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OLS with Multiple Regressors: Hypotheses tests

Case: Analysis of the Test Score Data Set
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Omitted Variable Bias and Multiple OLS Regression

* Omitted Variable Bias(OVB) violates the first Least Squares Assumption:

¢ Itrenders Simple OLS estimation both biased and inconsistent.
 If the omitted variable can be observed and measured, we can include it in the
regression, thereby controlling for it to eliminate the bias.

* We extended Simple OLS regression to Multiple OLS regression.
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Multiple OLS Regression

* The multiple regression model is expressed as:

Y= Bo+ L1 X1+ BaXoi+ .o 4+ BpXpi +usi=1,...,n

* where:
* Y is the dependent variable
* X, Xy, ... X}, are the independent variables (including one treatment variable and
several control variables)
* Bj,J = 1...k are the slope coefficients corresponding to each X ;
* [ is the intercept, representing the value of Y whenall X; =0,j =1..k
* wu; is the error term (unobserved factors that affect Y)
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Multiple Regression and Causality

* OLS regression yields valid causal explanations only when all least squares
assumptions are satisfied.

* The most critical assumption is the Conditional Expectation Zero (CEZ):

E(u;|D,C) = E(u;|C)
* where D is the treatment variable and C represents the control variable(s).

* In causal inference, our primary focus is ensuring that the coefficient of the
treatment variable D, denoted as 3, is unbiased and consistent, rather than
concerning ourselves with all coefficients 3;, j = 0,1, ..., k in the model.

* In most cases, non-experimental data fails to satisfy these conditions. Therefore,
the central challenge is establishing convincing causal inference when these

assumptions are violated.
* Solutions include: Instrumental Variables (IV), Regression Discontinuity (RD),
Difference-in-Differences (DID), Synthetic Control Methods (SCM), etc.
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From Samples to the Population

¢ So far,we have learned how to estimate the OLS regression model and how to
interpret the results.

* However, don’t forget that our estimation is based on a sample, and the result
may not be representative of the population.

¢ Therefore, we have to make sure that our estimation based on a sample is not a
coincidence, but a reliable inference for the population.

 Hypothesis testing is a tool to help us to make this inference.
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Class size and Test Score

* Recall: the simple OLS regression model is

TestScore = 698.9 — 2.28 x STR, R? = 0.051, SER = 18.6, N = 420
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Class Size and Test Score

* How can you be certain about the result in population as the one in a sample?

¢ In other words, how confident you can believe the result from the sample inferring
to the population?

* If someone believes that your results are not reliable but coincidental.

* They states that cutting the class size will NOT help boost test scores.

* Can you dismiss the claim based your scientific evidence-based data analysis?

¢ This is where Hypothesis Testing in OLS regressions comes into play.

11/90



Review: Hypothesis Testing

* A hypothesis is typically an assertion or statement about unknown population
parameters,

* Such as 6§, which can be any statistic of interest including the mean, variance,
median, etc.

* Suppose we want to test
* whether the parameter is significantly different from a specific value
* Then we set two mutually exclusive competing hypotheses:
* null hypothesis:
Hy:0=pg
¢ alternative hypothesis:
Hy: 0 # g
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Review: Hypothesis Testing

* Our goal is to test whether the null hypothesis or(the alternative) is true based
on the sample data.

¢ There are two strategies for testing hypotheses:

* Prove positively by demonstrating the null hypothesis is true.

* Prove negatively by demonstrating the null hypothesis is false.
* For example, in a simple case:

* Null hypothesis: All sheep are white
* Alternative hypothesis: Not all sheep are white
* We can reject the null hypothesis if we find just one sheep that is not white.
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The Principle of Falsification(GE{h )

e Karl Popper (1902-1994), an Austrian
philosopher of science renowned for

his principle of falsification.

 From a philosophical and logical
standpoint, it is significantly easier
to prove something false than to
prove it true.

* The principle of falsification serves
as the standard for distinguishing

scientific from non-scientific

approaches in research methodology.
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Review: Hypothesis Testing

* Now, in a world of uncertainty, we never know the true value of the parameter.

* “Never say Never”

* Instead, we can say:

* reject the null hypothesis in some level of confidence or
* fail to reject the null hypothesis in some level of confidence.

* In econometrics, our goal is often to reject the null hypothesis, as this provides
strong evidence in support of the alternative hypothesis.
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Review: Two Type Errors

* A certain risk that our conclusion is wrong:

Hy is true(H 4 is false) Hy is false(H 4 is true)

Fail to reject Hy
Reject Hy

* Type I error : Rejecting the null hypothesis when it is actually true.
. : Failing to reject the null hypothesis when it is actually false.

* Both types of errors are inversely related - as you decrease the probability of one type of
error, you typically increase the probability of the other.

The trade-off between Type I and Type II errors cannot be eliminated simply by
increasing sample size, though larger samples can help reduce both to some extent.
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Review: Two Type Errors
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Review: Two Type Errors

* A certain risk that our conclusion is wrong:

Hy is true(H 4 is false) Hy is false(H 4 is true)
Fail to reject Hy Correct(True Negative)
Reject Hy Type I error Correct(True Positive)

* Type I error : Rejecting the null hypothesis when it is actually true.
. : Failing to reject the null hypothesis when it is actually false.

* Both types of errors are inversely related - as you decrease the probability of one type of
error, you typically increase the probability of the other.
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Review: Hypothesis Testing in Justice Systems

¢ In the criminal justice system, the principle of innocent until proven guilty(%
SEMTT) is applied.

¢ The jury(F& & [F]) or judge(i% &) begins with the null hypothesis that the accused
person is innocent.

o The prosecutor(¥222E) asserts that the accused person is guilry and must present
compelling evidence, which represents the alternative hypothesis.

* The defendant’s lawyer(}i#$/4£/ifi) don’t need to prove the innocence, but to
disprove the guilt or cast doubt on the evidence presented by the prosecutor.

¢ The jury or judge must reject the null hypothesis with substantial evidence in
order to convict the accused person.

* Why is the legal system structured this way?
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Review: Hypothesis Testing in Justice Systems

* Every trial faces two types of potential errors:

The defendant is
Trial outcome innocent(Hy) The defendant is guilty(H 4)
Guilty verdict (reject Type I error Correct(True Positive)
Hy)
Not guilty verdict (fail Correct(True Negative)

to reject Hy)

* Justice systems in most countries place greater weight on avoiding Type I errors
than Type II errors:
* “Convicting an innocent person” is considered much more detrimental to society
than “Allowing a guilty person to go free”.
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Review: Hypothesis Testing in Social Science

* Similarly, in social science we follow the presumption of insignificance until
proven otherwise.

¢ Initially, researchers must assume that the independent variable has zero impact
on the dependent variable (the null hypothesis).

* To establish a relationship, we need to provide compelling evidence that is strong
enough to convince readers or policy makers to reject the null hypothesis of no
effect.

* Therefore,we weight the two types of errors differently in social science,

* Type I error is more serious than Type II error.

o “RABEIE, /DRIE"——#AIE (1891-1962).
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The Significance level (2 Z 47K )

* The significance level or size of a test, ¢, is the maximum probability of the
Type I Exror that we tolerate.

P(Type I error) = P(reject Hy | Hy is true) = «

¢ The usual significance level is set at 5% in social sciences. A less rigorous
standard is 10%, whereas a more stringent one is 1%.

* How to calculate the likelihood of Type-I error for a given significance level?

* We have to use the sampling distribution of the test statistic would be if the null
were true.
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Sampling Distribution of Statistics

* The sampling distribution of a test statistic is its distribution across repeated
samples of the same size from the same population.

¢ eg. the sample mean is a test statistic of Y

* Because we select a sample from the population at random,then very time we
select a sample, we get a different sample mean.

¢ Therefore, the sample mean is a random variable and has a distribution.
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The Sampling Distribution of the Sample Mean

e Let {X;, X2} € [1,100] and n = 2 thus only X; and X».
¢ The sampling distribution can be calculated as follows:

X X X+ X, X

draw 1

draw 2

draw 3

draw 4

distribution distribution
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Large-Sample Approximations to Sampling Distributions

* Two key tools used to approximate sampling distributions when the sample size
islarge, assume thatn — oo
« The Law of Large Numbers(L.L.N.): when the sample size is large, X will be close to
iy , the population mean with very high probability.
* The Central Limit Theorem(C.L.T.): when the sample size is large, the sampling

distribution of the standardized sample average, ony) s approximately normal

oy
distribution.
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A Simple Example: Bernoulli Distribution

* Suppose X has a Bernoulli distribution if it have a binary values X € {0,1} and
its probability mass function is

0.78 if =1
P(X =) = ife
0.22 ifz=0

e The mean of X is

px =B(X)=0x P(X =0)+1x P(X =1) =0.78
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The Law of Large Numbers

@EETEXI sampling Distribution of the Sample Average of n Bernoulli
Random Variables

Probability Probability
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The Central Limit Theorem

Random Variables withp = 0.78

Probability
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Standardized value of
sample average
(@)n=2
Probability
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@TSIEX Distribution of the Standardized Sample Average of n Bernoulli

Probability
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26/90



The Sampling Distribution in Hypothesis Testing

* Two methods to finish the hypothesis testing:
* critical value is actually a criteria calculated by significance level and hypothesis
value to make the judgement:
« If the test statistic is greater than the critical value, we reject the null hypothesis.
* p-value is the probability of observing a test statistic as extreme as the one
computed from the sample data, assuming the null hypothesis is true.
* If the p-value is less than the significance level, we reject the null hypothesis.
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The Sampling Distribution and the Critical Value

Standard Normal Distribution with Critical Regions (alpha = 0.05)

' HO:mu=0 E
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> f i
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0.0 \ !
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Test Statistic (Z—statistic)
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The Sampling Distribution and the P Value

t Distribution (df = 100 ) Highlighting Tail Areas for t = 2.58
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T and Standard Normal Distributions

Comparison of Standard Normal and T Distributions

04 N(0,1)
df=100
0.3
2
202
i3
a
0.1
0.0
-4 -2 0 2 4
X
Distribution === Standard Normal (.=0, .=1) === T Distribution (df=100) T Distribution (df=30) === T Distribution
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Review: Hypothesis Testing of Population Mean

* Question: how to test the population mean of a random variable Y ,thus £(Y"),by
using a sample?
* Let u1y,. is a specific value to which the population mean equals(thus we suppose)

¢ the null hypothesis:
Hy:E(Y)=py,

* the alternative hypothesis(two-sided):

Hy : E(Y) # piy.e

31/90



Review: Hypothesis Testing of Population Mean

* Step 1 Compute the sample mean Y
« Step 2 Compute the standard error of Y, recall

SE(Y) = 57%

Step 3 Compute the t-statistic actually computed
Vet
~ SE(®Y)

* Alternative Step 3 Compute the p-value

act

p-value = Pry, (|t| > t**) = 2&(—|t*|)

* Step 4 See if we can Reject the null hypothesis at a certain significance level
a,like 5%, or p-value is less than significance level.

[t*!| > critical value or p — value < significance level
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Hypotheses Testing in a Simple OLS

* A Simple OLS regression
Yi = Bo + B1.Xi + u

The key unknown population parameters in the population regression
equation is ;.

We then test whether 3; equals to a specific value 3 . or not
¢ the null hypothesis:

Ho: 1 =P
* the alternative hypothesis:

Hy:B1# B
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Hypotheses Testing in a Simple OLS

* Stepl: Estimate Y; = 3y + 51X + u; by OLS to obtain Bl
« Step2: Compute the standard error of f3;

* Step3: Construct the t-statistic

tact B 1= B l,c
sE (p)

* Step4: Reject the null hypothesis if

| 1% | >critical value

or p—value <significance level
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The t-statistic v.s Z-statistic

* The statistic we use here is still the t-statistic rather than the Z-statistic. Why?

* We can prove that

pact _ Br — B
SE (ﬂl)

given OLS assumptions plus one additional assumption: u; is normally

~t(n—2)

distributed. (If you're interested, you can prove this by yourself.)

¢ This means that when the sample size is small, there is a meaningful difference
between the t-statistic and the Z-statistic.
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The t-statistic v.s Z-statistic

* We have previously shown that the OLS estimator is asymptotically normal
when the sample size is large,

* This means we could theoretically use the Z-statistic instead of the t-statistic.
* When the sample size is large, the difference between the t-statistic and the

Z-statistic becomes negligible, as the t-distribution converges to the normal
distribution.

* In practice, statisticians and econometricians typically use the t-statistic rather
than the Z-statistic in most regression analyses, regardless of sample size.
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The t-statistic in a Simple OLS

e The formula for the t-statistic is:

tact 51 51 c
sE(5)

or

act _ €stimator — hypothesized value

standard error of the estimator

* The key unknown component in this calculation is the standard error (S.E).
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The Standard Error of /3’1

* Recall from the Simple OLS Regression

« if the least squares assumptions hold, then in large samples 3, and /3; have a joint
normal sampling distribution,thus j3;

B NN(5170/2;1)

* We also derived the form of the variance of the normal distribution, 02 is
1

(4.21)

o — \/IVar[(XZ——,uX)ui]
P n [Var(X;)]?

* The value of o5 is unknown and can not be obtained directly by the data.
» Var[(X; — pux)u;] and [Var(X;)]? are both unknown.
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The Standard Error of /3’1

* However, we can use sample statistics to estimate o By For detailed derivation,
see Appendix.

o The standard error of 3, is an estimator of the standard deviation of the
sampling distribution o , thus

SE(B1) = NG %x n—2 ' i (5.4)

¢ Everything in the equation (5.4) are known now or can be obtained by

calculation.

* Now we can construct a t-statistic and then make a hypothesis test.
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Application to Test Score and Class Size

. regress test score claSs_size, robust

Linear regression Number of obs = 420
F(1, 418) = 19.26
Prob > F = 0.0000
R-squared = 0.0512
Root MSE = 18.581
Robust

test_score Coef. std. Err. t P>t [95% Conf. Interval]
le:i:ii:iizb -2.279808 .519489%2 -4 _39 0.000 -3.300945 -1.258671
_cons 698.933 10.36436 67 .44 0.000 678.5602 719.3057

* the OLS regression line

TestScore =698.9 — 2.28 x STR, R* = 0.051, SER = 18.6

(10.4) (0.52)
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Testing a two-sided hypothesis concerning /3

* the null hypothesis Hj : 5; =0

* It means that the class size will not affect the performance of students.

* the alternative hypothesis H; : 3; # 0

* It means that the class size do affect the performance of students (whatever
positive or negative)

* Our primary goal is to Reject the null, and then make a conclusion:

¢ Class Size does matter for the performance of students.
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Testing a two-sided hypothesis concerning /3

* Stepl: Estimate B =—2.28
« Step2: Compute the standard error: SE(f;) = 0.52

* Step3: Compute the t-statistic

tact _ Bl - 5170 _ —2.28—0
SE (,@1) 0.52

= —4.39

* Step4: Reject the null hypothesis if

o |t |=| —4.39 |> critical value = 1.96
* p—wvalue = 0 < significance level = 0.05
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Application to Test Score and Class Size

. regress test_score class_size, robust

Linear regression Number of obs = 420
F(l, 418) = 19.26
Prob > F = 0.0000
R-sguared = 0.0512
Root MSE = 18.581
Robust

test_score Coef. std. Err. t P>t 65% Conf. Interval]
leﬁﬁ_ﬁizb -2.279808 .5194892 -4.39 0.000 -3.300545 -1.258671
_cons 698.933 10.36436 67.44 0.000 678 .5602 719.3057

* We can reject the null hypothesis that [y : ; = 0, which means 3; # 0 witha
high probability(over 95%).

* It suggests that Class size matters the students’ performance in a very high
chance.
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Critical Values of the t-statistic

The critical value of f-statistic depends on significance level a

0.005 0.005 0.025 \2_
258 0 2.58 196 0 1.96
Large sample distribution of t-statistic Large sample distribution of t-statistic
0.05 0.05
184 0 164

Large sample distribution of t-statistic

45/90



1% and 10% significant levels

* Step4: Reject the null hypothesis at a 10% significance level
o |t |=| —4.39 |> critical value = 1.64
* p —value = 0.00 < signi ficance level = 0.1
* Step4: Reject the null hypothesis at a 1% significance level
o |t |=| —4.39 |> critical value = 2.58
o p—wvalue = 0.00 < significance level = 0.01
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Wrap up

* Hypothesis tests are useful if you have a specific null hypothesis in mind.

* Being able to accept or reject this null hypothesis based on the statistical
evidence provides a powerful tool for coping with the uncertainty inherent in
using a sample to learn about the population.

* Yet, there are many times that no single hypothesis about a regression
coefficient is dominant, and instead one would like to know a range of values of

the coefficient that are consistent with the data.

¢ This calls for constructing a confidence interval.
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Introduction

* Because any statistical estimate of the slope 3; necessarily has sampling
uncertainty, we cannot determine the true value of 3, exactly from a sample of
data.

* Itis possible, however, to use the OLS estimators and its standard error to
construct a confidence interval for the slope 3;
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* Method for constructing a confidence interval for a population mean can be
easily extended to constructing a confidence interval for a regression
coefficient.

 Using a two-sided test, a hypothesized value for 3; will be rejected at 5%
significance level if

| % |> eritical value = 1.96

* So ﬁl will be in the confidence set if | t* |< critical value = 1.96

e Thus the 95% confidence interval for 5, are within £1.96 standard errors of 31

B 4+1.96-SE (31)
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regress test_score class_size, robust

Linear regression Number of obs = 420
F(l, 418) = 19.26
Prob > F = 0.0000
R-sguared = 0.0512
Root MSE = 18.581
Robust

test_score Coef. Std. Err. t P>t [¢5% Conf. Interval]
class_size -2.279808 .5194892 -4.39 0.000 -3.300945 -1.258671
_cons 698.933 10.36436 67.44 0.000 678.5602 719.3057
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. regress test_score class_size, robust

Linear regression Number of obs = 420
F(l, 418) = 19.26
Prob > F = 0.0000
R-sguared = 0.0512
Root MSE = 18.581
Robust

test_score Coef. Std. Err. t P>t [¢5% Conf. Interval]
class_size -2.279808 .5194892 -4.39 0.000 -3.300945 -1.258671
_cons 698.933 10.36436 67.44 0.000 678.5602 719.3057

» Thus the 95% confidence interval for 3, are within +1.96 standard errors of Bl

Br+£1.96- SE (Br) = ~2.28 % (1.96 x 0.519) = [-3.3, —1.26]
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Unnecessary Assumption for Simple OLS

* Three Simple OLS Regression Assumptions

e Assumption 1
e Assumption 2
* Assumption 3

* Assumption 4: The error terms are homoskedastic

Var(u; | X;) = o2

U

+ Then 3975 is the Best Linear Unbiased Estimator(BLUE): it is the most efficient
estimator of 5, among all conditional unbiased estimators that are a linear
functionof Y7, Y5, .... Y.
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Heteroskedasticity & homoskedasticity

» The error term u; is homoskedastic if the variance of the conditional
distribution of u; given Xj is constant for i = 1, ...n, in particular does not
depend on X;.

¢ Otherwise, the error term is heteroskedastic.
m An Example of Heteroskedasticity

Like Figure 4.4, this Test score
shows the conditional ~ 720~
distribution of test R

scores forthree differ- 700 DSPMONOTVMENX=1S ol FuhenX =20
ent class sizes. Unlike
Figure 4.4, these
distributions become
more spread out (have
alarger variance)

for larger class sizes.
Because the variance
of the distribution of
u given X, var(u|X), 600 L | 1 1
dependson X, uis 10 15 20 25 30
heteroskedastic. Student—teacher ratio

Distribution of ¥ when X = 25

680 1
660
640

Bo+BX

6201
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An Actual Example: the returns to schooling

8

In(wage)
@ i

a

years of education

¢ The spread of the dots around the line is clearly increasing with years of
education X;.
* Variation in (log) wages is higher at higher levels of education.
* This implies that
Var(u; | X;) # o2
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Homoskedasticity: S.E.

* However,in many applications homoskedasticity is NOT a plausible
assumption.

* If the error terms are heteroskedastic, then you use the homoskedastic assumption
to compute the S.E. of /3. It will leads to

* The standard errors are wrong (often too small)
¢ The t-statistic does NOT have a N (0, 1) distribution (also not in large samples).
* But the estimating coefficients in OLS regression will not change.
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Heteroskedasticity & homoskedasticity

o If the error terms are heteroskedastic, we should use the original equation of S.E.

A A 1 A S(X - X)2a2
SEHeter (51) - \/Z n . [ZZ(XZ' - X)? F

* Itis called as heteroskedasticity robust-standard errors,also referred to as
Eicker-Huber-White standard errors,simply Robust-Standard Errors

* In the case, it is not difficult to find that homoskedasticity is just a special case of
heteroskedasticity.
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Heteroskedasticity & homoskedasticity

* Since homoskedasticity is a special case of heteroskedasticity, these
heteroskedasticity robust formulas are also valid if the error terms are

homoskedastic.

* Hypothesis tests and confidence intervals based on above SE’s are valid both in
case of homoskedasticity and heteroskedasticity.

* Inreality, since in many applications homoskedasticity is not a plausible
assumption, it is best to use heteroskedasticity robust standard errors. Using robust
standard errors rather than standard errors with homoskedasticity will lead us

lose nothing.
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Heteroskedasticity & homoskedasticity

* It can be quite cumbersome to do this calculation by hand.Luckily,computer can
help us do the job.

* In Stata, the default option of regression is to assume homoskedasticity, to
obtain heteroskedasticity robust standard errors use the option “robust”:

regress y x , robust

* In R, many ways can finish the job. A convenient function named vcovHC () is
part of the package sandwich.
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Test Scores and Class Size

- regress test_score class_size

Source Ss df MS Number of cbs = 420
F(l, 418) = 22.58
Model 7794.11004 1 7794.11004 Prob > F = 0.0000
Residual 144315.484 418 345.252353 R-squared = 0.0512
Adj R-squared = 0.0490
Total 152109.594 419 363.030056 Root MSE = 18.581

test_score Coef. Std. Err. t P>t [95% Conf. Interval]
clasﬁ_size =2.279808 .4798256 -4.75 0.000 -3.22298 =1.336637
_cons 698.933 9.467491 73.82 0.000 680.3231 717.5428

. regress test_score class_size, robust
Linear regression Number of obs = 420
F(l, 418) = 19.26
Prob > F = 0.0000
R-squared = 0.0512
Root MSE = 18.581
Robust

test_score Coef. Std. Err. t P>t [95% Conf. Interval]
class size =2.279808 .5194892 -4.39 0.000 =3.300945 =1.258671
_cons 698.933 10.36436 67.44 0.000 678.5602 719.3057
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Test Scores and Class Size

- regress test_score class_size

Source Ss df MS Number of cbs = 420
F(l, 418) = 22.58
Model 7794.11004 1 7794.11004 Prob > F = 0.0000
Residual 144315.484 418 345.252353 R-squared = 0.0512
Adj R-squared = 0.0490
Total 152109.594 419 363.030056 Root MSE = 18.581

test_score Coef. Std. Err. t P>t [95% Conf. Interval]
class_size =2.279808 .4798256 -4.75 0.000 -3.22298 =1.336637
_cons 698.933 9.467491 73.82 0.000 680.3231 717.5428

. regress test_score class_size, robust
Linear regression Number of obs = 420
F(l, 418) = 19.26
Prob > F = 0.0000
R-squared = 0.0512
Root MSE = 18.581
Robust

test_score Coef. Std. Err. t P>t [95% Conf. Interval]
class size =2.279808 .5194892 -4.39 0.000 =3.300945 =1.258671
_cons 698.933 10.36436 67.44 0.000 678.5602 719.3057
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Wrap up: Heteroskedasticity in a Simple OLS

o If the error terms are heteroskedastic

¢ The fourth simple OLS assumption is violated.
* The Gauss-Markov conditions do not hold.
 The OLS estimator is not BLUE (not the most efficient).

* But (given that the other OLS assumptions hold)

 The OLS estimators are still unbiased.
 The OLS estimators are still consistent.
* The OLS estimators are normally distributed in large samples
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Recall: the Multiple OLS Regression

* The multiple regression model is
Yi =080+ 1 X1+ feXoi+ ...+ BeXpi +ui,i=1,...,n

* Four Basic Assumptions
* Assumptionl: Flu; | X1, Xo;..., Xxi] =0
* Assumption 2 : i.i.d sample
» Assumption 3: Large outliers are unlikely.
* Assumption 4 : No perfect multicollinearity.
* The Sampling Distribution: the OLS estimators Bj forj=1,...,kare
approximately normally distributed in large samples.
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Standard Errors for the Multiple OLS Estimators

* There is nothing conceptually different between the single- or multiple-regressor
cases.

* Standard Errors for a Simple OLS estimator ;
SE (Bl) =6,
* Standard Errors for Mutiple OLS Regression estimators [3;
SE (B;) = o,
* Remind: since now the joint distribution is not only for (Y;, X;),but also for
(Xij, Xik)-

* The formula for the standard errors in Multiple OLS regression are related with a
matrix named Variance-Covariance matrix.
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Hypothesis Tests for a Single Coefficient

o the t-statistic in Simple OLS Regression

t?ct /31 /31 C ]\I((L 1)
SE (B1)
o the t-statistic in Multiple OLS Regression
act _ ﬁ] BJ c

sE(8)
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Hypothesis testing for single coefficient

* Hy:Bj=BjcHi:B1# PBje

¢ Stepl: Estimate Bj, by run a multiple OLS regression

Y= Bo+ 1 X + ... + B Xji + oo 4 B X +

Step2: Compute the standard error of Bj (requires matrix algebra)

* Step3: Compute the t-statistic

tqct /BJ BJ,
T ose(h)

* Step4: Reject the null hypothesis if

o |t |> critical value
e orif p — value < significance level
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Confidence Intervals for a single coefficient

* Also the same as in a simple OLS Regression.

« (; will be in the confidence set if | t** |< critical value = 1.96 at the 95%

confidence level.

* Thus the 95% confidence interval for 3; are within £1.96 standard errors of B]-

B;+1.96- SE (B)
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Test Scores and Class Size

. regress test_score class_size el_pct,robust

Linear regression Number of obs = 420
F(2, 417) = 223.82
Prob > F = 0.0000
R-squared = 0.4264
Root MSE = 14.464

Robust
test_score Coef. Std. Err. t P>|t| [95% Conf. Intervall
class_size -1.101296 .4328472 -2.54 0.011 =1.95213 -.2504616
el_pct -.6497768 .0310318 -20.94 0.000 -.710775 -.5887786
_cons 686.0322 8.728224 78.60 0.000 668.8754 763.189
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Case: Class Size and Test scores

* Does changing class size, while holding the percentage of English learners
constant, have a statistically significant effect on test scores? (using a 5%
significance level)

* Ho : Bciasssize = 0 Hi : BciassSize 7 0

* Stepl: Estimate 31 =—1.10

« Step2: Compute the standard error: SE(f;) = 0.43

* Step3: Compute the t-statistic

jact _ Bi—Bie —1.10-0

“le = 254
SE (51) 0.43
* Step4: Reject the null hypothesis if
o |t |=| —2.54 |> critical value.1.96

* p—wvalue = 0.011 < significance level = 0.05
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Tests of Joint Hypotheses: on 2 or more coefficients

* Can we just test one individual coefficient at a time?

* Suppose the angry taxpayer hypothesizes that neither the student-teacher ratio
nor expenditures per pupil have an effect on test scores, once we control for the

percentage of English learners.

¢ Therefore, we have to test a joint null hypothesis that both the coefficient on

student—teacher ratio and the coefficient on expenditures per pupil are zero?

Hy: Bsr =0& 5ezpn =0,
Hy : Btr 7é 0 and/OT Bexpn 7é 0
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Heteroskedasticity-Robust F-statistic

* Using matrix to show the form of the heteroskedasticity-robust F-statistic

which is beyond the scope of our class.

* While,under the null hypothesis,regardless of whether the errors are
homoskedastic or heteroskedastic, the F-statistic with q has a sampling
distribution in large samples,

F — statistic ~ Fy

e where ¢ is the number of restrictions

* Then we can compute the F-statistic, the critical values from the table of the F,

and obtain the p-value.
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F-Distribution

TABLE 4 Critical Values for the F, ., Distribution

Area = Significance Level

T
0 Critical Value

Significance Level

Degrees of Freedom 10% 5%
1 271 384 6.63
2 2.30 3.00 4.61
3 2.08 2.60 378
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Testing joint hypothesis with q restrictions

* Hoy:Bj = B0, Bm = Bm, for a total of q restrictions.
* Hj:atleast one of q restrictions under H, does not hold.

* Stepl: Estimate
Yi = Bo+ b1 Xui + . + B Xji + o+ BeXii + s

by OLS
* Step2: Compute the F-statistic

* Step3: Reject the null hypothesis if
F — Statistic > Fy%,

or
p —value = PrF, o > F* <= significant level
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Case: Class Size and Test Scores

* We want to test hypothesis that both the coefficient on student—teacher ratio and
the coefficient on expenditures per pupil are zero?

* Hy: Bstr =0 &Bempn =0
o Hy: Ber #0and/or Begpn # 0

¢ The null hypothesis consists of two restrictions g = 2
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Case: Class Size and Test Scores

. regress test_score class_size expn_stu el_pct,robust

Linear regression Number of obs = a20
F(3, 416) = 147.20
Prob > F = 0.0000
R-squared = 0.4366
Root MSE = 14.353

Robust
test_score Coef.  Std. Err. t P>|t| [95% Conf. Interval
class_size | -.2863992 .4820728  -0.59 0.553  -1.234002 .661203
expn_stu .0038679 0015807 2.45  0.015 .0007607  .0069751
elpct | -.6560227 .0317844 -20.64 0.000  -.7185008 -.5935446
_cons 649.5779  15.45834  42.02  0.000 619.1917  679.9641

. test class_size expn_stu

(1) class_size = 0
(2) expn_stu =0

F( 2, 416) = 5.43
Prob > F =  0.0047

¢ It can be shown that the F-statistic with two restrictions has an approximate F;
distribution in large samples

Foet =5.43 > F5 oo = 4.61 at 1% signi ficant level
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The “overall” regression F-statistic

* The “overall” F-statistic test the joint hypothesis that all the k slope coefficients
are zero

* Hy:B; =080, Bm = Bm,o for a total of ¢ = k restrictions.
e Hi: atleast one of ¢ = k restrictions under Hy does not hold.

76 /90



The “overall” regression F-statistic

. regress test_score class_size expn_stu el_pct, robust

Linear regression Number of obs = 420
F(3, 416) = 147.20

Prob > F = 0.0000

R-squared = 0.4366

Root MSE = 14.353

Robust

test_score Coef.  Std. Err. t o Pt [95% Conf. Interval
class_size | -.2863992 .4820728  -0.59 0.553  -1.234002 .661203
expn_stu .0038679  .0015807 2.45  0.015 .0007607  .0069751
elpct | -.6560227 .0317844 -20.64 0.000  -.7185008 -.5935446
_cons 649.5779 15.45834  42.02  0.000 619.1917  679.9641

. test class_size expn_stu el_pct

(1) class_siz
(2)
(3

147.20
0.0000

F( 3, 416)
Prob > F

e The overall ' — Statistics = 147.2 which indicates at least one coefficient can

not be ZERO.
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Introduction

* How to use multiple regression in order to alleviate omitted variable bias and
demonstrate how to report results.

* Considering three variables that control for unobservable student
characteristics which correlate with the student-teacher ratio and are assumed to

have an impact on test scores:
* English, the percentage of English learning students

¢ lunch, the share of students that qualify for a subsidized or even a free lunch at
school

* calworks,the percentage of students that qualify for a income assistance
program
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Five different model equations:

* We shall consider five different model equations:

(1) TestScore =Py + 1STR + u,

(2) TestScore =P+ P1STR + Paenglish + u,

(3) TestScore =y + 1STR + Baenglish + PBslunch + u,

(4) TestScore =Py + P1STR + Paenglish + Bycalworks + u,

(5) TestScore =Ly + P1STR + PBaenglish + Pslunch + Bycalworks + u
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Scatter Plot: English learners and Test Scores

English Learners and Test Scores
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Scatter Plot: Free lunch and Test Scores

Percentage qualifying for reduced price lunch
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Correlations between Variables

* The correlation coefficients are following

# estimate correlation between student characteristics and test scores
cor (CASchoolsStestscr, CASchools$Sel pct)

4> [1] -0.6441237

cor (CASchools$testscr, CASchools$meal pct)

#> [1] -0.868772

cor (CASchools$testscr, CASchools$calw pct)

#> [1] -0.6268534

cor (CASchools$meal pct, CASchools$calw pct)

#> [1] 0.7394218
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Table 3

Dependent Variable: Test Score

@ @
str —2.280%** —1.101**
(0.519) (0.433)
el_pct —0.650"""
(0.031)
Constant 698.933*** 686.032***
(10.364) (8.728)
Observations 420 420
R? 0.051 0.426
Adjusted R? 0.049 0.424
F Statistic 22.575*** 155.014***

Note:

Robust S.E. are shown in the parentheses

*p<0.1; **p<0.05; ***p<0.01
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Table 4

Dependent Variable: Test Score

@ Q) ) “
str —2.280""" —1101** —0.998"** —1308"*"
(0.519) (0.433) (0.270) (0.339)
el_pct —0.650""" —0.122"** —0.488"**
(0.031) (0.033) (0.030)
meal _pct —0.547""*
(0.024)
calw_pct —0.790"**
(0.068)
Constant 698.933""* 686.032""" 700.150"** 697.999"*
(10.364) (8.728) (5.568) (6.920)
Observations 420 420 420 420
R? 0.051 0.426 0.775 0.629

Adjusted R? 0.049 0.424 0.773 0.626 86/90



Table 5

Dependent Variable: Test Score

@ 2 &) “) ©)
str —2.280""" —1101** —0.998"** —1.308™** —1.014™**
(0.519) (0.433) (0.270) (0.339) (0.269)
el_pct —0.650""" —0.122™"* —0.488™*" —0.130"""
(0.031) (0.033) (0.030) (0.036)
meal _pct —0.547*"* —0.529"*"
(0.024) (0.038)
calw_pct —0.790"** —0.048
(0.068) (0.059)
Constant 698.933""* 686.032""" 700.150"** 697.999™"* 700.392"**
(10.364) (8.728) (5.568) (6.920) (5.537)
Observations 420 420 420 420 420
R? 0.051 0.426 0.775 0.629 0.775
Adjusted R? 0.773 0.773

0.049

0.424

0.626
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The “Star War” and Regression Table

Dependent variable: average test score in the district.

Regressor (1) (2) (3) (4) (5)
Student-teacher ratio (X) —2.28%* —1.10% —1.00%* —1.31* —1.01*
(0.52) (0.43) (0.27) (0.34) 0.27)
Percent English learners (X;) —0.650%* —0.122%* —0.488** —0.130%*
(0.031) (0.033) (0.030) (0.036)
Percent eligible for subsidized lunch (X3) —0.547* —0.529*
(0.024) (0.038)
Percent on public income assistance (X}) —0.790%* 0.048
(0.068) (0.059)
Intercept 698.9%* 686.0%+* 700.2%* 698.0%* 700.4%%*
(10.4) (8.7) (3.6) (6.9) (5.5)
Summary Statistics
SER 18.58 14.46 9.08 11.65 9.08
R? 0.049 0.424 0.773 0.626 0.773
420 420 420 420 420

These regressions were estimated using the data on K—8 school districts in California, described in Appendix (4.1). Heteroskedasticity-
robust standard errors are given in parentheses under coefficients. The individual coefficient is statistically significant at the
*5% level or *¥1% significance level using a two-sided test. 88790




Discussion of the empirical results

» We should focus on the coefficient of our main interest, the student-teacher
ratio (STR), in the regression table.

* Though we estimate the effect of STR on test scores in different specifications, the
coefficient of STR is consistently negative and statistically significant at around
from —1to —1.3.

* We should explain the results in the context of the research question.

1. The sign of the coefficient

2. The magnitude of the coefficient

3. The statistical significance of the coefficient
4. The economic significance of the coefficient
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Warp Up

¢ Therefore, we have to build a framework to test the hypothesis about the
population parameters based on the sample given a certain level of confidence.

¢ Using the hypothesis testing and confidence interval in OLS regression, we
could make a more reliable judgment about the relationship between the
treatment and the outcomes.

* The analysis in this and the preceding lectures has presumed that the population
regression function is linear in the regressor which might not be true.

* We will extend the model into nonlinearity in following lectures.
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