
Quantitative Social Science in the Age of Big Data and AI
Lecture 7: Matching

Zhaopeng Qu
Hopkins-Nanjing Center

May 06 2025



Outline

1. Review the last three lectures

2. Matching: Introduction

3. Matching: Propensity Score Matching

4. Matching in Practice

5. Wrap up

2 / 83



Review the Last Three Lectures
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Causal Inference and OLS Regression

Causal inference in nature is a comparision about two potential outcomes  and  for the same unit.

The main challenge of causal inference is that we cannot observe the counterfactual outcome  for the
treated group.

Using RCTs, we can compare the treated group and the untreated group directly.

However, in many cases, we do not have a RCT, thus we need to use some methods to make causal
inference.

The first method using observational data that we learned to make causal inference is OLS regression.

Y1 Y0

Y0
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Causal Inference and OLS Regression

The main identification strategy of OLS regression is Control, ie. putting covariates into the regression as
control variables.

The identifying assumption of OLS regression is

Conditional Independence Assumption(CIA): which means that if we can balance/adjust/control for
the covariates  to make the treatment  as randomized, thus

Then the estimated coefficient  can be interpreted as the ATE/ATT of the treatment  on the outcome
.

And hypothesis testing and confidence interval can help us to see if the treatment has a significant effect
on the outcome in the population.

X D

(Y1, Y0) ⊥⊥ D|X

β̂1 D

Y
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Nonlinearity in Xs

Polynomial terms: , , etc.
Logarithmic terms:  and , etc.
Interaction terms: , etc.

Nonlinearity in Ys or s

Discrete Choice models:

Binary/Dichotomous Ys: 

Count Ys: 

Multinomial Ys: 

Ordinal Ys: 

OLS Regression: Nonlinearity

Recall the OLS regression model is a linear model in terms of the parameters s.

However, suppose any function form of  or s could be biased. Then we need to use non-parametric
methods to estimate the relationship between  and s.

βi

Yi = β0 + β1X1i + β2X2i+. . . +βkXki + ui

X2
1i X1iX2i

ln(X1i) ln(Yi)
X1i × X2i

βi

Yi ∈ {0, 1}

Yi ∈ {0, 1, 2, . . . }

Yi ∈ {1, 2, . . . , J}

Yi ∈ {1, 2, . . . , J}

Yi βi

Yi Xi
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Matching: Introduction
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Introduction

In observational studies, as opposed to RCTs, we cannot directly determine the causal effect because the
counterfactual outcome of the treated group is unknown.

In other words, we cannot find a suitable control group to compare with the treated group.

The idea of matching method is quite simple:

What if we can construct a reasonable control group by selecting some(or all) samples in untreated
group in some way?

A reasonable control group should be similar to the treated group in terms of the covariates  before
the treatment.

A similar but not equivalent question is find a suitable treat group by selecting some samples in
treated group.

For simplicity, we focus on the former question, ie. constructing a control group, which is more common
in practice.

X
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Introduction

Suppose  and  are the outcomes of the treated and untreated group, respectively.

And we can use some or all samples from untreated group to construct the counterfactual outcomes of
the treated group 

Then the average treatment effect(ATE or ATT) easily by making the difference

Question: How can we use samples from the untreated group to get the counterfactual outcomes of the
treated group, ?

Answer: select the untreated samples that are similar to the treated ones in terms of the covariates 

Assumption: If CIA holds, thus , then the treatment status can be seen as randomized
given the covariates .

Yi1 Yi0

Y c
i1

δATE = E[Yi1 − Y c
i1]

δATT = E[Yi1 − Y c
i1|D = 1]

Y c
1i

Xi

(Y1, Y0) ⊥⊥ D|X
Xi
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Example: Training Program Evaluation

Question: What is the causal effect of a training program on the wage of workers?

A simple OLS regression model can be written as

The treated group is the workers who have received the training program 

The untreated group is the workers who have not received the training program 

The outcome is the log-wage of workers , and the covariates  form a vector including variables such
as age, education, experience, etc.

Then the key coefficient  is the difference in log-wage between the treated group and untreaded group.

If OLS assumptions hold, then the estimated coefficient  can be interpreted as the causal effect of the
training program in terms of the wage of workers.

Yi = β0 + β1Di + ui

D = 1

D = 0

Yi Xi

β̂1

β̂1
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Unmatched Samples by trainning status

The average wage gap between the treated group and the untreated group is

It appears that joining the training program will reduce the wages of workers by .

Question: Can you find the bias of this estimation?

δ = E[Y1i − Y0i] = 16426 − 20724 = −4298

4298
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OLS Regression for the Training Program

Answer: Yes, we may suffer the OVB.The common way to solve this problem is to add some covariates
into the regression model.

where  is the covariate of the workers, like age, education, experience, etc.

The main identifying assumption of the OLS regression here is

Conditional Independence Assumption(CIA): which means that if we can "balance" covariates  then
we can take the treatment D as randomized.

However, we may still suffer the misspecification of the model under the CIA, which can also make
estimates  biased.

Therefore, we may use a method which can balance the covariates  like OLS but without the
assumption of function forms:

Matching

Yi = β0 + β1Di + β2Xi + ui

Xi

X

β1

X
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A Trainning Example: matching samples

Assume that the covariates  is the age of the workers, and to see how the matching method works.

We pick the untreated samples that are similar to the treated samples in terms of the age of the workers.

X
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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A Trainning Example: matching samples
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An Illustrated Example: matched samples

The average wage gap between the treated group and the matched untreated group is

Now, joining the training program will increase the wage of workers by  .

δ = E[Y1i − Y0i] = 16426 − 13982 = 2444
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Two Assumptions: One Old and One New

We still rely on the Conditional independence Assumption(CIA), which is akin to running an OLS
regression.

More specifically, we assume that the potential incomes for the workers are independent of th e
training status given the age of the workers.

It means that if CIA are not satisfied, then both the OLS and the matching estimator will be biased.

Matching is not a silver bullet for OVB in OLS.

Besides, do you notice that there are some untreated samples that are not matched with any treated
samples?

It means that these samples are not used in the estimation of the average treatment effect at all.

This is due to the Overlap Assumption, a new assumption in the matching method that was not
discussed in the OLS regression.

(Y0i, Y1i) ⊥⊥ Di|Xi
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Two Assumptions: One Old and One New

The Overlap Assumption is to ensure that we can find a matched untreated sample for each treated
sample.Mathematically, it is expressed as:

This implies that the likelihood of receiving treatment is neither 0 nor 1 for any given covariates.

If the probability of receiving treatment is 0 for some , then no samples with these characteristics
receive treatment, making them unavailable for matching.

If the probability of receiving treatment is 1 for some , then all samples with these characteristics
receive treatment, making it impossible to find untreated matches.

Including either case in our comparison would bias the average treatment effect estimation.

It suggests that we change the samples explicitly based on the covariates to ensure that the overlap
assumption is satisfied.

0 < Pr(Di = 1 ∣ Xi) < 1

Xi

Xi
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A Trainning Example: before matching
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A Trainning Example: after matching
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The overlap assumption is satisfied The overlap assumption is violated

The Overlap Assumption in OLS

In the OLS regression, the overlap assumption is not explicitly required, which may lead to biased
estimates.
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OLS vs Matching: Overlap Assumption
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OLS vs Matching: Overlap Assumption

Basic take-away: treated group is higher than the untreated group in the OLS regression.

Earnings = β0 + β1Education + β2Treatment + u
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Overlap Assumption in Nonlinearity

Basic take-away: untreated group is higher than the treated group in the OLS regression.

Earnings = β0 + β1Education + β2Education
2

+ β3Treatment + u
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Overlap Assumption: Common Support

The common support region is the region where both the treated and untreated groups have data.
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Common Support: After Trimming Data

Basic take-away: treated group is very close to the untreated group in the OLS regression.

Earnings = β0 + β1Education + β2Treatment + u
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Common Support: After Trimming Data

Basic take-away: treated group is still very close to the untreated group in the OLS regression.

Earnings = β0 + β1Education + β2Education
2

+ β3Treatment
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Matching Estimators: Exact matching is hard

The training case is an example of Exact matching which means that only units with identical covariate
values are used to construct the control group.

But what if we have multiple covariates using to match, thus ?

In this case, it is impossible to find proper units with identical values in all covariates .

Two complementary solutions are running in parallel, representing the directions in which the matching
method is developing.

1.Lower the accuracy of the comparison.

From find a unit in the untreated group with the same covariate values to find a unit in the untreated group
with similar covariate values.

2.Directly reduce dimensions.

Converting multiple variables into a single numerical value, then use the numerical value to match the
samples.

X = (X1, X2, . . . Xk)′

X1, X2, . . . Xk
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Matching Estimator
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Introduction

The matching estimator can be divided into three steps: Matching, Estimation and Inference.

Matching: Find a control group for each treated individual based on the covariates.

1. define how to measure the similarity between the treated and untreated samples.

2. choose the criteria to match the samples.

3. evaluate the quality of the matching.

Estimation: Estimate the average treatment effect(making a difference) using the matched samples.

Inference: Test the statistical significance of the treatment effect(ATT or ATE) using the matched samples.

We will focus on the Matching and Estimation in this lecture.
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Reweight as Counterfactuals

Basic settings: all notations are the same as before,like , , , and .

the sample size here is the only one need to noted :  treated individuals and  control
individuals.

The counterfactual for treated individual  that what we want is , then how to construct it by
matching?

Because we construct the counterfactuals by using the untreated samples, therefore in a more general
sense,the counterfactual for treated individual  is

where  is a weight of untreated individual  for treated individual , and normally 

Y1i Y0i Di Xi

NT NC

i Y C
1i

i

Y C
1i

= ∑
j

wi(j)Y0j

wi(j) j i ∑
j

wi(j) = 1
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Matching Estimator

Then individual treatment effect, , is

A matching estimator for the average treatment effect on the treated(ATT) is

Where  is the common support region of the treated and untreated individuals.

And  and .

 means that  is a treated individual and  is in the common support region.

δi

δi = Y1i − YC
1i = Y1i −∑

j

wi(j)Y0j

δ̂ M = ∑
i∈(D=1∩C)

δi = ∑
i∈(D=1∩C)

(Y1i − Yc
1i) = ∑

i∈(D=1)

⎛
⎝Y1i − ∑

j∈(D=0∩C)

wi(j)Y0j

⎞
⎠

1
NT

1
NT

1
NT

C

j = 1, 2, . . . , N C i = 1, 2, . . . , N T

i ∈ (D = 1 ∩ C) i i
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Weight to Matching

Question: How to obtain these weights,thus ?

Answer: It is easy and hard at the same time.

E.g. if 

In this case, the weights are equal for all the untreated samples.

Then we're back to a difference in means, except now it's based on the  matched samples.

wi(j)

wi(j) = { 1 if j = i

0 otherwise

δ̂ M = ∑
i∈(D=1∩C)

⎛
⎝Y1i − ∑

j∈(D=0∩C)

wi(j)Y0j

⎞
⎠

= ∑
i∈(D=1∩C)&j=i

(Y1i − Y0j)

1
NT

1
NT

NT
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Weight to Matching

More Reasonable Weights: The weights  should be related with covariates  in treated group and
 in untreated group.

The idea: more similar the covariates are, more weight the untreated sample should have.

Proximity: When X is Discrete

If  is discrete,then we can use the equality of  to construct the weights.Thus

Where  is an indicator function,

This is the Exact Matching what we did in the trainning case.

wi(j) Xi

Xj

X X

wi(j) = I(Xi = Xj)

I(⋅)

I(X) = { 1 if Xi = Xj

0 otherwise
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Proximity: When X is Continuous

If  is continuous, then we may not find a unit with the same covariate values.Then we may need
proximity rather than equality.

Then the weight  can be a measure of how close  of untreated group is to  of the treated group.

If the gap(distance) is small, then the weight is large, and vice versa.

Question: What do "small" and "large" mean in the previous sentence?

It depends on the distance metric.

If we just pick the smallest one as we did in the trainning case, then we have the Nearest Neighbor
Matching.

X

wi(j) Xj Xi

|Xi − Xj|
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Math Review: Distance between two vectors

If  and  are both single-dimensional variables, then the distance between them is the difference
between them,

What if  and  are both multi-dimensional variables,thus k-dimensional vectors as follows

Question: how to measure the distance between two vectors?

Answer: The Euclidean distance can be as the measure of the distance between  and ,

Xi Xj

|Xi − Xj|

Xi Xj

Xi = (Xi1, Xi2, . . . , Xik) and Xj = (Xj1, Xj2, . . . , Xjk)

Xi Xj

∥(Xi − Xj) ∥= √(Xi − Xj)′(Xi − Xj)

52 / 83



Proximity: When X is a Vector

The Euclidean distance is not invariant to changes in the scale of . A more commonly used distance is
the normalized Euclidean distance

where  is the symmetric and positive semidefinite variance matrix of X of , thus

 is the variance of the -th variable.

No scale problem but still no correlations between Xs.

X

∥(Xi − Xj) ∥= √(Xi − Xj)′V −1
X (Xi − Xj)

V −1
X

X

V −1
X

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ̂
2
1 0 0 ⋯ 0

0 σ̂
2
2 0 ⋯ 0

0 0 σ̂
2
3 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ⋯ σ̂
2
k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
σ̂2

k k
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Proximity: When X is a Vector

Mahalanobis distance between  and  is defined as

where  is the variance-covariance matrix of .

 is the covariance between the -th and -th variables.

No scale problem and taking correlations between Xs into account.

Xi Xj

∥(Xi − Xj) ∥= √(Xi − Xj)′Σ−1
X

(Xi − Xj)

Σ−1
X

X

Σ−1
X

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ̂11 σ̂12 σ̂13 ⋯ σ̂1k

σ̂11 σ̂22 σ̂23 ⋯ σ̂2k

σ̂11 σ̂32 σ̂33 ⋯ σ̂3k

⋮ ⋮ ⋮ ⋱ ⋮
σ̂k1 σ̂k2 σ̂k3 ⋯ σ̂kk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
σ̂jk j k
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Many Matching Methods

There many methods to choose the matchers and weights. Here are some of them:

Exact Matching:

the weight  is 1 if  is the exact match of  and 0 otherwise.
problem: The exact match may not be found.

Nearest Neighbor Matching(NNM):

The smallest distance between the treated and untreated group.
the weight  is 1 if  is the nearest neighbor of  and 0 otherwise.
problem: The nearest neighbor may not be a good match.

Caliper Matching: Samples within a certain range are matched.

the weight  is 1 if  is in the range and 0 otherwise.

problem: How to choose the range?

wi(j) j i

wi(j) j i

wi(j) j
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Many Matching Methods

Radius Matching: all the samples within a certain range are matched.

the weight  is 1 if  is in the range and 0 otherwise.

problem: How to choose the radius?

Subclassification : Divide the treated and untreated group into subclasses based on the covariates and
then match within each subclass.

the weight  is 1 if  is in the same subclass as  and 0 otherwise.

problem: How to choose the subclasses?

Kernel Matching: The weight is based on the kernel function, which is an estimated density function of
the covariates.

all the samples in the untreated group are used to estimate the counterfactual outcome.
the weight is based on the specific kernel function

wi(j) j

wi(j) j i
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The curse of dimensionality

As the dimension of  expands (i.e., matching on more variables), whatever matching method we use, it
becomes increasingly difficult to find a suitable or closely matched control for each treated sample, even if
we have a large sample size.

Need alternative ways to shrink the dimensions of .

Propensity scores

It turns out that if CIA is satisfied,then we actually only need to match/conditional on the propensity
score , instead of the entire .

X

X

p(x) Xi
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Propensity-Score Methods
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The Magic of Propensity Scores

Recall the CIA assumption:

The propensity score is defined as the probability of treatment given , thus

Formally the Propensity Score Theorem is

If  then 

If we control/adjust/balance the propensity score instead of the raw covariates, then the treatment is as
good as random.

This theorem extends CIA assumption from multiple dimensions to a one-dimensional score, avoiding
the curse of dimensionality.

(Y0i, Y1i) ⊥⊥ Di|Xi

Xi

p(Xi) = E[Di|Xi]

(Y0i, Y1i) ⊥⊥ Di|Xi, (Y0i, Y1i) ⊥⊥ Di|p(Xi).
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Propensity-Score Matching

Intuition
Question:  carries way more information than , so how can we still get conditional independence
of treatment by only conditioning on ?

Answer Conditional independence of treatment is not about extracting all of the information possible from
. We actually only care about creating a situation in which  is independent of .

Xi p(Xi)
p(Xi)

Xi Di|a function of X (Y0i, Y1i)
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Propensity-Score Matching

Estimation: Binary Dependent Regression
Question:How to obtain the propensity scores ?

Recall the definition of propensity score, does it sound familiar?

Yes,it is the binary dependent regression model that the independent variables are the covariates .

We can estimate the propensity scores using three models we covered previously:

1. LPM
2. Logit
3. Probit

Of course there are another ways to estimate it like machine learning methods, but the most common way
is to use logit regression.

p(Xi)

p(Xi) = Pr(Di = 1 ∣ Xi)

Xi

61 / 83



Propensity-Score Matching

Estimation: Logit Regression
The logit model of the propensity score is given by

Where  is the vector of covariates and  is the vector of coefficients.

The estimated propensity scores  can be obtained by plugging in the estimated coefficients .

p(Xi) = E(D = 1|Xi) =
1

1 + e(−Xiβ)

Xi β

p̂(Xi) β̂

p(Xi) =
1

1 + e(−Xiβ̂)
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Propensity-Score Matching

Estimation: Logit Regression
However, for the nonlinearity of the model, the marginal effect of coviarites on the propensity score is not
constant.

It means that the same change of the covariates will NOT have the same effect on the propensity score for all
the values of the covariates.

Therefore, a more common way to estimate the propensity score is to use the log odds ratio,

Recall: We claimed that matching is over regression as it is non-parametric, don't need to specify the
functional form of the model.

However, in the propensity score method, we still need to specify the functional form of the model and
estimate the coefficients.

ln( ) = Xiβ
p(Xi)

1 − p(Xi)
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Propensity-Score Matching

Estimation: Predicted instead of Explained
Note: The focus in the model here is a little bit different from the one we learned in the binary dependent
variable regression.

Here we focus on the predicted probability of being treated, which is the propensity score, and the
covariates are the explanatory variables.

While in the binary dependent variable regression, we focus on the explanatory coefficient of the
covariates(only one or two in most cases) on the treated variable(which actually is the dependent
variable).

Therefore, when we estimate the propensity score by the logit model, the function form should be as
flexible as possible to capture the relationship between the covariates and the treatment variable.

Polynomial terms and interaction terms are often included in the model.

Even ML methods can be used to estimate the propensity score as well. 64 / 83



Propensity-Score Matching

Overlap Assumption in Propensity Score Methods
Recall: The Overlap Assumption 

Which is to ensure that we can find a matched untreated sample for each treated sample, or the distribution of X
for the treated and control groups should overlap.

In P-score methods, the overlap assumption is about the distribution of the propensity score rather than
the covariates.

The easiest way to check the overlap assumption is to plot the distribution of covariates before and
after matching.

As we did it in the training example, in which we plotted the distribution of only one covariate.

Apparently when X is a vector which can be tough as the dimensions of  expand.

It is much more easier when using p-scores to check the overlap assumption.

0 < Pr(Di = 1 ∣ Xi) < 1

X
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Example: The plot below shows the distribution of the estimated propensity score  for the treated
and control groups.

The pscore in the treated group is in 
The pscore in the control group is in 

p(Xi)

[0.15, 1]
[0, 0.85] 66 / 83



Trimming samples to overlap in , thus we only keep the samples if p(Xi) 0.15 ≤ p(X) ≤ 0.85
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Regression and Propensity Scores Reweight

68 / 83



Regression with Propensity Scores

Based on the Propensity Score Theorem, conditional on the propensity score, the treatment is as good as
random.

Then, the simple idea is to use propensity scores as a control variable instead of the raw covariates in the
regression model

Assumption: the relationship between the outcome and the propensity score is linear.

To consider the non-linearity, we can add the polynomial terms or interaction terms between the
propensity score and the treatment to make a more flexible model.

Normally, the cubic term is enough for the flexibility.

Yi = β0 + β1Di + β2p(Xi) + ui

Yi = β0 + β1Di + β2p(Xi) + β3Di ⋅ p(Xi) + β4p(Xi)2+

β5Di ⋅ p(Xi)2 + β6p(Xi)3 + β7Di ⋅ p(Xi)3+. . . +ui
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Inverse Probability Weighting

The inverse probability weighting (IPW) is an alternative way to use the propensity score to control the
bias due to the selection on observables.

The idea is to weight the treated and control units by the inverse of the propensity score.

The Average Treatment Effect (ATE) can be derived by the following formula:

Under the CIA and Overlap Assumption, we could show that

δATE = E(Y1i − Y0i) = E [ Yi] − E [ Yi]Di

p(Xi)
1 − Di

1 − p(Xi)

E[Y1i] = E [ Yi]
E[Y0i] = E [ Yi]

Di

p(Xi)
1 − Di

1 − p(Xi)

70 / 83



IPW Estimator for ATE

Then, we could get the ATE by the following formula:

This is the Horvitz-Thompson IPW estimator for the ATE.

δATE = E [ Yi]− E [ Yi]Di

p(Xi)
1−Di

1−p(Xi)

= E [ Yi](Di−Di⋅p(Xi)−p(Xi)+Di⋅p(Xi))
p(Xi)(1−p(Xi))

= E [ Yi](Di−p(Xi))
p(Xi)(1−p(Xi))
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IPW Estimator for ATE

Then the IPW estimator for ATE is given by

The IPW weights here are the inverse of the propensity score.

HW weights do not necessarily average to 1,which can be a problem.

δ̂
HW

ATE =
N

∑
i=1

Yi

1
N

Di − p(Xi)

p(Xi)(1 − p(Xi))

=

⎧⎪⎪⎨⎪⎪⎩
if Di = 1

− if Di = 0

Di − p̂(Xi)
p̂(Xi)(1 − p̂(Xi))

1
p̂(Xi)

1
1−p̂(Xi)
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A more general IPW Estimator for ATE

The standardization means dividing each group's weights by the sum of all weights within that group.

A more general IPW estimand is given by

Where  can be seen as the average weight for the treated group and  can be seen as
the average weight for the control group.

Then corresponding IPW estimator for ATE is given by

δATE = E(Y1i − Y0i) = −
E [ Yi]Di

p(Xi)

E [ ]Di

p(Xi)

E [ Yi]1−Di

1−p(Xi)

E [ ]1−Di

1−p(Xi)

E( )Di

p(Xi)
E( )1−Di

1−p(Xi)

δ̂
IPW

ATE = [ N

∑
i=1

] /[ N

∑
i=1

]− [ N

∑
i=1

] /[ N

∑
i=1

]YiDi

p(Xi)
Di

p(Xi)

Yi (1 − Di)

(1 − p(Xi))

(1 − Di)

(1 − p(Xi))
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Practical Implications

IPW provides a way to estimate causal effects without explicitly modeling the outcome process like
matching.

Practical challenges:

Extreme weights when  is close to 0 or 1
Need for careful diagnostics (covariate balance, weight distribution)

Some Extensions: Combine IPW with outcome regression

Double Robustness method: Consistent if either the propensity score is correctly specified or the
outcome regression is correctly specified**.

p(X)
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Matching in practice
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Matching in Practice

Introduction
Although matching is a simple concept, it can be more difficult to implement in practice.

There are many decisions to make when matching units. The questions are as follows:

1. How to choose variables as the matching covariates?

2. Which matching methods should be used? distances and weights: Matching/Propensity Score
Matching

3. How many control units should be matched to each treatment unit?: one-to-one or many-to-one?

4. The sample is matched with or without replacement?

5. The order of matching: greedy or optimal?
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Matching in Practice

Choosing Variables
Question: Which variables should be used for matching treatment and control units?

Answer: Include all variables that are likely to be confounders. (Recall the "good and bad controls"
framework)

Irrelevant variables
Relevant variables
Omitted variables
Colliders
Confounders

Selecting matching covariates follows similar principles as in regression analysis.

As with OLS regression, comparing results across different sets of variables serves as a sensitivity
analysis.
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Matching in practice

With or Without Replacement
Matching with replacement means that control units can be used as a match for more than once.

each control unit is "placed back" into the controls after being used once.

Two advantages:

treatment and control units after matching will be better balanced.
the order in which we match the units does not matter, in turn the matching algorithm is reduced in
complexity.

Shortcomings of matching with replacement:

reduces the effective sample size when the same control units are used multiple times.

may lead to estimates being overly influenced by a small number of frequently used control units.
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Matching in practice

Greedy v.s Optimal Matching
The greedy matching is a simple and fast algorithm that matches each treated unit to the control unit with
the closest distance.

However, the closest control units for every single sample may not be the best match for the treated unit
as a whole.

Thus the local optimal solution may not be the global optimal solution.

The optimal matching is a more complex algorithm that finds the best possible match for each treated unit
simultaneously.

It is often computationally expensive because it have to consider all possible matches for all treated units.
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Matching in practice

1:1 v.s 1:m Matching
1:1 matching: each treated unit can be matched to only one control.

1:m matching: each one can be matched to more than one control.

Benefit: This can be useful in large samples where there are more control units than treated units, because
the inclusion of more units will increase the precision of our estimates.

Cost: often the second, third and fourth matches may be poorer than the first match, meaning that we
may end up including control units that are not very similar to the treatment
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Assessing Balance
As in RCTs,after carrying out matching we should first carry out balance tests to compare the treatment
and control units.

If matching was successful, then by definition they should be very similar to each other in terms of their
covariates.

Balance tests are particularly useful in matching because they might be able to help us choose between
different distance metrics or matching with vs. without replacement.

Normally, matching procedures need a relatively large number of samples to be able to find a good
match.

81 / 83
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In a Summary
If matching was successful, then by definition they should be very similar to each other in terms of their
covariates.

Balance tests are particularly useful in matching because they might be able to help us choose between
different distance metrics, matching with vs. without replacement.

Choosing the "best" matching method highly depends on the unique characteristics of the dataset as well
as the goals of the analysis.

Similar to the logic of Machine learning

Therefore, sensitivity analysis is very crucial to Matching.
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Wrap up

Both matching and regression rely on CIA (selection on observables). Most biases we could suffer in
regression, such as OVB, measurement error, and simultaneous causality, will not be avoided even if we
use matching.

Most importantly, matching is essentially as the same as regression, only different in the weight of
estimating the CEF function.

Question: Why we still need matching?

Answer: Matching is over regression in the following aspects:

1. Due to its non-parametric characteristics, matching does not impose any restrictions on empirical
specification or estimate specific parameters of the CEF function.

2. Regression does not account for the common support issue explicitly, while matching does.

In practice, using matching alone as main identification strategy is less common in economics, more
frequently combined with other methods like DID and SCM.
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