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Classification
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Examples in traditional data:

Y= person smokes, or not; X = cigarette tax
rate in the state, income, education, age,
gender, etc.
Y= Civil War, or not; X = economic, social,
political, etc.
Y= Presidential election, or not; X =
economic, social, political, etc.

Examples in Big Data:

sentiment analysis in text: positive or
negative
topic classification for news or social
media: news, sports, entertainment, etc.
image classification: cat or dog

Introduction

So far our dependent variable or outcome is always continuous, however, in many cases, we are also
interested in the discrete or categorical outcomes as well.

In the ML literature, this kind of problem is called classification

Binary classification: two categories
Multi-class classification: more than two categories 5 / 44



Binary Classification: Linear Probability Model

The linear probability model(LPM) is a simple extension of the linear regression model to the case of a
binary outcome.

If a outcome variable  is binary, thus

The unconditional expectation of  is

which is the probability of .

Then we can extend it to the conditional expectation of  on , thus  equals to the the
probability of  conditional on ,thus

which is the probability of  conditional on .

Y

yi = { 1 ifD = 1
0 ifD = 0

Y

E[Y ] = 1 × Pr(Y = 1) + 0 × Pr(Y = 0) = Pr(Y = 1)

Y = 1

Y X E[Y |X1i, . . . , Xki]

Y = 1 X1i, . . . , Xki

E[Y |X1i, . . . , Xki] = Pr(Y = 1|X1i, . . . , Xki)

Y = 1 X1i, . . . , Xki
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Multiple OLS Regression

Suppose our regression model is

Based on supervised learning assumption, thus

The conditional expectation equals the probability that  conditional on 

Now a Linear Probability Model can be defined as following

In other words, we could use the linear regression model to predict the probability of  based on

Yi = β0 + β1X1i + β2X2i+. . . +βkXki + ui

E[ϵi|X1i, . . . , Xki] = 0

Yi = 1 X1i, . . . , Xki

E[Y |X1i, . . . , Xki] = Pr(Y = 1|X1i, . . . , Xki) = β0 + β1X1i + β2X2i+. . . +βkXki

Pr(Y = 1|X1i, . . . , Xki) = β0 + β1X1i + β2X2i+. . . +βkXki

Y = 1

X1i, . . . , Xki
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Example: Default Data

No No 939.10 45,519

No Yes 397.54 22,711

Yes No 1,511.61 53,507

No No 301.32 51,540

No No 878.45 29,562

Yes No 1,673.49 49,310

No No 310.13 37,697

No No 1,272.05 44,896

No No 887.20 41,641

No No 230.87 32,799

default ▲▼ student ▲▼ balance▲▼ income▲▼
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Example: Default Data

The outcome, default, only takes two values (only 3.3% default). 9 / 44



Scatter Plot: Balance vs Default
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Linear Probability Model

The serious problem of the LPM is that the predicted probability can be less than 0 or greater than 1! 11 / 44



Research Question:

Can we predict whether a voter will vote for
the incumbent party candidate based on
economic and demographic factors?

Variables:

Y: Vote for incumbent (1) or challenger (0)
X₁: Personal income change (%)
X₂: National unemployment rate (%)
X₃: Age of voter
X₄: Education level (years)
X₅: Party identification (scale 1-7)

Why Classification?

Voting is a binary choice
Traditional polling has limitations
Economic voting theory suggests economic
conditions influence electoral outcomes
Can help campaigns target resources

Applications:

Campaign strategy
Electoral forecasting
Understanding voter behavior
Resource allocation for campaigns

Case Study: Presidential Election Prediction

Let's consider a more politically relevant example: predicting voter choice in presidential elections

12 / 44



Election Data: Simulated Example

Sample of Election Data (First 10 observations)

Vote Choice Income Change (%) Unemployment (%) Age Education (years) Party ID (1-7)

Incumbent -1.8 4.6 36 13 4

Incumbent 1.0 1.7 48 20 1

Incumbent -3.2 4.5 33 17 6

Incumbent 1.0 5.6 55 19 5

Incumbent -0.3 6.5 52 17 5

Incumbent 2.3 3.1 59 18 1

Challenger 1.4 5.5 36 13 2

Challenger 2.1 8.7 21 18 1

Challenger 3.6 5.0 30 18 1

Incumbent -1.1 6.6 73 19 5
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Election Data: Descriptive Statistics
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Election Data: Descriptive Statistics
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Linear Probability Model: Election Example

Linear Probability Model Results: Predicting Vote for Incumbent

Variable Coefficient Std. Error t-statistic p-value

Intercept 0.4305 0.0636 6.77 < 0.001

Income Change (%) 0.0184 0.0028 6.64 < 0.001

Unemployment (%) -0.0255 0.0041 -6.29 < 0.001

Age 0.0007 0.0004 1.61 0.109

Education (years) 0.0067 0.0031 2.12 0.034

Party ID (1-7) 0.0957 0.0045 21.25 < 0.001

A 1% increase in personal income change increases probability of voting incumbent by 0.018.
A 1% increase in unemployment decreases probability by 0.026.
Strong party identification effect: each unit increase in party ID (toward Republican) increases incumbent
vote probability by 0.096.
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Problems with Linear Probability Model

Key Problems:

1. 297 predictions fall outside the valid probability range [0,1]
2. Heteroskedasticity: Error variance depends on X values
3. Non-normal errors: Binary outcomes violate normality assumption
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Logistic Regression
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Introduction to Logistic Regression

Probabilities must be bounded between 0 and 1.

To address this limitation, we consider a general probability model:

where 

The function  must satisfy two essential conditions:

monotonicity and continuity

Pr(Yi = 1|X1, . . . Xk) = G(Z) = G(β0 + β1X1,i + β2X2,i+. . . +βkXk,i)

Z = β0 + β1X1,i + β2X2,i+. . . +βkXk,i

G(⋅)

0 ≤ G(Z) ≤ 1
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Introduction to Logistic Regression

Using the standard logistic cumulative distribution function

Where 

Like LPM model, the logistic regression estimates the probability of  conditional on 

And then we could use the estimated probabilities to make predictions

if , we could predict "Yes" for Default

or, to be conservative, we could predict "Yes" if 

Pr(Yi = 1|X1,i, . . . , Xk,i) = =
1

1 + e−Z

eZ

1 + eZ

Z = β0 + β1X1,i + β2X2,i+. . . +βkXk,i

Y = 1 X1,i, . . . , Xk,i

p(Balance) ≥ 0.5

p(Balance) ≥ 0.1
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Logistic Regression

Suppose we only have one feature, , then 

Then the logistic regression model is

With a little math, you can show

This is the log odds ratio, which is the log of the odds ratio of  and 

If we could know the values of s, we could predict  for any 

Question: how to obtain the values of s?

X Z = β0 + β1X

p(x) = Pr(Yi = 1|X1,i, . . . , Xk,i) =
1

1 + eβ0+β1X1,i

p(X) = ⟹ log( ) = β0 + β1X
eβ0+β1X

1 + eβ0+β1X

p(X)

1 − p(X)

Y = 1 Y = 0

βj p(x) x

βj
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Estimation: Maximum Likelihood Estimation

Because Logit model is a non-linear model, we cannot use the OLS or other linear regression methods to
estimate the parameters.Instead, we use the Maximum Likelihood Estimation (MLE) method to estimate
the parameters.

The likelihood function is a joint probability distribution of the data, treated as a function of the unknown
coefficients. It describes the probability of the data we observed or the sample from the population, given
the unknown coefficients.

The maximum likelihood estimator (MLE) are the estimate values of the unknown coefficients that
maximize the likelihood function.

MLE's logic

the most likely function is the function to have produce the data we observed.

In other words, the MLE method searches for the s that make our data most likely given the model
we've written.

βj
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Estimates and predictions

Thus, our estimates are  and .

Remember: These coefficients are for the log odds.

If we want to make predictions for  (whether or not  defaults),
then we first must estimate the probability , more specifically,  here,

If , we then estimate 

If , we then estimate 
If , we then estimate  †

β̂0 ≈ −10.65 β̂1 ≈ 0.0055

yi i

p(x) p(Balance)

p̂(Balance) = ≈
eβ̂0+β̂1Balance

1 + eβ̂0+β̂1Balance

e−10.65+0.0055⋅Balance

1 + e−10.65+0.0055⋅Balance

Balance = 0 p̂ ≈ 0.000024

Balance = 2, 000 p̂ ≈ 0.586

Balance = 3, 000 p̂ ≈ 0.997

† You get a sense of the nonlinearity of the predictors' effects.
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Logistic Regression for default data
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Logistic Regression: Election Example

Logistic Regression Results: Predicting Vote for Incumbent

Variable Coefficient Std. Error z-statistic p-value

Intercept -1.1250 0.4921 -2.29 0.022

Income Change (%) 0.1472 0.0226 6.50 < 0.001

Unemployment (%) -0.2104 0.0323 -6.51 < 0.001

Age 0.0060 0.0035 1.72 0.085

Education (years) 0.0561 0.0244 2.30 0.022

Party ID (1-7) 0.8203 0.0482 17.00 < 0.001

All variables are statistically significant predictors of vote choice
Party ID has the strongest effect (coefficient = 0.8203)
Economic variables matter: income growth helps incumbent, unemployment hurts
Demographics also play a role: older and more educated voters slightly favor incumbent
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Predicted Probabilities: Election Example
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Predictions Assessment
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Predictions Assessment: the correct rate

First, we need to set a threshold for the predicted probability.

For example, if the predicted probability is greater than 0.5, we predict  (vote for incumbent),
otherwise  (vote for challenger).

Then we could calculate the accuracy of the predictions as the ratio of the number of correct predictions
to the total number of predictions.

The correct prediction rate here is 82.6%

Question: 82.6% is fairly good?

However, recall that 78.6% of voters actually voted for the incumbent.

It means that even if we guessed "Incumbent" for everyone, we would get 78.6% right.

The formal assessment of the classification model is to use the confusion matrix.

ŷ = 1

ŷ = 0
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Predictions Assessment

The confusion matrix
It is used to display the correct and incorrect predictions for each class of the outcome.

Confusion Matrix: Election Prediction

Actual Vote Choice

Prediction Challenger Incumbent

Challenger True Negative (TN) False Negative (FN)

Incumbent False Positive (FP) True Positive (TP)

The accuracy of a method is the share of correct predictions, i.e.,

Accuracy = (TN + TP) / (TN + TP + FN + FP)
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Predictions Assessment

The confusion matrix
Confusion Matrix: Election Prediction

Actual Vote Choice

Prediction Challenger Incumbent

Challenger True Negative (TN) False Negative (FN)

Incumbent False Positive (FP) True Positive (TP)

Sensitivity : the share of positive outcomes , where it is the incumbent voters, that we correctly
predict.

Sensitivity = TP / (TP + FN)

Sensitivity is also called recall and the true-positive rate.

Y = 1
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Predictions Assessment

The confusion matrix
Confusion Matrix: Election Prediction

Actual Vote Choice

Prediction Challenger Incumbent

Challenger True Negative (TN) False Negative (FN)

Incumbent False Positive (FP) True Positive (TP)

Specificity : the share of negative outcomes , where it is the challenger voters, that we correctly
predict.

Specificity = TN / (TN + FP)

Y = 0

31 / 44



Predictions Assessment

The confusion matrix
Confusion Matrix: Election Prediction

Actual Vote Choice

Prediction Challenger Incumbent

Challenger True Negative (TN) False Negative (FN)

Incumbent False Positive (FP) True Positive (TP)

Precision : the share of predicted positives  that are correct.

Precision = TP / (TP + FP)

(Ŷ = 1)
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Predictions Assessment

The confusion matrix
Confusion Matrix: Election Prediction

Actual Vote Choice

Prediction Challenger Incumbent

Challenger True Negative (TN) False Negative (FN)

Incumbent False Positive (FP) True Positive (TP)

F1 Score : the harmonic mean of precision and sensitivity, thus it is a good measure of the overall
performance of the model.

F1 Score = =
2 × Precision × Sensitivity

Precision + Sensitivity

2 × TP

TP + FP + FN
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Which one should we use?

Question: which criterion should we use?

Answer: use the right criterion based on specific context.

Are true positives more valuable than true negatives?
If yes, then Sensitivity will be the key.
eg: Campaign wants to identify all potential incumbent voters for mobilization (missing supporters is costly)

Do you want to have high confidence in predicted positives?
Precision will be the key.
eg: Targeted advertising budget - want to be sure before spending money on "incumbent voters"

Are all errors equal?
Accuracy is perfect.
eg: General election forecasting where both types of prediction errors are equally important
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Confusion Matrix: Election Prediction
Results

Actual Vote Choice

Prediction Challenger Incumbent

Challenger 167 (TN) 262 (FP)

Incumbent 87 (FN) 1484 (TP)

Model Performance Metrics

Metric Value Interpretation

Accuracy 82.6% Overall correct prediction rate

Sensitivity 94.5%
Correctly identified incumbent
voters

Specificity 38.9%
Correctly identified challenger
voters

Precision 85.0%
Accuracy of incumbent
predictions

F1 Score 89.5%
Balanced precision-recall
measure

Election Case: Model Performance Assessment

Don't forget that all the rates are based on the threshold we set.
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Confusion Matrix: Election Prediction
Results

Actual Vote Choice

Prediction Challenger Incumbent

Challenger 40 (TN) 389 (FP)

Incumbent 12 (FN) 1559 (TP)

Model Performance Metrics

Metric Value Interpretation

Accuracy 80.0% Overall correct prediction rate

Sensitivity 99.2%
Correctly identified incumbent
voters

Specificity 9.3%
Correctly identified challenger
voters

Precision 80.0%
Accuracy of incumbent
predictions

F1 Score 88.6%
Balanced precision-recall
measure

Multiple thresholds

If we change the threshold, we will get different rates.

Suppose we set the threshold to 0.3 instead of 0.5, then we will get the following rates:
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Multiple thresholds
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Visualizing the Sensitivity-Specificity Trade-off

Receiver Operating Characteristic (ROC) curve plots the true(TP/P) and false positive rates(FP/N).
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Choosing the Optimal Threshold from ROC

Question: How do we choose the best threshold from the ROC curve?

Several approaches for threshold selection:

1. Youden's Index: Maximize (Sensitivity + Specificity - 1)
2. Closest to (0,1): Minimize distance to perfect classifier
3. Cost-sensitive: Based on relative costs of false positives vs false negatives
4. Domain-specific: Based on practical considerations

Comparison of Threshold Selection Methods

Method Threshold Sensitivity Specificity Youden_Index

Youden's Index 0.720 0.792 0.741 0.533

Closest to (0,1) 0.744 0.764 0.767 0.531

Default (0.5) 0.500 0.945 0.389 0.334

Youden's Index often provides a good balance between sensitivity and specificity. 39 / 44



Choosing the Optimal Threshold from ROC
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Threshold Selection: Practical Considerations

Threshold Selection by Campaign Context

Scenario Priority Reasoning Suggested_Threshold

Voter Mobilization High Sensitivity Don't want to miss potential supporters Lower (0.3-0.4)

Targeted
Advertising

High Precision
Limited budget - need confident
predictions

Higher (0.6-0.7)

General Polling
Balanced
Accuracy

Equal importance of both voter types Optimal (0.5)

Key Insights:

No universal "best" threshold - depends on context and costs
Lower thresholds → Higher sensitivity, more false positives
Higher thresholds → Higher precision, more false negatives
ROC curve helps visualize trade-offs but domain knowledge guides final decision
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The Area Under the Curve (AUC)

It can be used to calculate the area under the curve (AUC) which is the probability that a random positive
example is ranked higher than a random negative example.
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Election Case: K-fold Cross-Validation

Suppose that Accuracy is our criterion of interest.

Then we will still use K-fold cross-validation to estimate the accuracy of the predictions.

Suppose , then we could estimate the accuracy of the predictions asK = 5

ĈV Accuracy =
5

∑
k=1

1

5

TPk + TNk

TPk + TNk + FPk + FNk
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Cross-
Validation

AUC Results

Fold AUC

1 0.834

2 0.834

3 0.834

4 0.842

5 0.804

Mean 0.830

SD 0.015

Election Case: K=5 Cross-Validation ROC Curves
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