Quantitative Social Science in the Age of Big Data and AI

Lecture 4: Regression Analysis

Zhaopeng Qu Hopkins-Nanjing Center April 14 2025

2 / 35

Review the previous lecture

Causal Inference and RCT

- **Causality** is our main goal in the studies of empirical social science.
- To build a **reasonable counterfactual world** or to find a **proper control group** is the core of causal inference.
- The existence of **selection bias** makes social science more difficult than science.
- Although RCTs is a powerful tool for economists, every project or topic can **NOT** be carried on by it.
 - The main reason is the **ethical concerns** of RCTs.
- This is why modern econometric methods exists and develops. The main job of econometrics(causal inference) is using **non-experimental** data to **making convincing causal inference**.

Furious Seven Weapons

- To build a **reasonable counterfactual world** or to find a **proper control group** is the core of econometric methods.
 - 1. Randomized controlled trial(RCTs)
 - 2. Regression
 - 3. Matching and Propensity Score
 - 4. Instrumental Variable
 - 5. Regression Discontinuity
 - 6. Panel Data and Difference in Differences
 - 7. Synthetic Control Method
- The most fundamental of these tools is **regression**. It compares treatment and control subjects with the same observable characteristics **in a generalized manner**.
- It paves the way for the more elaborate tools used in the class that follow.
- Let's start our exciting journey from it.

OLS Regression: Simple Regression

Class Size and Student's Performance

- Topic: Class Size and Student's Performance in California
- **Data**: California Test Score Data(CASchools)
 - The data used here are from all 420 K-6 and K-8 districts in California in 1998 and 1999.
 - Test scores are on the Stanford 9 standardized test administered to 5th grade students.
 - **School characteristics**(average across the district): class size, number of computers per classroom, expenditures per student, etc.
 - Student characteristics(average across the district): percentage of students in the public assistance program CalWorks (formerly AFDC), average family income, the percentage of students that qualify for a reduced price lunch, and the percentage of students that are English learners (that is, students for whom English is a second language).

Class Size and Student's Performance

- Please answer the following questions:
 - What is the population in this study?
 - What is the sample in this study?
 - What is the unit of observation in this study?
 - What is the variable of interest(outcome)?
 - What is the treatment variable(cause)?
 - Could you think of any other variables that might affect the outcome?

Class Size and Student's Performance

- What can we tell from the plot?
- Specifically, is there a relationship between class size and student's performance?
 - Positive or Negative?
 - How strong is the relationship?
 - The relationship is linear or other forms?

Quantitative Question and Modeling

- Specific Quantitative Question:
 - What is the effect on district **test scores** if we would increase district average **class size** by 1 student (or one unit of Student-Teacher's Ratio)
- If we could know the full relationship between two variables which can be summarized by a **model**, which can be written as a real value function $f(\cdot)$, thus

Testscore = f(ClassSize)

- Unfortunately, the function form is always unknown.
- Now our job is to find a **reasonable approximation** of the function $f(\cdot)$.

Modeling and Estimation Methods

- **Two** basic methods to obtain the function $f(\cdot)$:
 - non-parametric: we don't care the specific form of the function, unless we know all the values of two variables or some key characteristics of the function. We can specify the *whole distributions* of class size and test scores.
 - **parametric**: we have to suppose the basic form of the function, then to find values of some *unknown parameters* to determine the specific function form.

Modeling and Estimation Methods

• Suppose we choose **parametric** method, we need to know the real value of a **parameter** β_1 to describe the relationship between Class Size and Test Scores as

 $eta_1 = rac{\Delta Testscore}{\Delta ClassSize}$

- Next step, we have to suppose specific forms of the function *f*(·), still two categories: linear and non-linear
- And we start to use the *simplest* function form: a **linear** equation, which is graphically **a straight line**, to summarize the relationship between two variables.

 $Test\,score = eta_0 + eta_1 imes Class\,size$

where β_1 is actually the **the slope** and β_0 is the **intercept** of the straight line.

Review: Linear functions or relationships

• A straight line can be represented by a linear equation: $Y = \alpha + \beta X$

- α is the **intercept**: the value of *Y* where X = 0.
- *β* is the slope: the amount that *Y* increases when *X* increases by one unit.
- Here, a one-unit increase in *X* is associated with a 0.7-unit increase in *Y*.

Review: Linear functions or relationships

From Functional Model to Estimation Model

- BUT the average test score in district *i* does not **only** depend on the average class size
- It also depends on **other factors** such as
 - Student background
 - Quality of the teachers
 - School's facilitates
 - Quality of text books
 - Random deviation.....
- Therefore, the equation describing the linear relation between Test score and Class size is **better** written as

 $Test\,score_i = eta_0 + eta_1 imes Class\,size_i + u_i$

where u_i lumps together all **other factors** that affect average test scores.

Terminology for Simple Regression Model

• The linear regression model with one regressor is denoted by

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

• Where

- *Y_i* is the **dependent variable**(Test Score)
- X_i is the **independent variable** or regressor(Class Size or Student-Teacher Ratio)
- The intercept β₀ and the slope β₁ are the coefficients of the population regression line, also known as the parameters of the population regression line.
- *u_i* is the error term which contains all the other factors besides *X* that determine the value of the dependent variable, *Y*, for a specific observation, *i*.

Population Regression: relationship in average

- The linear regression model with one regressor is denoted by $Y_{i} = beta_{0} + beta_{1}X_{i} + u_{i}$
- Then $\beta_0 + \beta_1 X_i$ is the population regression line or the population regression function
- Both side to conditional on *X*, then

$$E[Y_i|X_i] = eta_0 + eta_1 X_i + E[u_i|X_i]$$

• Suppose $E[u_i|X_i] = 0$ then

$$E[Y_i|X_i] = eta_0 + eta_1 X_i$$

• Population regression function is the relationship that holds between Y and X **on average over the population**.

Graphics for Simple Regression Model

How to find the "best" fitting line?

• In general we don't know β_0 and β_1 which are parameters of **population regression function** but have to calculate them using a bunch of data: **the sample**.

• How to find the line that **fits the data best**?

The Ordinary Least Squares(OLS)

The OLS estimator

- Chooses the **best** regression coefficients so that the estimated regression line is **as close as possible** to the observed data, where **closeness** is measured by **the sum of the squared mistakes** made in predicting Y given X.
- Let b_0 and b_1 be **estimators** of β_0 and β_1 , thus

$$b_0\equiv{\hateta}_0 ext{ and }b_1\equiv{\hateta}_1$$

• The predicted value of Y_i given X_i using these estimators is $b_0 + b_1 X_i$, or $\hat{\beta}_0 + \hat{\beta}_1 X_i$ formally denotes as \hat{Y}_i , thus

$${\hat{Y}_i} = {\hat{eta_0}} + {\hat{eta_1}} X_i$$

• The **prediction mistake** is the difference between Y_i and \hat{Y}_i , which denotes as \hat{u}_i , the residual

$$\hat{u}_i=Y_i-\hat{Y}_i=Y_i-(b_0+b_1X_i)$$

The Ordinary Least Squares(OLS)

The OLS Estimator

- Math Review:
 - Summation: $\sum_{i=1}^n u_i = u_1 + u_2 + u_3 + \ldots + u_n$
 - **Minimization**: \min_{b_0,b_1} which means we need to find the values of b_0 and b_1 that **minimize** the

expression

- **Derivative**: $\frac{\partial}{\partial b_0}$ and $\frac{\partial}{\partial b_1}$
- The OLS estimator **minimizes** the *sum of squared prediction mistakes*:

$$\min_{b_0,b_1}\sum_{i=1}^n \hat{u}_i^2 = \sum_{i=1}^n (Y_i - b_0 - b_1 X_i)^2$$

• Solve the problem by optimization: F.O.C(the first order condition)

$$rac{\partial}{\partial b_0} \sum_{i=1}^n (Y_i - b_0 - b_1 X_i)^2 = 0$$
 21 / 35

The Ordinary Least Squares(OLS)

The OLS Estimator

• Step 1: OLS estimator of β_0

$$b_0\equiv {\hat eta}_0=\overline{Y}-b_1\overline{X}$$

• Step 2: OLS estimator of β_1

$$b_1\equiv {\hateta}_1=rac{\sum_{i=1}^n (X_i-\overline{X})(Y_i-\overline{Y})}{\sum_{i=1}^n (X_i-\overline{X})(X_i-\overline{X})}$$

• Now as long as we have data, we can calculate $\hat{\beta}_0$ and $\hat{\beta}_1$, and then we can obtain the estimated regression line.

The Estimated Regression Line

• Obtain the values of OLS estimator for a certain data,

$${\hat eta}_1 = -2.28 \; and \; {\hat eta}_0 = 698.9$$

• Then the regression line is

Measures of Fit: The R^2

- Math Review:
 - Variance: $Var(X) = \frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})^2$
 - Standard Deviation: $SD(X) = \sqrt{Var(X)}$
- Because the **variation** of *Y* can be summarized by **Variance**, Then the total variation of *Y_i*, which are also called as the **total sum of squares** (TSS), is:

$$TSS = \sum_{i=1}^n (Y_i - \overline{Y})^2$$

Measures of Fit: The R^2

• Because Y_i can be decomposed into the fitted value plus the residual: $Y_i = \hat{Y}_i + \hat{u}_i$, then likewise Y_i , we can obtain

$$TSS = ESS + SSR$$

• The explained sum of squares (ESS):

$$ESS = \sum_{i=1}^n (\hat{Y_i} - \overline{Y})^2$$

• The sum of squared residuals (SSR):

$$SSR = \sum_{i=1}^n (\hat{Y_i} - Y_i)^2 = \sum_{i=1}^n \hat{u}_i^2$$

Measures of Fit: The R^2

• R^2 or the coefficient of determination, is the fraction of the sample variance of Y_i explained/predicted by X_i

$${m R}^2 = {ESS\over TSS} = 1 - {SSR\over TSS}$$

• So $0 \le R^2 \le 1$, it measures that how much can the variations of Y be explained by the variations of X_i in share.

- **Question**: *If R-squares is bigger, is the regression better?*
- Answer: Not necessarily, especially when we make causal inference in cross-sectional data.

Least Squares Assumptions

- 1. Assumption 1: Conditional Mean is Zero
- 2. Assumption 2: Random Sample
- 3. Assumption 3: Large outliers are unlikely
- If the 3 least squares assumptions hold the OLS estimators will be
 - unbiased
 - consistent
 - normal sampling distribution

Simple OLS and RCT

Simple OLS and RCT

- We have known that RCT is the "golden standard" for causal inference.Because it can naturally eliminate selection bias.
- So far, we did not discuss the relationship between RCT and OLS regression, which means that we can not be sure that the result from an OLS regression can be explained as "causal".
- Instead of using a continuous regressor *X*, the regression where *D_i* is a binary variable, a so-called **dummy variable**, will help us to unveil the relationship between RCT and OLS regression.
- For example, we may define D_i as follows:
- The regression can be written as

 $Y_i = eta_0 + eta_1 D_i + u_i$

Regression when X is a Binary Variable

• More precisely, the regression model now is

 $TestScore_i = eta_0 + eta_1 D_i + u_i$

- With *D* as the regressor, it is not useful to think of β_1 as a slope parameter.
- Since *D_i* ∈ {0,1}, i.e., we only observe two discrete values instead of a continuum of regressor values.
- There is no continuous line depicting the conditional expectation function $E(TestScore_i|D_i)$ since this function is solely defined for *x*-positions 0 and 1.
- The interpretation of the coefficients in this regression model is as follows:

• $E(Y_i|D_i = 0) = \beta_0$, so β_0 is the expected test score in districts where $D_i = 0$ where STR is below 20. • $E(Y_i|D_i = 1) = \beta_0 + \beta_1$ where STR is above 20

• Thus, β_1 is **the difference in group specific expectations**, i.e., the difference in expected test score between districts with STR < 20 and those with $STR \ge 20$,

Q = E(V|D = 1) = E(V|D = 0)

30 / 35

Class Size and Test Score: *D* is a Binary Variable

Class Size and Test Score: *D* is a Binary Variable

Causality and OLS

• **Recall**, the *individual treatment effect*(ICE) is defined as

$$ICE = Y_{1i} - Y_{0i} = \delta_i$$

• The ATE is the average of the ICE and ATT is the average of the ICE for the treated group.

$$ho = E(\delta_i) \; or \;
ho = E(\delta_i | D = 1)$$

- Either way, the treatment effect is a constant, i.e., it does not depend on the individual.
- **OLS regression** is to estimate a constant treatment effect ρ , thus

$$\mathrm{Y}_i = lpha_{E[\mathbf{Y}_{0i}]} + \mathrm{D}_i \underbrace{\delta_i}_{\mathbf{Y}_{1i} - \mathbf{Y}_{0i}} + \underbrace{\eta_i}_{\mathbf{Y}_{0i} - E[\mathbf{Y}_{0i}]}$$

Causality and OLS

• Now write out the conditional expectation of Y_i for both levels of D_i

$$E[Y_i \mid \mathbf{D}_i = 1] = E[\alpha + \delta_i + \eta_i \mid \mathbf{D}_i = 1] = \alpha + \rho + E[\eta_i \mid \mathbf{D}_i = 1]$$
$$E[Y_i \mid \mathbf{D}_i = 0] = E[\alpha + \eta_i \mid \mathbf{D}_i = 0] = \alpha + E[\eta_i \mid \mathbf{D}_i = 0]$$

• Take the difference

$$E[\mathbf{Y}_i \mid \mathbf{D}_i = 1] - E[\mathbf{Y}_i \mid \mathbf{D}_i = 0] = \rho + \underbrace{E[\eta_i \mid \mathbf{D}_i = 1] - E[\eta_i \mid \mathbf{D}_i = 0]}_{\text{Selection bias}}$$

- Again, our estimate of the treatment effect (ρ) is only going to be as good as our ability to shut down the selection bias.
- Selection bias in regression model:

$$E\left[\eta_i | \mathbf{D}_i = 1
ight] - E\left[\eta_i \mid \mathbf{D}_i = \mathbf{0}
ight]$$

• Thus there is something in our disturbance η_i that is affecting Y_i and is also correlated with D_i .

Simple OLS Regression v.s. RCT

- In a simple regression model, OLS estimators are just a **generalizing continuous version of RCT** when least squares assumptions are hold.
- Ideally, regression is a way to control observable confounding factors, which assume the source of selection bias is only from the difference in **observed characteristics**.
- But in contrast to RCT, in observational studies, researchers cannot control the assignment of treatment into a **treatment group versus control group**, which means that the two groups are **incomparable**.
- To make two groups comparable, we need to keep treatment and control group **other thing equal** in observed characteristics and unobserved characteristics.
- OLS regression is **valid** only when least squares assumptions are hold.
- In most cases, it is not easy to obtain. We have to know how to make a convincing causal inference when these assumptions are not hold.