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Review the previous lecture
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Causal Inference and RCT

Causality is our main goal in the studies of empirical social science.

To build a reasonable counterfactual world or to find a proper control group is the core of causal
inference.

The existence of selection bias makes social science more difficult than science.

Although RCTs is a powerful tool for economists, every project or topic can NOT be carried on by it.

The main reason is the ethical concerns of RCTs.

This is why modern econometric methods exists and develops. The main job of econometrics(causal
inference) is using non-experimental data to making convincing causal inference.
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Furious Seven Weapons

To build a reasonable counterfactual world or to find a proper control group is the core of econometric
methods.

1. Randomized controlled trial(RCTs)
2. Regression
3. Matching and Propensity Score
4. Instrumental Variable
5. Regression Discontinuity
6. Panel Data and Difference in Differences
7. Synthetic Control Method

The most fundamental of these tools is regression. It compares treatment and control subjects with the
same observable characteristics in a generalized manner.

It paves the way for the more elaborate tools used in the class that follow.

Let's start our exciting journey from it.
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OLS Regression: Simple Regression
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Class Size and Student's Performance

Topic: Class Size and Student's Performance in California

Data: California Test Score Data(CASchools )

The data used here are from all 420 K-6 and K-8 districts in California in 1998 and 1999.

Test scores are on the Stanford 9 standardized test administered to 5th grade students.

School characteristics(average across the district): class size, number of computers per classroom,
expenditures per student, etc.

Student characteristics(average across the district): percentage of students in the public assistance
program CalWorks (formerly AFDC), average family income, the percentage of students that qualify
for a reduced price lunch, and the percentage of students that are English learners (that is, students
for whom English is a second language).
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Class Size and Student's Performance

Please answer the following questions:

What is the population in this study?

What is the sample in this study?

What is the unit of observation in this study?

What is the variable of interest(outcome)?

What is the treatment variable(cause)?

Could you think of any other variables that might affect the outcome?
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What can we tell from the plot?

Specifically, is there a relationship between
class size and student's performance?

Positive or Negative?

How strong is the relationship?

The relationship is linear or other forms?

Class Size and Student's Performance
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Quantitative Question and Modeling

Specific Quantitative Question:

What is the effect on district test scores if we would increase district average class size by 1 student (or one
unit of Student-Teacher's Ratio)

If we could know the full relationship between two variables which can be summarized by a model,
which can be written as a real value function , thus

Unfortunately, the function form is always unknown.

Now our job is to find a reasonable approximation of the function .

f(⋅)

Testscore = f(ClassSize)

f(⋅)
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Modeling and Estimation Methods

Two basic methods to obtain the function :

non-parametric: we don't care the specific form of the function, unless we know all the values of two
variables or some key characteristics of the function. We can specify the whole distributions of class size
and test scores.

parametric: we have to suppose the basic form of the function, then to find values of some unknown
parameters to determine the specific function form.

f(⋅)
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Modeling and Estimation Methods

Suppose we choose parametric method, we need to know the real value of a parameter  to describe the
relationship between Class Size and Test Scores as

Next step, we have to suppose specific forms of the function , still two categories: linear and non-
linear

And we start to use the simplest function form: a linear equation, which is graphically a straight line, to
summarize the relationship between two variables.

where  is actually the the slope and  is the intercept of the straight line.

β1

β1 =
ΔTestscore

ΔClassSize

f(⋅)

Test score = β0 + β1 × Class size

β1 β0
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 is the intercept: the value of  where .
 is the slope: the amount that  increases

when  increases by one unit.
Here, a one-unit increase in  is associated
with a -unit increase in .

Review: Linear functions or relationships

A straight line can be represented by a linear equation: Y = α + βX

α Y X = 0

β Y

X

X

0.7 Y
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Review: Linear functions or relationships
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From Functional Model to Estimation Model

BUT the average test score in district  does not only depend on the average class size

It also depends on other factors such as

Student background
Quality of the teachers
School's facilitates
Quality of text books
Random deviation......

Therefore, the equation describing the linear relation between Test score and Class size is better written as

where  lumps together all other factors that affect average test scores.

i

Test scorei = β0 + β1 × Class sizei + ui

ui
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Terminology for Simple Regression Model

The linear regression model with one regressor is denoted by

Where

 is the dependent variable(Test Score)
 is the independent variable or regressor(Class Size or Student-Teacher Ratio)

The intercept  and the slope  are the coefficients of the population regression line, also known as the
parameters of the population regression line.

 is the error term which contains all the other factors besides  that determine the value of the
dependent variable, , for a specific observation, .

Yi = β0 + β1Xi + ui

Yi

Xi

β0 β1

ui X

Y i
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Population Regression: relationship in average

The linear regression model with one regressor is denoted by$$Y{i}=\beta{0}+\beta{1}X{i}+u_{i}$$

Then  is the population regression line or the population regression function

Both side to conditional on , then

Suppose  then

Population regression function is the relationship that holds between Y and X on average over the
population.

β0 + β1Xi

X

E[Yi|Xi] = β0 + β1Xi + E[ui|Xi]

E[ui|Xi] = 0

E[Yi|Xi] = β0 + β1Xi
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Graphics for Simple Regression Model
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How to find the "best" fitting line?

In general we don't know  and  which are parameters of population regression function but have to
calculate them using a bunch of data: the sample.

How to find the line that fits the data best?

β0 β1
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The Ordinary Least Squares(OLS)

The OLS estimator

Chooses the best regression coefficients so that the estimated regression line is as close as possible to the
observed data, where closeness is measured by the sum of the squared mistakes made in predicting Y
given X.

Let  and  be estimators of  and ,thus

The predicted value of  given  using these estimators is , or  formally denotes as
, thus

The prediction mistake is the difference between  and ,which denotes as , the residual

b0 b1 β0 β1

b0 ≡ β̂0 and b1 ≡ β̂1

Yi Xi b0 + b1Xi β̂0 + β̂1Xi

Ŷ i

Ŷ i = β̂0 + β̂1Xi

Yi Ŷ i ûi

ûi = Yi − Ŷi = Yi − (b0 + b1Xi)
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The Ordinary Least Squares(OLS)

The OLS Estimator

Math Review:

Summation: 
Minimization:  which means we need to find the values of  and  that minimize the

expression
Derivative:  and 

The OLS estimator minimizes the sum of squared prediction mistakes:

Solve the problem by optimization: F.O.C(the first order condition)

∑n
i=1 ui = u1 + u2 + u3+. . . +un

min
b0,b1

b0 b1

∂
∂b0

∂
∂b1

min
b0,b1

n

∑
i=1

û
2
i =

n

∑
i=1

(Yi − b0 − b1Xi)
2

n

∑
i=1

(Yi − b0 − b1Xi)
2 = 0

∂

∂b0
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The Ordinary Least Squares(OLS)

The OLS Estimator

Step 1: OLS estimator of 

Step 2: OLS estimator of 

Now as long as we have data, we can calculate  and , and then we can obtain the estimated
regression line.

β0

b0 ≡ β̂0 =
¯̄¯̄
Y − b1

¯̄̄ ¯̄
X

β1

b1 ≡ β̂1 =
∑n

i=1(Xi −
¯̄̄ ¯̄
X)(Yi −

¯̄¯̄
Y )

∑
n
i=1(Xi −

¯̄̄ ¯̄
X)(Xi −

¯̄̄ ¯̄
X)

β̂0 β̂1
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The Estimated Regression Line

Obtain the values of OLS estimator for a certain data,

Then the regression line is

β̂1 = −2.28 and β̂0 = 698.9
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Measures of Fit: The 

Math Review:

Variance: 

Standard Deviation: 

Because the variation of  can be summarized by Variance,Then the total variation of , which are also
called as the total sum of squares (TSS), is:

R
2

V ar(X) = ∑n
i=1(Xi −

¯̄̄ ¯̄
X)21

n

SD(X) = √V ar(X)

Y Yi

TSS =
n

∑
i=1

(Yi −
¯̄¯̄
Y )2
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Measures of Fit: The 

Because  can be decomposed into the fitted value plus the residual: ,then likewise , we
can obtain

The explained sum of squares (ESS):

The sum of squared residuals (SSR):

R
2

Yi Yi = Ŷi + ûi Yi

TSS = ESS + SSR

ESS =
n

∑
i=1

(Ŷi −
¯̄¯̄
Y )2

SSR =
n

∑
i=1

(Ŷi − Yi)
2 =

n

∑
i=1

û2
i
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Measures of Fit: The 

 or the coefficient of determination, is the fraction of the sample variance of  explained/predicted by

So , it measures that how much can the variations of  be explained by the variations of  in share.

Question: If R-squares is bigger, is the regression better?

Answer: Not necessarily,especially when we make causal inference in cross-sectional data.

R
2

R2 Yi

Xi

R2 = = 1 −
ESS

TSS

SSR

TSS

0 ≤ R2 ≤ 1 Y Xi
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Least Squares Assumptions

1. Assumption 1: Conditional Mean is Zero
2. Assumption 2: Random Sample
3. Assumption 3: Large outliers are unlikely

If the 3 least squares assumptions hold the OLS estimators will be

unbiased
consistent
normal sampling distribution
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Simple OLS and RCT
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Simple OLS and RCT

We have known that RCT is the "golden standard" for causal inference.Because it can naturally eliminate
selection bias.

So far, we did not discuss the relationship between RCT and OLS regression, which means that we can
not be sure that the result from an OLS regression can be explained as "causal".

Instead of using a continuous regressor , the regression where  is a binary variable, a so-called
dummy variable, will help us to unveil the relationship between RCT and OLS regression.

For example, we may define  as follows:

The regression can be written as

X Di

Di

Yi = β0 + β1Di + ui
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Regression when X is a Binary Variable

More precisely, the regression model now is

With  as the regressor, it is not useful to think of  as a slope parameter.
Since , i.e., we only observe two discrete values instead of a continuum of regressor
values.

There is no continuous line depicting the conditional expectation function  since this
function is solely defined for -positions  and .

The interpretation of the coefficients in this regression model is as follows:

, so  is the expected test score in districts where  where  is below .
 where  is above 

Thus,  is the difference in group specific expectations, i.e., the difference in expected test score
between districts with  and those with ,

TestScorei = β0 + β1Di + ui

D β1

Di ∈ {0, 1}

E(TestScorei|Di)

x 0 1

E(Yi|Di = 0) = β0 β0 Di = 0 STR 20

E(Yi|Di = 1) = β0 + β1 STR 20

β1

STR < 20 STR ≥ 20

β E(Y |D 1) E(Y |D 0)
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Class Size and Test Score:  is a Binary VariableD
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Class Size and Test Score:  is a Binary VariableD
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Causality and OLS

Recall, the individual treatment effect(ICE) is defined as

The ATE is the average of the ICE and ATT is the average of the ICE for the treated group.

Either way, the treatment effect is a constant, i.e., it does not depend on the individual.

OLS regression is to estimate a constant treatment effect , thus

ICE = Y1i − Y0i = δi

ρ = E(δi) or ρ = E(δi|D = 1)

ρ

Yi = α


E[Y0i]

+ Di δi


Y1i−Y0i

+ ηi


Y0i−E[Y0i]
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Causality and OLS

Now write out the conditional expectation of  for both levels of 

Take the difference

Again, our estimate of the treatment effect  is only going to be as good as our ability to shut down the
selection bias.

Selection bias in regression model:

Thus there is something in our disturbance  that is affecting  and is also correlated with .

Yi Di

E [Yi ∣ Di = 1] = E [α + δi + ηi ∣ Di = 1] = α + ρ + E [ηi|Di = 1]

E [Yi ∣ Di = 0] = E [α + ηi ∣ Di = 0] = α + E [ηi ∣ Di = 0]

E [Yi ∣ Di = 1] − E [Yi ∣ Di = 0] = ρ + E [ηi|Di = 1] − E [ηi ∣ Di = 0]


Selection bias

(ρ)

E [ηi|Di = 1] − E [ηi ∣ Di = 0]

ηi Yi Di
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Simple OLS Regression v.s. RCT

In a simple regression model, OLS estimators are just a generalizing continuous version of RCT when
least squares assumptions are hold.

Ideally,regression is a way to control observable confounding factors, which assume the source of
selection bias is only from the difference in observed characteristics.

But in contrast to RCT, in observational studies, researchers cannot control the assignment of treatment
into a treatment group versus control group,which means that the two groups are incomparable.

To make two groups comparable, we need to keep treatment and control group other thing equal in
observed characteristics and unobserved characteristics.

OLS regression is valid only when least squares assumptions are hold.

In most cases,it is not easy to obtain. We have to know how to make a convincing causal inference when
these assumptions are not hold.
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