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Review of the Previous Lecture
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Omitted Variable Bias andMultiple OLS Regression

• Omitted Variable Bias(OVB) violates the first Least Squares Assumption:

E(ui|Xi) = 0

• It renders Simple OLS estimation both biased and inconsistent.
• If the omitted variable can be observed andmeasured, we can include it in the
regression, thereby controlling for it to eliminate the bias.

• We extended Simple OLS regression toMultiple OLS regression.
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Multiple OLS Regression

• Themultiple regressionmodel is expressed as:

Yi = β0 + β1X1,i + β2X2,i + ... + βkXk,i + ui, i = 1, ..., n

• where:

• Yi is the dependent variable
• X1, X2, ...Xk are the independent variables (including one treatment variable and
several control variables)

• βj , j = 1...k are the slope coefficients corresponding to each Xj

• β0 is the intercept, representing the value of Y when all Xj = 0, j = 1...k

• ui is the error term (unobserved factors that affect Y )
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Multiple Regression and Causality

• OLS regression yields valid causal explanations only when all least squares

assumptions are satisfied.

• Themost critical assumption is the Conditional Expectation Zero (CEZ):

E(ui|D, C) = E(ui|C)

• where D is the treatment variable and C represents the control variable(s).

• In causal inference, our primary focus is ensuring that the coefficient of the

treatment variable D, denoted as βD , is unbiased and consistent, rather than

concerning ourselves with all coefficients βj , j = 0, 1, ..., k in the model.

• Inmost cases, non-experimental data fails to satisfy these conditions. Therefore,

the central challenge is establishing convincing causal inference when these

assumptions are violated.
• Solutions include: Instrumental Variables (IV), Regression Discontinuity (RD),
Difference-in-Differences (DID), Synthetic Control Methods (SCM), etc.
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Hypothesis Testing
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From Samples to the Population

• So far,we have learned how to estimate the OLS regressionmodel and how to

interpret the results.

• However, don’t forget that our estimation is based on a sample, and the result

may not be representative of the population.

• Therefore, we have to make sure that our estimation based on a sample is not a

coincidence, but a reliable inference for the population.

• Hypothesis testing is a tool to help us to make this inference.
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Class size and Test Score

• Recall: the simple OLS regressionmodel is

̂TestScore = 698.9 − 2.28 × STR, R2 = 0.051, SER = 18.6, N = 420
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Class Size and Test Score

• How can you be certain about the result in population as the one in a sample?

• In other words, how confident you can believe the result from the sample inferring
to the population?

• If someone believes that your results are not reliable but coincidental.

• They states that cutting the class size willNOT help boost test scores.

• Can you dismiss the claim based your scientific evidence-based data analysis?

• This is whereHypothesis Testing in OLS regressions comes into play.
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Review: Hypothesis Testing

• A hypothesis is typically an assertion or statement about unknown population

parameters,

• Such as θ, which can be any statistic of interest including themean, variance,
median, etc.

• Suppose we want to test

• whether the parameter is significantly different from a specific value µ0

• Then we set twomutually exclusive competing hypotheses:

• null hypothesis:
H0 : θ = µ0

• alternative hypothesis:
H1 : θ ̸= µ0
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Review: Hypothesis Testing

• Our goal is to testwhether the null hypothesis or(the alternative) is true based

on the sample data.

• There are two strategies for testing hypotheses:

• Prove positively by demonstrating the null hypothesis is true.
• Prove negatively by demonstrating the null hypothesis is false.

• For example, in a simple case:

• Null hypothesis: All sheep are white
• Alternative hypothesis: Not all sheep are white
• We can reject the null hypothesis if we find just one sheep that is not white.
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The Principle of Falsification(证伪）

• Karl Popper (1902-1994), an Austrian

philosopher of science renowned for

his principle of falsification.

• From a philosophical and logical

standpoint, it is significantly easier

to prove something false than to

prove it true.

• The principle of falsification serves

as the standard for distinguishing

scientific from non-scientific

approaches in researchmethodology.

14 / 90



Review: Hypothesis Testing

• Now, in a world of uncertainty, we never know the true value of the parameter.

• “Never say Never”

• Instead, we can say:

• reject the null hypothesis in some level of confidence or
• fail to reject the null hypothesis in some level of confidence.

• In econometrics, our goal is often to reject the null hypothesis, as this provides

strong evidence in support of the alternative hypothesis.
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Review: Two Type Errors

• A certain risk that our conclusion is wrong:

H0 is true(HA is false) H0 is false(HA is true)

Fail to reject H0

Reject H0

• Type I error : Rejecting the null hypothesis when it is actually true.

• Type II error: Failing to reject the null hypothesis when it is actually false.

• Both types of errors are inversely related - as you decrease the probability of one type of
error, you typically increase the probability of the other.

• The trade-off between Type I and Type II errors cannot be eliminated simply by
increasing sample size, though larger samples can help reduce both to some extent.
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Review: Hypothesis Testing in Justice Systems

• In the criminal justice system, the principle of innocent until proven guilty(疑
罪从无) is applied.

• The jury(陪审团) or judge(法官) begins with the null hypothesis that the accused
person is innocent.

• The prosecutor(检察官) asserts that the accused person is guilty andmust present
compelling evidence, which represents the alternative hypothesis.

• The defendant’s lawyer(辩护律师) don’t need to prove the innocence, but to
disprove the guilt or cast doubt on the evidence presented by the prosecutor.

• The jury or judgemust reject the null hypothesis with substantial evidence in
order to convict the accused person.

• Why is the legal system structured this way?

17 / 90



Review: Hypothesis Testing in Justice Systems

• Every trial faces two types of potential errors:

Trial outcome

The defendant is

innocent(H0) The defendant is guilty(HA)

Guilty verdict (reject

H0)

Type I error Correct(True Positive)

Not guilty verdict (fail

to reject H0)

Correct(True Negative) Type II error

• Justice systems inmost countries place greater weight on avoiding Type I errors

than Type II errors:
• “Convicting an innocent person” is consideredmuchmore detrimental to society
than “Allowing a guilty person to go free”.
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Review: Hypothesis Testing in Social Science

• Similarly, in social science we follow the presumption of insignificance until

proven otherwise.

• Initially, researchers must assume that the independent variable has zero impact
on the dependent variable (the null hypothesis).

• To establish a relationship, we need to provide compelling evidence that is strong
enough to convince readers or policy makers to reject the null hypothesis of no
effect.

• Therefore,we weight the two types of errors differently in social science,

• Type I error is more serious than Type II error.

• “大胆假设，小心求证”——胡适 (1891-1962).
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The Significance level(显著性水平)

• The significance level or size of a test, α, is themaximumprobability of the

Type I Error that we tolerate.

P (Type I error) = P (reject H0 | H0 is true) = α

• The usual significance level is set at 5% in social sciences. A less rigorous

standard is 10%, whereas a more stringent one is 1%.

• How to calculate the likelihood of Type-I error for a given significance level?

• We have to use the sampling distribution of the test statisticwould be if the null
were true.
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Sampling Distribution of Statistics

• The sampling distribution of a test statistic is its distribution across repeated

samples of the same size from the same population.

• eg. the samplemean is a test statistic of Y

Ȳ = 1
n

n∑
i=1

Yi

Ȳ = 1
n

(Y1 + Y2 + ... + Yn) = 1
n

n∑
i=1

Yi

• Because we select a sample from the population at random,then very time we

select a sample, we get a different sample mean.

• Therefore, the sample mean is a random variable and has a distribution.
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The Sampling Distribution of the SampleMean

• Let {X1, X2} ∈ [1, 100] and n = 2 thus only X1 and X2.

• The sampling distribution can be calculated as follows:
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Large-Sample Approximations to Sampling Distributions

• Two key tools used to approximate sampling distributions when the sample size

is large, assume that n → ∞
• The Law of Large Numbers(L.L.N.): when the sample size is large, X will be close to

µY , the populationmean with very high probability.
• The Central Limit Theorem(C.L.T.): when the sample size is large, the sampling

distribution of the standardized sample average, (Y −µY )
σ

Y

,is approximately normal
distribution.
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A Simple Example: Bernoulli Distribution

• Suppose X has a Bernoulli distribution if it have a binary values X ∈ {0, 1} and
its probability mass function is

P (X = x) =

0.78 if x = 1

0.22 if x = 0

• Themean of X is

µX = E(X) = 0 × P (X = 0) + 1 × P (X = 1) = 0.78
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The Law of Large Numbers
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The Central Limit Theorem
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The Sampling Distribution in Hypothesis Testing

• Twomethods to finish the hypothesis testing:

• critical value is actually a criteria calculated by significance level and hypothesis
value to make the judgement:

• If the test statistic is greater than the critical value, we reject the null hypothesis.
• p-value is the probability of observing a test statistic as extreme as the one
computed from the sample data, assuming the null hypothesis is true.

• If the p-value is less than the significance level, we reject the null hypothesis.
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The Sampling Distribution and the Critical Value
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The Sampling Distribution and the P Value

T = −2.58 T = 2.58

P−value = 0.0113
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T and Standard Normal Distributions
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Review: Hypothesis Testing of PopulationMean

• Question: how to test the populationmean of a random variable Y ,thus E(Y ),by
using a sample?

• Let µY,c is a specific value to which the populationmean equals(thus we suppose)

• the null hypothesis:
H0 : E(Y ) = µY,c

• the alternative hypothesis(two-sided):

H1 : E(Y ) ̸= µY,c
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Review: Hypothesis Testing of PopulationMean

• Step 1 Compute the sample mean Y

• Step 2 Compute the standard error of Y , recall

SE(Y ) = sY√
n

• Step 3 Compute the t-statistic actually computed

tact = Ȳ act − µY,c

SE(Ȳ )
• Alternative Step 3 Compute the p-value

p-value = PrH0(|t| > tact) = 2Φ(−|tact|)

• Step 4 See if we can Reject the null hypothesis at a certain significance level

α,like 5%, or p-value is less than significance level.

|tact| > critical value or p − value < significance level
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Hypotheses Testing in OLS Regressions
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Hypotheses Testing in a Simple OLS

• A Simple OLS regression

Yi = β0 + β1Xi + ui

• The key unknown population parameters in the population regression

equation is β1.

• We then test whether β1 equals to a specific value β1,c or not

• the null hypothesis:
H0 : β1 = β1,c

• the alternative hypothesis:
H1 : β1 ̸= β1,c
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Hypotheses Testing in a Simple OLS

• Step1: Estimate Yi = β0 + β1Xi + ui by OLS to obtain β̂1

• Step2: Compute the standard error of β̂1

• Step3: Construct the t-statistic

tact = β̂1 − β1,c

SE
(
β̂1

)
• Step4: Reject the null hypothesis if

| tact |>critical value

or p − value <significance level
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The t-statistic v.s Z-statistic

• The statistic we use here is still the t-statistic rather than the Z-statistic. Why?

• We can prove that

tact = β̂1 − β1,c

SE
(

β̂1

) ∼ t(n − 2)

given OLS assumptions plus one additional assumption: ui is normally
distributed. (If you’re interested, you can prove this by yourself.)

• This means that when the sample size is small, there is a meaningful difference

between the t-statistic and the Z-statistic.
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The t-statistic v.s Z-statistic

• We have previously shown that the OLS estimator is asymptotically normal

when the sample size is large,

• This means we could theoretically use the Z-statistic instead of the t-statistic.
• When the sample size is large, the difference between the t-statistic and the
Z-statistic becomes negligible, as the t-distribution converges to the normal
distribution.

• In practice, statisticians and econometricians typically use the t-statistic rather

than the Z-statistic in most regression analyses, regardless of sample size.
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The t-statistic in a Simple OLS

• The formula for the t-statistic is:

tact = β̂1 − β1,c

SE
(
β̂1

)
or

tact = estimator − hypothesized value

standard error of the estimator

• The key unknown component in this calculation is the standard error (S.E).
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The Standard Error of β̂1

• Recall from the Simple OLS Regression

• if the least squares assumptions hold, then in large samples β̂0 and β̂1 have a joint
normal sampling distribution,thus β̂1

β̂1 ∼ N(β1, σ2
β̂1

)

• We also derived the form of the variance of the normal distribution, σ2
β̂1

is

σβ̂1
=

√
1
n

V ar[(Xi − µX)ui]
[V ar(Xi)]2

(4.21)

• The value of σβ̂1
is unknown and can not be obtained directly by the data.

• V ar[(Xi − µX)ui] and [V ar(Xi)]2 are both unknown.
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The Standard Error of β̂1

• However, we can use sample statistics to estimate σβ̂1
. For detailed derivation,

see Appendix.

• The standard error of β̂1 is an estimator of the standard deviation of the

sampling distribution σβ̂1
, thus

SE
(
β̂1

)
=

√
σ̂2

β̂1
=

√√√√√ 1
n

×
1

n−2
∑

(Xi − X̄)2û2
i[

1
n

∑
(Xi − X̄)2

]2 (5.4)

• Everything in the equation (5.4) are known now or can be obtained by

calculation.

• Nowwe can construct a t-statistic and thenmake a hypothesis test.
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Application to Test Score and Class Size

• the OLS regression line

̂TestScore =698.9 − 2.28 × STR, R2 = 0.051, SER = 18.6
(10.4) (0.52)
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Testing a two-sided hypothesis concerning β1

• the null hypothesis H0 : β1 = 0
• It means that the class size will not affect the performance of students.

• the alternative hypothesis H1 : β1 ̸= 0
• It means that the class size do affect the performance of students (whatever
positive or negative)

• Our primary goal is to Reject the null, and thenmake a conclusion:

• Class Size doesmatter for the performance of students.
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Testing a two-sided hypothesis concerning β1

• Step1: Estimate β̂1 = −2.28
• Step2: Compute the standard error: SE(β̂1) = 0.52
• Step3: Compute the t-statistic

tact = β̂1 − β1,c

SE
(
β̂1

) = −2.28 − 0
0.52

= −4.39

• Step4: Reject the null hypothesis if

• | tact |=| −4.39 |> critical value = 1.96
• p − value = 0 < significance level = 0.05
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Application to Test Score and Class Size

• We can reject the null hypothesis that H0 : β1 = 0, whichmeans β1 ̸= 0 with a
high probability(over 95%).

• It suggests that Class sizematters the students’ performance in a very high

chance.
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Critical Values of the t-statistic
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1% and 10% significant levels

• Step4: Reject the null hypothesis at a 10% significance level

• | tact |=| −4.39 |> critical value = 1.64
• p − value = 0.00 < significance level = 0.1

• Step4: Reject the null hypothesis at a 1% significance level

• | tact |=| −4.39 |> critical value = 2.58
• p − value = 0.00 < significance level = 0.01
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Wrap up

• Hypothesis tests are useful if you have a specific null hypothesis in mind.

• Being able to accept or reject this null hypothesis based on the statistical

evidence provides a powerful tool for coping with the uncertainty inherent in

using a sample to learn about the population.

• Yet, there are many times that no single hypothesis about a regression

coefficient is dominant, and instead one would like to know a range of values of

the coefficient that are consistent with the data.

• This calls for constructing a confidence interval.
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Confidence Intervals
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Introduction

• Because any statistical estimate of the slope β1 necessarily has sampling

uncertainty, we cannot determine the true value of β1 exactly from a sample of

data.

• It is possible, however, to use the OLS estimators and its standard error to

construct a confidence interval for the slope β1
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CI for β1

• Method for constructing a confidence interval for a populationmean can be

easily extended to constructing a confidence interval for a regression

coefficient.

• Using a two-sided test, a hypothesized value for β1 will be rejected at 5%

significance level if

| tact |> critical value = 1.96

• So β̂1 will be in the confidence set if | tact |≤ critical value = 1.96
• Thus the 95% confidence interval for β1 are within ±1.96 standard errors of β̂1

β̂1 ± 1.96 · SE
(
β̂1

)
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CI for βClassSize

• Thus the 95% confidence interval for β1 are within ±1.96 standard errors of β̂1

β̂1 ± 1.96 · SE
(
β̂1

)
= −2.28 ± (1.96 × 0.519) = [−3.3, −1.26]
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CI for βClassSize

• Thus the 95% confidence interval for β1 are within ±1.96 standard errors of β̂1

β̂1 ± 1.96 · SE
(
β̂1

)
= −2.28 ± (1.96 × 0.519) = [−3.3, −1.26]
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Unnecessary Assumption for Simple OLS

• Three Simple OLS Regression Assumptions

• Assumption 1
• Assumption 2
• Assumption 3

• Assumption 4: The error terms are homoskedastic

V ar(ui | Xi) = σ2
u

• Then β̂OLS is the Best Linear Unbiased Estimator(BLUE): it is the most efficient

estimator of β1 among all conditional unbiased estimators that are a linear

function of Y1, Y2, ..., Yn.
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Heteroskedasticity & homoskedasticity

• The error term ui is homoskedastic if the variance of the conditional

distribution of ui given Xi is constant for i = 1, ...n, in particular does not

depend on Xi.

• Otherwise, the error term is heteroskedastic.
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An Actual Example: the returns to schooling

• The spread of the dots around the line is clearly increasing with years of

education Xi.

• Variation in (log) wages is higher at higher levels of education.

• This implies that

V ar(ui | Xi) ̸= σ2
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Homoskedasticity: S.E.

• However,in many applications homoskedasticity isNOT a plausible

assumption.

• If the error terms are heteroskedastic, then you use the homoskedastic assumption

to compute the S.E. of β̂1. It will leads to

• The standard errors are wrong (often too small)
• The t-statistic does NOT have a N(0, 1) distribution (also not in large samples).
• But the estimating coefficients in OLS regression will not change.
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Heteroskedasticity & homoskedasticity

• If the error terms are heteroskedastic, we should use the original equation of S.E.

SEHeter

(
β̂1

)
=

√
σ̂2

β̂1
=

√√√√√ 1
n

×
1

n−2
∑

(Xi − X̄)2û2
i[

1
n

∑
(Xi − X̄)2

]2

• It is called as heteroskedasticity robust-standard errors,also referred to as

Eicker-Huber-White standard errors,simply Robust-Standard Errors

• In the case, it is not difficult to find that homoskedasticity is just a special case of

heteroskedasticity.
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Heteroskedasticity & homoskedasticity

• Since homoskedasticity is a special case of heteroskedasticity, these

heteroskedasticity robust formulas are also valid if the error terms are

homoskedastic.

• Hypothesis tests and confidence intervals based on above SE’s are valid both in

case of homoskedasticity and heteroskedasticity.

• In reality, since in many applications homoskedasticity is not a plausible

assumption, it is best to use heteroskedasticity robust standard errors. Using robust

standard errors rather than standard errors with homoskedasticitywill lead us

lose nothing.
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Heteroskedasticity & homoskedasticity

• It can be quite cumbersome to do this calculation by hand.Luckily,computer can

help us do the job.

• In Stata, the default option of regression is to assume homoskedasticity, to
obtain heteroskedasticity robust standard errors use the option “robust”:

regress y x , robust

• In R, many ways can finish the job. A convenient function named vcovHC() is
part of the package sandwich.
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Test Scores and Class Size
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Test Scores and Class Size
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Wrap up: Heteroskedasticity in a Simple OLS

• If the error terms are heteroskedastic

• The fourth simple OLS assumption is violated.
• The Gauss-Markov conditions do not hold.
• The OLS estimator is not BLUE (not the most efficient).

• But (given that the other OLS assumptions hold)

• The OLS estimators are still unbiased.
• The OLS estimators are still consistent.
• The OLS estimators are normally distributed in large samples
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OLS withMultiple Regressors: Hypotheses tests
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Recall: the Multiple OLS Regression

• Themultiple regressionmodel is

Yi = β0 + β1X1,i + β2X2,i + ... + βkXk,i + ui, i = 1, ..., n

• Four Basic Assumptions

• Assumption 1 : E[ui | X1i, X2i..., Xki] = 0
• Assumption 2 : i.i.d sample
• Assumption 3 : Large outliers are unlikely.
• Assumption 4 : No perfect multicollinearity.

• The Sampling Distribution: the OLS estimators β̂j for j = 1, ..., k are

approximately normally distributed in large samples.

63 / 90



Standard Errors for theMultiple OLS Estimators

• There is nothing conceptually different between the single- or multiple-regressor

cases.

• Standard Errors for a Simple OLS estimator β1

SE
(

β̂1

)
= σ̂β̂1

• Standard Errors for Mutiple OLS Regression estimators βj

SE
(

β̂j

)
= σ̂β̂j

• Remind: since now the joint distribution is not only for (Yi, Xi),but also for
(Xij , Xik).

• The formula for the standard errors in Multiple OLS regression are related with a

matrix named Variance-Covariancematrix.
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Hypothesis Tests for a Single Coefficient

• the t-statistic in Simple OLS Regression

tact
1 = β̂1 − β1,c

SE
(
β̂1

) ∼ N(0, 1)

• the t-statistic in Multiple OLS Regression

tact
j = β̂j − βj,c

SE
(
β̂j

) ∼ N(0, 1)
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Hypothesis testing for single coefficient

• H0 : βj = βj,c H1 : β1 ̸= βj,c

• Step1: Estimate β̂j , by run amultiple OLS regression

Yi = β0 + β1X1i + ... + βjXji + ... + βkXki + ui

• Step2: Compute the standard error of β̂j (requires matrix algebra)

• Step3: Compute the t-statistic

tact
j = β̂j − βj,c

SE
(
β̂j

)
• Step4: Reject the null hypothesis if

• | tact |> critical value

• or if p − value < significance level
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Confidence Intervals for a single coefficient

• Also the same as in a simple OLS Regression.

• β̂j will be in the confidence set if | tact |≤ critical value = 1.96 at the 95%
confidence level.

• Thus the 95% confidence interval for βj are within ±1.96 standard errors of β̂j

β̂j ± 1.96 · SE
(
β̂j

)

67 / 90



Test Scores and Class Size
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Case: Class Size and Test scores

• Does changing class size, while holding the percentage of English learners

constant, have a statistically significant effect on test scores? (using a 5%

significance level)

• H0 : βClassSize = 0 H1 : βClassSize ̸= 0
• Step1: Estimate β̂1 = −1.10
• Step2: Compute the standard error: SE(β̂1) = 0.43
• Step3: Compute the t-statistic

tact = β̂1 − β1,c

SE
(
β̂1

) = −1.10 − 0
0.43

= −2.54

• Step4: Reject the null hypothesis if
• | tact |=| −2.54 |> critical value.1.96
• p − value = 0.011 < significance level = 0.05
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Tests of Joint Hypotheses: on 2 or more coefficients

• Can we just test one individual coefficient at a time?

• Suppose the angry taxpayer hypothesizes that neither the student–teacher ratio

nor expenditures per pupil have an effect on test scores, once we control for the

percentage of English learners.

• Therefore, we have to test a joint null hypothesis that both the coefficient on

student–teacher ratio and the coefficient on expenditures per pupil are zero?

H0 : βstr = 0 & βexpn = 0,

H1 : βstr ̸= 0 and/or βexpn ̸= 0
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Heteroskedasticity-Robust F-statistic

• Usingmatrix to show the form of the heteroskedasticity-robust F-statistic

which is beyond the scope of our class.

• While,under the null hypothesis,regardless of whether the errors are

homoskedastic or heteroskedastic, the F-statistic with q has a sampling

distribution in large samples,

F − statistic ∼ Fq,∞

• where q is the number of restrictions

• Then we can compute the F-statistic, the critical values from the table of the Fq,∞

and obtain the p-value.
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F-Distribution
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Testing joint hypothesis with q restrictions

• H0 : βj = βj,0, ..., βm = βm,0 for a total of q restrictions.

• H1:at least one of q restrictions under H0 does not hold.

• Step1: Estimate

Yi = β0 + β1X1i + ... + βjXji + ... + βkXki + ui

by OLS

• Step2: Compute the F-statistic

• Step3 : Reject the null hypothesis if

F − Statistic > F act
q,∞

or

p − value = Pr[Fq,∞ > F act] <= significant level
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Case: Class Size and Test Scores

• We want to test hypothesis that both the coefficient on student–teacher ratio and

the coefficient on expenditures per pupil are zero?

• H0 : βstr = 0 &βexpn = 0
• H1 : βstr ̸= 0 and/or βexpn ̸= 0

• The null hypothesis consists of two restrictions q = 2
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Case: Class Size and Test Scores

• It can be shown that the F-statistic with two restrictions has an approximate F2,∞

distribution in large samples

Fact = 5.43 > F2,∞ = 4.61 at 1% significant level

• This implies that we reject H0 at a 1% significance level.
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The “overall” regression F-statistic

• The “overall” F-statistic test the joint hypothesis that all the k slope coefficients

are zero

• H0 : βj = βj,0, ..., βm = βm,0 for a total of q = k restrictions.
• H1: at least one of q = k restrictions under H0 does not hold.
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The “overall” regression F-statistic

• The overall F − Statistics = 147.2 which indicates at least one coefficient can
not be ZERO.
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Case: Analysis of the Test Score Data Set
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Introduction

• How to use multiple regression in order to alleviate omitted variable bias and

demonstrate how to report results.

• Considering three variables that control for unobservable student

characteristics which correlate with the student-teacher ratio and are assumed to

have an impact on test scores:

• English, the percentage of English learning students

• lunch, the share of students that qualify for a subsidized or even a free lunch at

school

• calworks,the percentage of students that qualify for a income assistance

program
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Five different model equations:

• We shall consider five different model equations:

(1) TestScore = β0 + β1STR + u,

(2) TestScore = β0 + β1STR + β2english + u,

(3) TestScore = β0 + β1STR + β2english + β3lunch + u,

(4) TestScore = β0 + β1STR + β2english + β4calworks + u,

(5) TestScore = β0 + β1STR + β2english + β3lunch + β4calworks + u
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Scatter Plot: English learners and Test Scores
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Scatter Plot: Free lunch and Test Scores
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Scatter Plot: Income assistant and Test Scores
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Correlations between Variables

• The correlation coefficients are following

# estimate correlation between student characteristics and test scores
cor(CASchools$testscr, CASchools$el_pct)

#> [1] -0.6441237

cor(CASchools$testscr, CASchools$meal_pct)

#> [1] -0.868772

cor(CASchools$testscr, CASchools$calw_pct)

#> [1] -0.6268534

cor(CASchools$meal_pct, CASchools$calw_pct)

#> [1] 0.7394218
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Table 3

Dependent Variable: Test Score

(1) (2)

str −2.280∗∗∗ −1.101∗∗

(0.519) (0.433)
el_pct −0.650∗∗∗

(0.031)
Constant 698.933∗∗∗ 686.032∗∗∗

(10.364) (8.728)

Observations 420 420
R2 0.051 0.426
Adjusted R2 0.049 0.424
F Statistic 22.575∗∗∗ 155.014∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust S.E. are shown in the parentheses
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Table 4

Dependent Variable: Test Score

(1) (2) (3) (4)

str −2.280∗∗∗ −1.101∗∗ −0.998∗∗∗ −1.308∗∗∗

(0.519) (0.433) (0.270) (0.339)
el_pct −0.650∗∗∗ −0.122∗∗∗ −0.488∗∗∗

(0.031) (0.033) (0.030)
meal_pct −0.547∗∗∗

(0.024)
calw_pct −0.790∗∗∗

(0.068)
Constant 698.933∗∗∗ 686.032∗∗∗ 700.150∗∗∗ 697.999∗∗∗

(10.364) (8.728) (5.568) (6.920)

Observations 420 420 420 420
R2 0.051 0.426 0.775 0.629
Adjusted R2 0.049 0.424 0.773 0.626
F Statistic 22.575∗∗∗ 155.014∗∗∗ 476.306∗∗∗ 234.638∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust S.E. are shown in the parentheses
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Table 5

Dependent Variable: Test Score

(1) (2) (3) (4) (5)

str −2.280∗∗∗ −1.101∗∗ −0.998∗∗∗ −1.308∗∗∗ −1.014∗∗∗

(0.519) (0.433) (0.270) (0.339) (0.269)
el_pct −0.650∗∗∗ −0.122∗∗∗ −0.488∗∗∗ −0.130∗∗∗

(0.031) (0.033) (0.030) (0.036)
meal_pct −0.547∗∗∗ −0.529∗∗∗

(0.024) (0.038)
calw_pct −0.790∗∗∗ −0.048

(0.068) (0.059)
Constant 698.933∗∗∗ 686.032∗∗∗ 700.150∗∗∗ 697.999∗∗∗ 700.392∗∗∗

(10.364) (8.728) (5.568) (6.920) (5.537)

Observations 420 420 420 420 420
R2 0.051 0.426 0.775 0.629 0.775
Adjusted R2 0.049 0.424 0.773 0.626 0.773
F Statistic 22.575∗∗∗ 155.014∗∗∗ 476.306∗∗∗ 234.638∗∗∗ 357.054∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust S.E. are shown in the parentheses
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The “Star War” and Regression Table
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Discussion of the empirical results

• We should focus on the coefficient of our main interest, the student-teacher

ratio (STR), in the regression table.

• Though we estimate the effect of STR on test scores in different specifications, the
coefficient of STR is consistently negative and statistically significant at around
from −1 to −1.3.

• We should explain the results in the context of the research question.

1. The sign of the coefficient
2. Themagnitude of the coefficient
3. The statistical significance of the coefficient
4. The economic significance of the coefficient
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Warp Up

• Therefore, we have to build a framework to test the hypothesis about the

population parameters based on the sample given a certain level of confidence.

• Using the hypothesis testing and confidence interval in OLS regression, we

could make amore reliable judgment about the relationship between the

treatment and the outcomes.

• The analysis in this and the preceding lectures has presumed that the population

regression function is linear in the regressor whichmight not be true.

• We will extend the model into nonlinearity in following lectures.
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