracy of incumbent predictions
F1 Score	89.5%	Balanced precision-recall measure

• Don't forget that all the rates are based on the **threshold** we set.

Multiple thresholds

- If we change the threshold, we will get different rates.
- Suppose we set the threshold to 0.3 instead of 0.5, then we will get the following rates:

Confusion Matrix: Election Prediction			Model	Performance Metrics		
Results			Metric	Value	Interpretation	
Actual Vote Choice			Accuracy	80.0%	Overall correct prediction rate	
Prediction	Challenger	Incumbent			99.2 %	Correctly identified incumbent
Challenger	40 (TN)	389 (FP)		Sensitivity		voters
Incumbent	12 (FN)	1559 (TP)		Specificity	9.3%	Correctly identified challenger voters
				Precision	80.0%	Accuracy of incumbent predictions
				F1 Score	88.6%	Balanced precision-recall measure 36

Multiple thresholds

Visualizing the Sensitivity-Specificity Trade-off

• Receiver Operating Characteristic (ROC) curve plots the true(TP/P) and false positive rates(FP/N).

Choosing the Optimal Threshold from ROC

- Question: How do we choose the best threshold from the ROC curve?
- Several approaches for threshold selection:
 - 1. Youden's Index: Maximize (Sensitivity + Specificity 1)
 - 2. Closest to (0,1): Minimize distance to perfect classifier
 - 3. Cost-sensitive: Based on relative costs of false positives vs false negatives
 - 4. Domain-specific: Based on practical considerations

Method	Threshold	Sensitivity	Specificity	Youden_Index
Youden's Index	0.720	0.792	0.741	0.533
Closest to (0,1)	0.744	0.764	0.767	0.531
Default (0.5)	0.500	0.945	0.389	0.334

Comparison of Threshold Selection Methods

• Youden's Index often provides a good balance between sensitivity and specificity.

Choosing the Optimal Threshold from ROC

Threshold Selection: Practical Considerations

Threshold Selection by Campaign Context					
Scenario	Priority	Reasoning	Suggested_Threshold		
Voter Mobilization	High Sensitivity	Don't want to miss potential supporters	Lower (0.3-0.4)		
Targeted Advertising	High Precision	Limited budget - need confident predictions	Higher (0.6-0.7)		
General Polling	Balanced Accuracy	Equal importance of both voter types	Optimal (0.5)		

Key Insights:

- No universal "best" threshold depends on context and costs
- Lower thresholds \rightarrow Higher sensitivity, more false positives
- Higher thresholds \rightarrow Higher precision, more false negatives
- ROC curve helps visualize trade-offs but domain knowledge guides final decision

The Area Under the Curve (AUC)

• It can be used to calculate the area under the curve (AUC) which is the probability that a random positive example is ranked higher than a random negative example.

Election Case: K-fold Cross-Validation

- Suppose that Accuracy is our criterion of interest.
- Then we will still use K-fold cross-validation to estimate the accuracy of the predictions.
- Suppose K = 5, then we could estimate the accuracy of the predictions as

$$\hat{CV}_{Accuracy} = rac{1}{5}\sum_{k=1}^5 rac{TP_k+TN_k}{TP_k+TN_k+FP_k+FN_k}$$

Election Case: K=5 Cross-Validation ROC Curves

Cross-Validation **AUC Results** Fold AUC 1 0.834 2 0.834 3 0.834 0.842 4 5 0.804 Mean 0.830 **SD** 0.015