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Machine Learning and Prediction
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Introduction

Machine learning is originally a branch of computer science and statistics.

"...[M]achine learning is a field that develops algorithms designed to be applied to datasets, with
the main areas of focus being prediction (regression), classification, and clustering or grouping
tasks." by Susan Athey(2018)

The learning part comes from the fact that we do not specify how exactly the computer should predict y
from x.

In general, this means that we abstract from the underlying models (biologic, economic, etc.) that creates
the outcome that we want to predict.
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Alan Truing(1912-1954),English mathematician
and logician,widely considered to be the father
of theoretical computer science and artificial
intelligence.

Authur Samuel(1901-1990),American computer
scientist,pioneerly popularized the term
machine learning in 1959.

The Origins of AI and Machine Learning
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Terminology: Econometrics V.S ML

Causal inference Machine learning

Topic a causal effect a learning problem

Object estimate Fitted value of 

How run an estimation train an algorithm

Criterion Unbiasedness and Consistency Optimal fit

Evaluation Conceptual Key assumptions Cross-validate fit

Question causal or not accurate or not

Variables an independent or treatment Variable a feature

Variables a continuous dependent variable a response

Variables a categorical dependent variable a label

Many similarities, but also some differences.

β ŷ
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Machine Learning: Algorithms

Any algorithm that maps features(independent variables) into a prediction(dependent variable) can be
thought of as within the realm of machine learning.

There are many machine learning algorithm. The best methods vary with the particular data application.

Regression: OLS,LASSO,Ridge
Classification: logit,probit
Decision trees and random forests
Neural networks and support vector machines
...

In many cases, the theoretical properties (e.g. convergence and limit distribution) of these algorithms are
even unknown but that is not the point.
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Machine Learning: A broad classification

1. Supervised learning: We have data on both an outcome  and explanatory variables .

The goal is to predict  from , and many methods can be used to do this.

Regression: if  is continuous
Classification: if  is discrete
K-Nearest Neighbors
Decision Trees
Random Forests
Support Vector Machines
Neural Networks

Applications:

Predicting electricity demand from temperature
Predicting presidential election from economic indicators and news coverage
Predicting spam emails from email content

Y X

Y X

Y

Y
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1. Unsupervised learning: we have no data on ,
only on .

Cluster Analysis
Principle Component Analysis(PCA)
Latent Dirichlet Allocation(LDA)

Applications:

Image recognition
Text classification
Clustering customers

1. Advanced Methods:

Reinforcement learning

Deep learning

Applications:

Game playing
Autonomous driving
LLMs like ChatGPT

Machine Learning: A broad classification

Y

X
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Our focuses

Main Content

Basic ideas of ML

ML algorithms for prediction

How and when to apply ML methods in QSS research.

Not about

Cutting-edge ML techniques

Computational aspects

Distributed computation systems for large data
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Supervised learning
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Introduction: Supervised Learning

Suppose the the relationship between x and y can be written as an additive error model:

where  is some fixed but unknown function of , which it represents the systematic relationship
between  and .

And  represents idiosyncratic deviations from this systematic relationship, so it satisfies

Causal inference v.s Prediction

1. Causal inference: How do changes in X affect Y? 

2. Prediction: Predict Y using our estimated  , i.e.,

Y = f(X) + ϵ

f() X

X Y

ϵ

E(ϵ ∣ X) = 0 and E(ϵ) = 0

β = ∂Y

∂X

f(X)

Ŷ = ^f(X)
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The Objective of Supervised Learning

In supervised learning, we want to make a prediction about the response Y based on features X.

Because it helps us to make a prediction, it is useful to estimate , which represents the systematic
relationship between features(X) and the response(Y).

However, for prediction we do not care about  itself. We can treat it as a black box, and any
approximation  that yields a good prediction is good enough.

Whatever works, works

f(⋅)

f(⋅)

^f(⋅)
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Example: predicting electricity demand

ERCOT (Electric Reliability Council of Texas) operates the electricity grid for 75% of Texas by area.
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The 8 ERCOT regions are shown at left. We'll focus
on a basic prediction task:

 = demand (megawatts) in the Coast region at
3 PM, every day from 2010-2016.

 = average daily temperature at Houston's
Hobby Airport (Celsius degrees)

--

Time KHOU COAST

1/1/10 15:00 7.1 8222.029

1/2/10 15:00 9.1 8379.872

1/3/10 15:00 6.1 8679.087

1/4/10 15:00 4.1 10273.567

Example: predicting electricity demand

Y

X
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Demand v.s Temperature
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A linear model?
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A quadratic model?
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How about this model?
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Formally: Optimal Objective

Question: How to choose the best prediction model?

Formally, a supervised learning algorithm takes as an input a loss function and searches for a function
within a function class that has a low expected prediction loss on a new data point from the same
distribution.

A very common loss function in a regression setting is the mean squared error (MSE), thus

Do you feel familiar with this loss function?

It is the same as the mistaken-function in OLS regression we have learned.

The optimal prediction is the one that minimizes the MSE just like the OLS regression.

MSE = ΣN
i=1(Yi − Ŷi)

21

N
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Error Decomposition

The MSE is a sample concept. The population analogue is called the expected mean-squared error(EMSE),
thus expectation of MSE over the population.

Because  and , then

We could prove that

(Ref: MHE-Theorem 3.1.2,pp33)

Thus the Conditional Expectation Function(CEF) is the best predictor of Y given X.

E(ϵ ∣ x) = 0 E(ϵ) = 0

EMSE = E[Y − Ŷ ]2

= E[f(X) + ϵ − f̂ (X)]2

= E[(f(X) − f̂ (X))2] + E[ϵ2] − E[2(f(X) − f̂ (X))ϵ]

= E[f(X) − f̂ (X)]2
Reducible error

+ V ar(ϵ)
Irreducible error

E(Y ∣ X) = arg min
f(X)

EMSE
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Unknown function form of f(X)

How to obtain the forms of CEF or 

Parametric: assume a particular, restricted functional form (e.g. linear, quadratic, logs, exp)

The simplest one is OLS regression 

Nonparametric: flexible forms not easily described by simple math functions.

Matching(Nearest Neighbors)

f(X)

f(X) = g(βX)

f(X) = X ′β
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Parametric: polynomial model Nonparametric: k-nearest neighbors(KNN)

 = average  value of the 50 points closest to

Parametric v.s Nonparametric

f(X) = β0 + β1X + β2X2 f(X) Y

X
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Estimating a parametric model: three steps

Suppose we have data in the form of  pairs. Now we want to predict  at some new point .

1. Choose a functional form of the model, e.g.

2. Choose a loss function that measures the difference between the model predictions  and the actual
outcomes . E.g. least squares:

3. Find the parameters that minimize the loss function.

(xi, yi) y y⋆

f(X) = β0 + β1X

f(X)

y

L(β0, β1) =
N

∑
i=1

(yi − f(Xi))2 =
N

∑
i=1

(yi − (β0 + β1xi))2

β̂0, β̂1 = arg min
β0,β1

L(β0, β1)
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Estimating k-nearest neighbors(KNN)

1. Pick the  points in the data whose  values are closest to . Call this neighborhood .

2. Average the  values for those points and use this average to estimate :

There are no explicit parameters (i.e. 's) to estimate.

Rather, the estimate for  is defined by a particular algorithm applied to the data set.

Suppose , thus we use the average of the 50 observations closest to  to estimate .

K xi x⋆ NK(x⋆)

yi f(x⋆)

f̂ (x⋆) = ∑
i:xi∈NK(x⋆)

yi

1

K

β

f(x)

K = 50 x⋆ f(x⋆)
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At x=5 and K=50
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At x=10 and K=50
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At x=15 and K=50
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At x=20 and K=50
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At x=25 and K=50
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At x=30 and K=50
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The predictions across all x values
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Two questions

This procedure raises two obvious questions:

1. So why average the nearest  neighbors? Why not , or ?

2. And if we're free to pick any value of  we like, how should we choose?

K = 50 K = 2 K = 200

K
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K=2
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K=5
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K=10
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K=20
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K=50
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K=100
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K=200
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K=500
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K=1000
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K=2000
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K=2357
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Complexity and Generalization

Smaller values of  give more flexible, but less stable function estimates:

they can capture very fine-scale structure in , because they're only averaging points from a small
neighborhood...
but they can also confuse noise for signal!

Larger values of  give less flexible, but more stable function estimates:

they can't adapt as much to wiggles in , because they're averaging points over a larger
neighborhood.
but this makes them less prone to confusing noise for signal.

There should be a optimal medium somewhere.

Question: How can we find it?

K

f(x)

K

f(x)
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Measuring accuracy:EMSE

Answer: Choose the model that makes the most accurate predictions, on average.

Expected Mean Squared Error (EMSE)

The sample version of EMSE is Root Mean Squared Error (RMSE)

This measures, on average, how large are the errors made by the model on the training data.

OLS minimizes this quantity over the set of linear functions.

RMSEin =

⎷
n

∑
i=1

(yi − f(xi))21

n

47 / 74



Measuring accuracy: linear vs. quadratric
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Measuring accuracy: linear vs. quadratric
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Measuring accuracy: RMSE of K for KNN

50 / 74



So we should pick K=2?
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Overfitting and Bias-Variance Trade-off
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Overfitting

Actually, it is not a good idea to fit the model too well like K=2.

Empirically, it tends to lead to a terrible prediction.

Why?

Because the model is too flexible, it tends to absorb all the idiosyncratic noise( ) in the prediction
model.

A new observation with the same X will have a different idiosyncratic noise, and so the prediction is
off.

Remember: our aim is not to fit the model but to predict future

To avoid overfitting, we need to find the optimal degree of flexibility

ϵ
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Bias-variance trade-off

The expected squared error can be decomposed into:

 is the true function
 is the model prediction

 is the inherent noise in the data (cannot be eliminated)

Bias: Systematic error caused by approximating a complex general function by a restricted functional
form.

Variance: refers to the degree by which  would change if we estimated on a different data set.

Total Error: Bias² + Variance + Irreducible Error (noise)

EMSE = E[(Y − Ŷ )2] = [f(X) − E(f̂ (X)]2
Bias2

+ E[(f̂ (X) − E(f̂ (X))]2
Variance

+ E[ϵ2]
Noise

f(x)

f̂ (x)

σ2
ϵ

f̂
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Total Error vs Model Complexity
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Visualization of Three Fitting Types

Underfitting: High Bias, Low Variance

Overfitting: Low Bias, High Variance

--

Good Fit: Balanced
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Bias-variance trade-off

High K = high bias, low variance:

Estimate  using many points, some of which might be far away from . These far-away points bias
the prediction; their values of  are slightly off on average.
But more data points means lower variance: less chance of memorizing random noise.

Low K = low bias, high variance:

Estimate  using only points that are very close to . Far-away  points don't bias the prediction with
their "slightly off"  values.
But fewer data points means higher variance: more chance of memorizing random noise.

Question: Why  minimizes the RMSE?

f(x) x

f(x)

f(x) x x

y

K = 2
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Out-of-sample vs in sample

Answer: K=2 model earned a low RMSE by simply memorizing the random pattern of noise in the data in
the past.

However, our object is to make a better prediction.

Therefore we divide the whole sample into two subsets

In sample or training data: to fit the model
Out-of-sample or testing data: Additional data used to evaluate how good is the regression model
fit(assume "future")

Suppose we have data 

 in sample: 
 out-of-sample: 

(x1, y1), (x2, y2). . . (xn, yn), (xn+1, yn+1). . . (xn+m, yn+m)

n (x1, y1), (x2, y2). . . (xn, yn)

m (xn+1, yn+1). . . (xn+m, yn+m)
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Key idea: what really matters is our prediction
accuracy out-of-sample!

Therefore, we only care about the  of out-
of-sample instead of in sample.

Out-of-sample accuracy

The optimal model complexity is the one that minimizes the test error

RMSE

RMSEout =

⎷
m

∑
i=1

(yi − f(xi))21

m
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Linear model: train
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Linear model: test
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Quadratic model: train
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Quadratic model: test
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K-nearest neighbors: test
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K-nearest neighbors: test at the optimal k
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RMSE: Linear v.s Quadratic vs.KNN

Linear:

Quadratic

K-Nearest Neighbors

KNN is the best model in terms of out-of-sample accuracy.

RMSEout = 1839

RMSEout = 999

RMSEout = 993
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Measuring model accuracy, revisited

Recall that out-of-sample EMSE is defined as:

But in reality, in-sample and out-of-sample are not always the same.

In other words, out-of-sample EMSE is kind of a random sampling from the population.

To estimate out-of-sample EMSE, we train our model  on in-sample data and calculate average
performance on out-of-sample data:

This estimate has two sources of randomness:

The function estimate  from in-sample data

The specific  pairs in the out-of-sample set

EMSEout = E [(Y − f̂ (X))2]

f̂

ˆEMSE =
Nout

∑
i=1

(yi − f̂ (xi))
21

Nout

f̂ (x)

(xi, yi) 67 / 74



10 different random train/test splits

split in/out of sample RMSE

1 991.4038

2 962.0368

3 1046.1707

4 969.6299

5 1014.3368

6 984.9417

7 973.5467

8 1044.0364

9 1050.0654

10 947.8253
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EMSE across multiple values of K
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K-fold cross validation

A more efficient solution is K-fold cross-validation:

1. Randomly divide the data set into  nonoverlapping groups, or folds, of roughly equal size.

2. For fold  to :

Fit the model using all data points not in fold .
For all points  in fold , predict  using the fitted model.
Calculate , the average error on fold .

3. Calculate the cross-validated error rate as:

K

k = 1 K

k

(yi, xi) k ŷi

R̂MSEk k

CV(K) =
K

∑
k=1

ÊMSEk

1

K
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K-fold cross validation

The split of the data into folds is still random, but in a way that minimizes the overlap between each test
set.
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K-fold cross validation in practice

Typical values of  are 5 or 10 in practice.

All candidate models should be fit on the same set of folds.

That is, do not create a different split to evaluate different models.

If , i.e. the size of the data set, the resulting procedure is called "leave-one-out" cross validation
(LOOCV).

Generally k-fold CV with  or  is preferable to LOOCV.

Then both training and holdout samples are of reasonable size, achieving a balance on both bias and
variance.

LOOCV tends to have a higher variance. This is because the  folds are highly correlated-any two folds
always contain almost the same data points.

K

K = N

K = 5 K = 10

N
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K-fold cross validation

There are two typical ways to select a model using cross validation:

1. The min rule: choose the model with the best cross-validated error.

2. The 1SE rule: choose the simplest model whose cross-validated error is within one standard error of the
minimum.

Because the more complex model has a lower cross-validated error, but may also have a higher
variance.

For each model, we estimate the standard error of that model's cross-validated EMSE as:

S. E ≈
sd(ÊMSE1, ÊMSE2, … , ÊMSEK)

√K
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Wrap up

The basic idea of Supervised Learning is to make prediction based on the training data.

The key is to find a good model that can make accurate predictions on the testing data.

Because we need to split the data into training and testing sets, the data should be large enough.

Don't forget to use cross-validation to estimate the performance of the model.

74 / 74


